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A Farming Example and the News Vendor Problem The farmer’s problem

The farmer’s problem

Consider a farmer who specializes in raising wheat, corn, and sugar
beets on his 500 acres of land.

During the winter, he wants to decide how much land to devote to
each crop.

At least 200 tons (T) of wheat and 240 T of corn are needed for
cattle feed

Can be raised on the farm or bought from a wholesaler.

Any production in excess of the feeding requirement would be sold.

Over the last decade, mean selling prices have been $170 and $150
per ton of wheat and corn, respectively. The purchase prices are 40%
more than this due to the wholesalers margin and transportation
costs.
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A Farming Example and the News Vendor Problem The farmer’s problem

The farmer’s problem: Assumptions

The sugar beet is expected to be sold at $36/T.
The European Commission imposes a quota on sugar beet production.
Any amount in excess of the quota can be sold only at $10/T.
The farmer’s quota for next year is 6000 T.
Based on past experience, the farmer knows that the mean yield on
his land is roughly 2.5 T, 3 T, and 20 T per acre for wheat, corn, and
sugar beets, respectively.
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A Farming Example and the News Vendor Problem The farmer’s problem

The farmer’s problem: Mathematical Model

Decision variables:

x1 = acres of land devoted to wheat,
x2 = acres of land devoted to corn,
x3 = acres of land devoted to sugar beets,
w1 = tons of wheat sold ,
y1 = tons of wheat purchased ,
w2 = tons of corn sold ,
y2 = tons of corn purchased ,
w3 = tons of sugar beets sold at the favorable price,
w4 = tons of sugar beets sold at the lower price.

Mathematical Model

min 150x1 + 230x2 + 260x3 + 238y1 − 170w1 + 210y2 − 150w2 − 36w3 − 10w4

s.t. x1 + x2 + x3 ≤ 500
2.5x1 + y1 − w1 ≥ 200
3x2 + y2 − w2 ≥ 240
w3 + w4 ≤ 20x3

w3 ≤ 6000, x1, x2, x3, y1, y2,w1,w2,w3,w4 ≥ 0.
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A Farming Example and the News Vendor Problem The farmer’s problem

The farmer’s problem:Optimal Solution

Optimal Solution

Worries.
Over different years, the same crop, quite different yields because of
changing weather conditions.
Most crops need rain during the few weeks after seeding or planting,
then sunshine is welcome for the rest of the growing period.
Sunshine should not turn into drought, which causes severe yield
reductions.
Dry weather is again beneficial during harvest.
From all these factors, yields varying 20 to 25% above or below the
mean yield are not unusual.
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A Farming Example and the News Vendor Problem A scenario representation

A scenario representation

Assume some correlation among the yields of the different crops.

Assume that years are good, fair, or bad for all crops, resulting in
above average, average, or below average yields for all crops.

To fix these ideas, above and below average indicate a yield 20%
above or below the mean yield.

Weather conditions and yields for the farmer do not have a significant
impact on prices.

The farmer wishes to know whether the optimal solution is sensitive
to variations in yields.

He decides to run two more optimizations based on above average
and below average yields.
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A Farming Example and the News Vendor Problem A scenario representation

A scenario representation: Optimal Solutions

Alireza Ghaffari-Hadigheh (ASMU) Stochastic Optimization Fall 2017 8 / 55



A Farming Example and the News Vendor Problem A scenario representation

A scenario representation: Formulation

The farmer now realizes that he is unable to make a perfect decision
that would be best in all circumstances.
He would, therefore, want to assess the benefits and losses of each
decision in each situation.
Decisions on land assignment (x1, x2, x3) have to be taken now, but
sales and purchases (wi , i = 1, . . . , 4, yj , j = 1, 2) depend on the
yields.
Index those decisions by a scenario index s = 1, 2, 3 corresponding to
above average, average, or below average yields, respectively.
This creates a new set of variables of the form
wis , i = 1, 2, 3, 4, s = 1, 2, 3 and yjs , j = 1, 2, s = 1, 2, 3 .
As an example, w32 represents the amount of sugar beets sold at the
favorable price if yields are average.
The farmer wants to maximize long-run profit, it is reasonable for him
to seek a solution that maximizes his expected profit.
Three scenarios have an equal probability of 1/3.
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A Farming Example and the News Vendor Problem A scenario representation

A scenario representation: Mathematical Model (The
extensive form)

It explicitly describes the second-stage decision variables for all
scenarios.
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A Farming Example and the News Vendor Problem A scenario representation

A scenario representation: Mathematical Model (The
extensive form)

The top line gives the planting areas, which must be determined before realizing
the weather and crop yields. This decision is called the first stage.

