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Formulation

Basic two-stage stochastic linear program

min z = cT x + Eξ[min q(ω)T y(ω)]
s.t. Ax = b

T (ω)x + Wy(ω) = h(ω)
x ≥ 0, y(ω) ≥ 0,

(1)

c: a known vector in Rn1 ,

b: a known vector in Rm1 ,

A and W : known matrices of size m1 × n1 and m2 × n2, respectively,

W : The recourse matrix, assumed to be fixed.

T (ω): m2 × n1, q(ω) ∈ Rn2 , h(ω) ∈ Rm2 .

ξT (ω) = (q(ω)T , h(ω)T ,T1.(ω), . . . ,Tm2.(ω)) with
N = n2 + m2 + (m2 × n1)

Ti.(ω) is the i -th row of the technology matrix T (ω).

Alireza Ghaffari-Hadigheh Stochastic Optimization



Two-Stage Stochastic Linear Programs with Fixed Recourse
Probabilistic or Chance Constraints

Formulation
Discrete random variables
General cases
Special cases
Optimality conditions and duality
Stability and nonanticipativity

Equivalent to (1):
min z = cT x +Q(x)
s.t. Ax = b

T (ω)x + Wy(ω) = h(ω)
x ≥ 0,

(2)

Q(x) = Eξ[x , ξ(ω)] (3)

Q(x , ξ(ω)) = min
y
{q(ω)T y |Wy = h(ω)− T (ω)x , y ≥ 0}. (4)

When T is nonstochastic:
min z = cT x + Ψ(χ)
s.t. Ax = b

Tx − χ = 0
x ≥ 0.

(5)

Ψ(χ) = EξΨ(χ, ξ(ω))
Ψ(χ, ξ(ω)) = min{q(ω)Ty |Wy = h(ω)− χ, y ≥ 0}
generating an m2 -dimensional tender χ = Tx to be bid
against the outcomes h(ω) of the random events.
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K1 = {x |Ax = b, x ≥ 0}.
Elementary feasibility set:
K2(ξ) = {x |y ≥ 0 exists s. t. W (ω)y = h(ω)− T (ω)x}.

Example

min 2y1 + y2

s.t. y1 + 2y2 ≥ ξ1 − x1,

y1 + y2 ≥ ξ2 − x1 − x2,

0 ≤ y1 ≤ 1, 0 ≤ y2 ≤ 1.

Using the upper bounds on y ,

The first constraint implies ξ1 − x1 ≤ 3

The second one implies ξ2 − x1 − x2 ≤ 2.

Thus, K2(ξ) = {x |x1 ≥ ξ1 − 3, x1 + x2 ≥ ξ2 − 2}.
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As ξ is discrete, we may easily define the second-stage feasibility set as

K2 =
⋂
ξ∈Ξ

K2(ξ).

Example

ξ1 takes the value 2, 3, 4, ξ2 the values 1, 4, 7

With some nonspecified probabilities, independently of each other or not,

K2 = {x |x1 ≥ 1, x1 + x2 ≥ 5}.
It suffices to know the componentwise maximum of ξ to obtain K2.

This set is a polyhedron.

Definition

posW = {t|Wy = t, y ≥ 0}. Positive hull of W .
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Theorem

1 For a given ξ, the elementary feasibility set K2(ξ) is a convex polyhedron.

2 When ξ is a finite discrete random variable, K2 is a convex polyhedron.

Proof.

Consider some x and ξ such that no y ≥ 0 exists such that
W (ω)y = h(ω)− T (ω)x .

Some x and ξ such that h(ω)− T (ω)x /∈ posW (ω).

Thus, we have a point, h(ω)−T (ω)x , which does not belong to a convex
set, posW (ω).

Then, there must exist some hyperplane, say {x |σT x = 0}, that separates
h(ω)− T (ω)x from posW (ω).

This hyperplane satisfies σT t < 0 for t ∈ posW (ω) and
σT (h(ω)− T (ω)x) > 0.

For one particular ξ, W (ω) is fixed and there can be only finitely many
different such hyperplanes.

The intersection of finitely many convex polyhedra is a convex polyhedron.
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For fixed value of x and ξ, the value Q(x , ξ) of the second-stage program
is given by

Q(x , ξ) = min
y
{q(ω)T y |W (ω)y = h(ω)− T (ω)x , y ≥ 0}, (6)

Difficulties may arise when the mathematical program (6) is unbounded
below or infeasible.

Unboundedness typically results of an ill-defined model and can easily be
avoided by adding upper bounds on y .

Infeasibility is avoided if we only consider x ∈ K2.

Thus, for x ∈ K2,Q(x , ξ) is finite for all ξ and we may define

Q(x) = EξQ(x , ξ) =
K∑

k=1

pkQ(x , ξk)

k = 1, . . . ,K represents the K realizations of ξ.

The deterministic equivalent program min{z(x) = cT x +Q(x), x ∈ K1 ∩ K2}.
Alireza Ghaffari-Hadigheh Stochastic Optimization
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Theorem

For a given ξ, the value function Q(x , ξ) is

(a) a piecewise linear convex function in (h,T ) ;

(b) a piecewise linear concave function in q ;

(c) a piecewise linear convex function in x for all x ∈ K2.

When ξ is a finite discrete random variable, Q(x) is piecewise
linear and convex on K2.
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Proof.

To prove convexity in (a) and (c), we just need to prove that
f (b) = min{qT y |Wy = b} is a convex function in b.

Consider two different vectors, say b1 and b2, and some convex
combination bλ = λb1 + (1− λ)b2, λ ∈ (0, 1).

Let y∗1 and y∗2 be some optimal solution of min{qT y |Wy = b} for b = b1

and b = b2, respectively.

Then, λy∗1 + (1− λ)y∗2 is a feasible solution of min{qT y |Wy = bλ}.
Let y∗λ be an optimal solution of this last problem.

We have

f (bλ) = qT y∗λ ≤ qT (λy∗1 + (1− λ)y∗2 )

= λqT y∗1 + (1− λ)qT y∗2 = λf (b1) + (1− λ)f (b2)
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Proof. (continued...)

A similar proof can be given to show concavity in q.

To prove piecewise linearity, observe that solving (6) for given x and ξ
amounts to finding some square submatrix B(ω) of W (ω), called a basis,
such that yB = B(ω)−1(h(ω)−T