The other lines describe the yields, sales, and purchases in the three scenarios.
They are called the second stage.

The bottom line shows the overall expected profit.
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A Farming Example and the News Vendor Problem A scenario representation

A scenario representation: Illustration of the solution

The most profitable decision for sugar beet land allocation is the one that
always avoids sales at the unfavorable price even if this implies that some
portion of the quota is unused when yields are average or below average.

The area devoted to corn is such that it meets the feeding requirement when
yields are average. This implies sales are possible when yields are above
average and purchases are needed when yields are below average.

Finally, the rest of the land is devoted to wheat. This area is large enough to
cover the minimum requirement. Sales then always occur.

This solution illustrates that it is impossible, under uncertainty, to find a
solution that is ideal under all circumstances.

Selling some sugar beets at the unfavorable price or having some unused
quota is a decision that would never take place with a perfect forecast.

Such decisions can appear in a stochastic model because decisions have to
be balanced or hedged against the various scenarios.
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A Farming Example and the News Vendor Problem A scenario representation

A scenario representation: The hedging effect

Suppose yields vary over years but are cyclical. A year with above
average yields is always followed by a year with average yields and
then a year with below average yields.

The farmer would then take optimal solutions as given in Table 3, then
Table 2, then Table 4, respectively.
This would leave him with a profit of $167,667 the first year, $118,600
the second year, and $59,950 the third year.
The mean profit over the three years (and in the long run) would be
the mean of the three figures, namely $115,406 per year.

Assume again that yields vary over years, but on a random basis.

If the farmer gets the information on the yields before planting, he will
again choose the areas on the basis of the solution in Table 2, 3, or 4,
depending on the information received.
In the long run, if each yield is realized one third of the years, the
farmer will get again an expected profit of $115,406 per year.
This is the situation under perfect information.
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A Farming Example and the News Vendor Problem A scenario representation

A scenario representation: The hedging effect

The farmer unfortunately does not get prior information on the yields.

The best he can do in the long run is to take the solution as given by Table 5.

This leaves the farmer with an expected profit of $108,390.

The difference between this figure and the value, $115,406, in the case of perfect
information, namely $7016, represents what is called the expected value of perfect
information (EVPI).

Another approach the farmer may have is to assume expected yields and always to
allocate the optimal planting surface according to these yields, as in Table 2.

This approach represents the expected value solution.

It is common in optimization but can have unfavorable consequences.

The loss by not considering the random variations is the difference between this
and the stochastic model profit from Table 5.

This value, $108,390- 107,240=$1,150, is the value of the stochastic solution (
VSS ), the possible gain from solving the stochastic model.

Note that it is not equal to the expected value of perfect information, and, as we
shall see in later models, may in fact be larger than the EVPI .
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A Farming Example and the News Vendor Problem General model formulation

General model formulation

A set of decisions to be taken without full information on some random
events. These decisions are called first-stage decisions and are usually
represented by a vector x .

In the farmer example, they are the decisions on how many acres to devote
to each crop.

Later, full information is received on the realization of some random vector ξ
.

Then, second-stage or corrective actions y are taken.

The functional form, such as ξ(ω) or y(s) , to show explicit dependence on
an underlying element, ω or s.

min cT x + EξQ(x , ξ)
s.t. Ax = b,

x ≥ 0
(1)

where Q(x , ξ) = min{qT y |Wy = h − Tx , y ≥ 0} , ξ is the vector formed by the
components of qT , hT , and T , and Eξ denote mathematical expectation with
respect to ξ. We assume here that W is fixed (fixed recourse).
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A Farming Example and the News Vendor Problem General model formulation

Farmer’s Example: Revisited

The random vector is a discrete variable with only three different values.

Only the T matrix is random.

A second-stage problem for one particular scenario s is

ti (s) represents the yield of crop i under scenario s (or state of nature s).

The random vector ξ = (t1, t2, t3) is formed by the three yields and that ξ can take
on three different values, say ξ1, ξ2, and ξ3, which represent
(t1(1), t2(1), t3(1)), (t1(2), t2(2), t3(2)), and (t1(3), t2(3), t3(3)), respectively

The random vector ξ(s) depends on the scenario s , which takes on three different
values.
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A Farming Example and the News Vendor Problem Continuous random variables

Continuous random variables

Assumption: yields for the different crops are independent.

Consider a continuous random vector for the yields.

Assume that the yield for each crop i can be appropriately described
by a uniform random variable, inside some range [li , ui ].

For the sake of comparison, we may take li to be 80% of the mean
yield and ui to be 120% of the mean yield so that the expectations
for the yields will be the same.

the decisions on land allocation are first-stage decisions because they
are taken before knowledge of the yields.

Second-stage decisions are purchases and sales after the growing
period.

The second-stage formulation can again be described as
Q(x) = EξQ(x , ξ), where Q(x , ξ) is the value of the second stage for
a given realization of the random vector.
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A Farming Example and the News Vendor Problem Continuous random variables

computation of Q(x , ξ)

Can be separated among the three crops due to independence of the
random vector.

EξQ(x , ξ) =
3∑

i=1

EξQi (xi , ξ) =
3∑

i=1

Qi (xi ),

where Qi (xi , ξ) is the optimal second-stage value of purchases and
sales of crop i .

Sugar beet sales: for a given value t3(ξ) of the sugar beet yield, one
obtains the following second-stage problem:
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A Farming Example and the News Vendor Problem Continuous random variables

The optimal decisions of this problem

The optimal decisions for this problem are clearly to sell as many
sugar beets as possible at the favorable price, and to sell the possible
remaining production at the unfavorable price:

w3(ξ) = min[6000, t3(ξ)x3],

w4(ξ) = max[t3(ξ)x3 − 6000, 0].

Second-stage value:

Q3(x3, ξ) = −36 min[6000, t3(ξ)x3]− 10 max[t3(ξ)x3 − 6000, 0].

First assume that the surface x3 devoted to sugar beets will not be so
large that the quota would be exceeded for any possible yield or so
small that production would always be less than the quota for any
possible yield. In other words

l3x3 ≤ 6000 ≤ u3x3
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A Farming Example and the News Vendor Problem Continuous random variables

The expected value of the second stage

The expected value of the second stage for sugar beet sales is

Q3(x3) = EξQ3(x3, ξ3)

= −
∫ 6000/x3

l3

36tx3f (t)dt

−
∫ u3

6000/x3

(216000 + 10tx3 − 6000)f (t)dt

f (t) denotes the density of the random yield t3(ξ).

After some computation,

Q3(x3) = −18
(u2

3 − l23 )x3

u3 − l3
+

13(u3x3 − 6000)2

x3(u3 − l3)

= −36t̄3x3 +
13(u3x3 − 6000)2

x3(u3 − l3)

t̄3 denotes the expected yield for sugar beet production, which is u3+l3
2 for a

uniform density.
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A Farming Example and the News Vendor Problem Continuous random variables

Alternative Assumption

If the surface x3 is such that the production exceeds the quota for any
possible yield (l3x3 > 6000) , then the optimal second-stage decisions
are

w3(ξ) = 6000,

w4(ξ) = t3(ξ)x3 − 6000,∀ξ

The second-stage value for a given ξ is

Q3(x3, ξ) = −216000− 10(t3(ξ)x3 − 6000) = −156000− 10t3(ξ)x3

The expected value is Q3(x3) = −156000− 10t̄3x3

If the surface devoted to sugar beets is so small that for any yield the
production is lower than the quota, the second-stage value function is
Q3(x3) = −36t̄3x3.
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A Farming Example and the News Vendor Problem Continuous random variables

The graph of the function Q3(x3) for all possible values of x3. Note
that with our assumption of t̄3 = 20, we would then have the limits
on x3 as 250 ≤ x3 ≤ 375 .

The function has three different pieces. Two of these pieces are linear
and one is nonlinear, but the function Q3(x3) is continuous and
convex.
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A Farming Example and the News Vendor Problem Continuous random variables

Other two values.

The global problem

min 150x1 + 230x2 + 260x3 +Q1(x1) +Q2(x2) +Q3(x3)

s.t. x1 + x2 + x3 ≤ 500,

x1, x2, x3 ≥ 0
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A Farming Example and the News Vendor Problem Continuous random variables

Solution Approach

The three functions Qi (xi ) are convex, continuous, and differentiable
functions and the first-stage objective is linear, this problem is a
convex program for which Karush-Kuhn-Tucker (K-K-T) conditions
are necessary and sufficient for a global optimum.

Denoting by λ the multiplier of the surface constraint and as before
by ci the first-stage objective coefficient of crop i , the K-K-T
conditions require

xi

[
ci +

∂Qi (xi )

∂xi
+ λ

]
= 0,

ci +
∂Qi (xi )

∂xi
+ λ ≥ 0, xi ≥ 0, i = 1, 2, 3

λ[x1 + x2 + x3 − 500] = 0, x1 + x2 + x3 ≤ 500, λ ≥ 0

Assume the optimal solution is such that 100 ≤ x1,
200

3 ≤ x2 ≤ 100,
and 250 ≤ x3 ≤ 375 with λ 6= 0
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A Farming Example and the News Vendor Problem Continuous random variables

Optimal solution

λ = 275.00, x1 = 135.83, x2 = 85.07, x3 = 279.10.

Satisfies all the required conditions and is therefore optimal.
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A Farming Example and the News Vendor Problem The news vendor problem

The news vendor problem

A news vendor goes to the publisher every morning and buys x newspapers
at a price of c per paper.

This number is usually bounded above by some limit u, representing either
the news vendors purchase power or a limit set by the publisher to each
vendor.

The vendor then walks along the streets to sell as many newspapers as
possible at the selling price q .

Any unsold newspaper can be returned to the publisher at a return price r ,
with r < c .

Help the news vendor decide how many newspapers to buy every morning.

Demand for newspapers varies over days and is described by a random
variable ξ.

It is assumed here that the news vendor cannot return to the publisher
during the day to buy more newspapers. Other news vendors would have
taken the remaining newspapers.

Readers also only want the last edition.
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A Farming Example and the News Vendor Problem The news vendor problem

Formulation of the problem

Define y as the effective sales and w as the number of newspapers
returned to the publisher at the end of the day.

Mathematical formulation

min
0≤x≤u

cx +Q(x),

where
Q(x) = EξQ(x , ξ),

Q(x , ξ) = min − qy(ξ)− rw(ξ)

s.t. y(ξ) ≤ ξ
y(ξ) + w(ξ) ≤ x

y(ξ),w(ξ) ≥ 0

−Q(x) is the expected profit on sales and returns, while −Q(x , ξ)is
the profit on sales and returns if the demand is at level ξ.
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A Farming Example and the News Vendor Problem The news vendor problem

Simple Rules

The model illustrates the two-stage aspect of the news vendor problem.

The buying decision has to be taken before any information is given on
the demand.
When demand is known in the so-called second stage, which represents
the end of the sales period of a given edition, the profit can be
computed.

This is done using the following simple rule:

y (ξ) = min(ξ, x),

w (ξ) = max(x − ξ, 0)

Sales can never exceed the number of available newspapers or the demand.
Returns occur only when demand is less than the number of newspapers
available.

The second-stage expected value function is

Q(x) = Eξ[−q min(ξ, x)− r max(x − ξ, 0)].
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A Farming Example and the News Vendor Problem The news vendor problem

Solution Approach

This function is convex and continuous.

It is also differentiable when ξ is a continuous random vector.

The optimal solution of the news vendors problem is
x = 0 if c +Q′(0) > 0,
x = u if c +Q′(u) < 0,
a solution of c +Q′(x) = 0 otherwise

where Q′(x) denotes the first order derivative of Q(x) evaluated at x .

Q(x) can be computed as

Q(x) =

∫ x

−∞
(−qξ − r(x − ξ))dF (ξ) +

∫ ∞
x
−qxdF (ξ)

= −(q − r)

∫ x

−∞
ξdF (ξ)− rxF (x)− qx(1− F (x))

F (ξ) represents the cumulative probability distribution of ξ.
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A Farming Example and the News Vendor Problem The news vendor problem

Optimal Solution

Integrating by parts,∫ x

−∞
ξdF (ξ) = xF (x)−

∫ x

−∞
F (ξ)dξ

Q(x) = −qx + (q − r)

∫ x

−∞
F (ξ)dξ

Q′(x) = −q + (q − r)F (x)

Optimal solution:
x = 0 if q−c

q−r < F (0),

x = u if q−c
q−r > F (u),

x = F−1(q−cq−r ) otherwise,

where F−1(α)is the α -quantile of F .
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Financial Planning and Control

Financial Planning and Control: an example

The essence of financial planning is the incorporation of risk into
investment decisions.

This example involves randomness in the constraint matrix instead of
the right-hand side elements.

We wish to provide for a child’s college education Y years from now.

We currently have $ b to invest in any of I investments. After Y
years, we will have a wealth that we would like to have exceed a
tuition goal of $ G . We suppose that we can change investments
every u years, so we have H = Y /u investment periods.

We ignore transaction costs and taxes on income although these
considerations would be important in reality.

We suppose that exceeding $ G after Y years would be equivalent to
our having an income of q% of the excess while not meeting the goal
would lead to borrowing for a cost r % of the amount short.
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Financial Planning and Control

Utility function of wealth

The major uncertainty in this model is the return on each investment
i within each period t .

We describe this random variable as ξ(i , t) = ξ(i , t, ω) where ω is
some underlying random element.

The decisions on investments will also be random. We describe these
decisions as x(i , t) = x(i , t, ω) .

From the randomness of the returns and investment decisions, our
final wealth will also be a random variable.
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Financial Planning and Control

A key point

We cannot completely observe the random element ω when we make
all our decisions x(i , t, ω).

We can only observe the returns that have already taken place.

In stochastic programming, we say that we cannot anticipate every
possible outcome so our decisions are nonanticipative of future
outcomes.

Before the first period, this restriction corresponds to saying that we
must make fixed investments, x(i , 1) , for all ω ∈ Ω , the space of all
random elements or, more specifically, returns that could possibly
occur.
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Financial Planning and Control

The effects of including stochastic outcomes

The effects of including stochastic outcomes as well as modeling
effects from choosing the time horizon Y and the coarseness of the
period approximations H
Consider a simple example with two possible investment types,

Stocks (i = 1)
Government securities (bonds) ( i = 2).

Set Y at 15 years and allow investment changes every five years so
that H = 3.

Assume that, over the three decision periods, eight possible scenarios
may occur. indicate the scenarios by an index s = 1, · · · , 8 , which
represents a collection of the outcomes ω that have common
characteristics (such as returns) in a specific model.
The scenarios correspond to independent and equal likelihoods of
having (inflation-adjusted) returns over the five-year period

1.25 for stocks and 1.14 for bonds
1.06 for stocks and 1.12 for bonds.
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Financial Planning and Control

Introduction

Assign probabilities for each s , p(s) = 0.125.

The returns are ξ(1, t, s) = 1.25 , ξ(2, t, s) = 1.14 for t = 1 and
s = 1, . . . , 4 for t = 2, s = 1, 2, 5, 6, and for t = 3 , s = 1, 3, 5, 7 . In
the other cases, ξ(1, t, s) = 1.06 , ξ(2, t, s) = 1.12

The scenario tree divides into branches corresponding to different
realizations of the random returns.

Because Scenarios 1 to 4, for example, have the same return for t = 1
, they all follow the same first branch.

Scenarios 1 and 2 then have the same second branch and finally
divide completely in the last period.

To show this more explicitly, we may refer to each scenario by the
history of returns indexed by st for periods t = 1, 2, 3 as indicated on
the tree in Figure.

Scenario 1 may also be represented as (s1, s2, s3) = (1, 1, 1).
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Financial Planning and Control

Tree Representation
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Financial Planning and Control

Mathematical program

We need only have a decision vector for each node of the tree.

The decisions at t = 1 are just x(1, 1) and x(2, 1) for the amounts
invested in stocks (1) and bonds (2) at the outset.

For t = 2, we would have x(i , 2, s1) where i = 1, 2 for the type of
investment and s1 = 1, 2 for the first-period return outcome.

The decisions at t = 3 are x(i , 3, s1, s2) .

A mathematical program to maximize expected utility.

Because the concave utility function 1 is piecewise linear, we just
need to define deficit or shortage and excess or surplus variables,
w(i1, i2, i3) and y(i1, i2, i3) , and we can maintain a linear model.
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Financial Planning and Control

Objective function and Constraints

The objective is a probability- and penalty-weighted sum of these terms∑
sH

· · ·
∑
s1

p(s1, . . . , sH)(−rw(s1, . . . , sH) + qy(s1, . . . , sH))

The first-period constraint is to invest the initial wealth:∑
i

x(i , 1) = b.

The constraints for periods t = 2, . . . ,H are, for each s1, . . . , st−1∑
i

−ξ(i , t − 1, s1, . . . , st−1)x(i , t − 1, s1, . . . , st−2) +
∑
i

x(i , t, s1, . . . , st−1) = 0,

The constraints for period H∑
i

ξ(i ,H, s1, . . . , sH)x(i ,H, s1, . . . , sH−1)− y(s1, . . . , sH) + w(s1, . . . , sH) = G .

Other constraints restrict the variables to be non-negative.
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Financial Planning and Control

Specifying the model

Initial wealth, b = 55, 000 ; target value, G = 80, 000; surplus reward, q = 1 ; and
shortage penalty, r = 4
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Financial Planning and Control

Introduction

Solving the problem yields an optimal expected utility value of
−1.514 .
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Financial Planning and Control

Interpretation of the results

The initial investment is heavily in stock ($41,500) with only $13,500
in bonds.

In the case of Scenarios 1 to 4, stocks are even more prominent, while
Scenarios 5 to 8 reflect a more conservative government security
portfolio.

In the last period, notice how the investments are either completely in
stocks or completely in bonds.

This is a general trait of one-period decisions. It occurs here because
in Scenarios 1 and 2, there is no risk of missing the target.

In Scenarios 3 to 6, stock investments may cause one to miss the
target, so they are avoided.

In Scenarios 7 and 8, the only hope of reaching the target is through
stocks.
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Financial Planning and Control

Comparison of the results to a deterministic model

All random returns are replaced by their expectation.
because the expected return on stock is 1.155 in each period, while
the expected return on bonds is only 1.13 in each period, the optimal
investment plan places all funds in stocks in each period.
If we implement this policy each period, but instead observed the
random returns, we would have an expected utility called the
expected value solution, or EV .
In this case, we would realize an expected utility of EV = -3.788 ,
while the stochastic program value is again RP = -1.514.
The difference between these quantities is the value of the stochastic
solution:

VSS = RPEV = −1.514− (−3.788) = 2.274.

This comparison gives us a measure of the utility value in using a
decision from a stochastic program compared to a decision from a
deterministic program.
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Financial Planning and Control

New formulation

The formulation can become quite cumbersome as the time horizon
H , increases and the decision tree grows quite bushy.

Another modeling approach to this type of multistage problem is to
consider the full horizon scenarios, s , directly, without specifying the
history of the process.

We substitute a scenario set S for the random elements Ω .

Probabilities, p(s) , returns, ξ(i , t, s) , and investments, x(i , t, s) ,
become functions of the H -period scenarios and not just the history
until period t.

The difficulty is that, when we have split up the scenarios, we may
have lost nonanticipativity of the decisions because they would now
include knowledge of the outcomes up to the end of the horizon.

To enforce nonanticipativity, we add constraints explicitly in the
formulation.
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Financial Planning and Control

The new general formulation

First, the scenarios that correspond to the same set of past outcomes at each
period form groups, S t

s1,...,st−1
, for scenarios at time t .

Now, all actions up to time t must be the same within a group. We do this
through an explicit constraint.

J(s, t) = {s1, . . . , st−1} such that
s ∈ S t

s1,...,st−1
.

the last equality constraint indeed
forces all decisions within the same
group at time t to be the same.

These nonanticipativity constraints
are the only constraints linking the
separate scenarios.

Without them, the problem would
decompose into a separate problem
for each s , maintaining the
structure of that problem.
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Capacity Expansion

Capacity Expansion

Optimal choices of the timing and levels of investments to meet
future demands of a given product.

Power plant expansion for electricity generation: Find optimal levels
of investment in various types of power plants to meet future
electricity demand.

Static deterministic analysis of the electricity generation problem.

Static means that decisions are taken only once.
Deterministic means that the future is supposed to be fully and
perfectly known.

Properties of a given power plant i

The investment cost ri ,
The operating cost qi ,
The availability factor ai (the percent of time the power plant can
effectively be operated).
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Capacity Expansion

Demand

Demand for electricity can be considered a single product, but the
level of demand varies over time.

The demand in terms of load duration curve that describes the
demand over time in decreasing order of demand level.

The curve gives the time τ
that each demand level D, is
reached.

Because we are concerned
with investments over the long
run, the load duration curve
we consider is taken over the
life cycle of the plants.
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Capacity Expansion

The load duration curve
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Capacity Expansion

The problem in the static situation

Finding the optimal investment for each mode j , i.e., to find the
particular type of power plant i , i = 1, . . . , n , that minimizes the
total cost of effectively producing 1 MW (megawatt) of electricity
during the time τj .

i(j) = argmini=1,...,n

{
ri + qiτj

ai

}
, (3.1)

n is the number of available technologies.

Four elements justify considering a dynamic or multistage model:

the long-term evolution of equipment costs;
the long-term evolution of the load curve;
the appearance of new technologies;
the obsolescence of currently available equipment.
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Capacity Expansion

Multistage model

t = 1, . . . ,H index the periods or stages;

i = 1, . . . , n index the available technologies;

j = 1, . . . ,m index the operating modes in the load duration curve.

ai= availability factor of i ;

Li= lifetime of i ;

g t
i = existing capacity of i at time t , decided before t = 1;

r ti = unit investment cost for i at time t (assuming a fixed plant life cycle for each
type i of plant);

qt
i = unit production cost for i at time t;

d t
j = maximal power demanded in mode j at time t;

τ tj = duration of mode j at time t.

The set of decisions

x t
i = new capacity made available for technology i at time t;

w t
i = total capacity of i available at time t;

y t
ij = capacity of i effectively used at time t in mode j .
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Capacity Expansion

The electricity generation H-stage problem

Decisions in each period t involve new
capacities x t

i made available in each technology

Capacities y t
ij operated in each mode for each

technology.

Newly decided capacities increase the total
capacity w t

i made available, as given by (3.3),
where the equipments becoming obsolete after
its lifetime is also considered.

Assumption x t
i = 0 if t ≤ 0 ,

so equation (3.3) only
involves newly decided
capacities.

By (3.4), the optimal
operation of equipment must
be chosen to meet demand in
all modes using available
capacities, which by (3.5)
depend on capacities g t

i

decided before t = 1 , newly
decided capacities x t

i , and the
availability factor.

The objective function (3.2)
is the sum of the investment
plus maintenance costs and
operating costs.
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Capacity Expansion

Stochastic model

The main difference is in the definition of the variables x ti and w t
i .

x ti represents the new capacity of i decided at time t, which becomes

available at time x t+4i
i ,(4i is the construction delay for equipment

i).

To have extra capacity available at time t, it is necessary to decide at
t −4i , when less information is available on the evolution of demand
and equipment costs.

Assumption: each decision is now a random variable. Instead of
writing an explicit dependence on the random element, ω, we again
use boldface notation to denote random variables.

x ti = new capacity decided at time t for equipment i , i = 1, . . . , n ;
w t
i = total capacity of i available and in order at time t;

ξ = the vector of random parameters at time t.
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Capacity Expansion

The stochastic model

Random vector ξ = (ξ2, . . . , ξH).

the elements forming ξt are the demands, (d t
1 , . . . , d

t
k) , and the cost

vectors, (r t , qt) .

In some cases, ξt can also contain the lifetimes Li , the delay factors
4i , and the availability factors ai , depending on the elements
deemed uncertain in the future.
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Capacity Expansion

An Example (Louveaux and Smeers [1988])

n = 4 technologies.

4i = 1 period of construction
delay.

Full availabilities, a ≡ 1.

No existing equipment, g ≡ 0.

The only random variable is d1 = ξ.

d2 = 3 and d3 = 2.

Investment costs are
r1 = (10, 7, 16, 6)T .

Production costs
q2 = (4, 4.5, 3.2, 5.5)T .

Load durations τ 2 = (10, 6, 1)T .

Budget constraint: keep all
investment below 120.
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Capacity Expansion

Design for Manufacturing Quality

Assuming that ξ takes on the values 3 , 5 , and 7 with probabilities
0.3 , 0.4 , and 0.3 , respectively, an optimal stochastic programming
solution: x1∗ = (2.67, 4.00, 3.33, 2.00)T with an optimal objective
value of 381.85 .

Consider the expected value solution, which would substitute ξ ≡ 5in
(3.11). An optimal solution here (again not unique) is
x̄1 = (0.00, 3.00, 5.00, 2.00)T . The objective value, if this single event
occurs, is 365 .

If we use this solution in the stochastic problem, with probability 0.3,
demand cannot be met. This would yield an infinite value of the
stochastic solution.
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Capacity Expansion

System’s reliability to meet demand

0 < α ≤ 1.

Chance or probabilistic constraint

Deterministic equivalent:

F t is the (assumed continuous) distribution function of
∑m

j=1 d
t
j and

F−1(α) is the α -quantile of F .
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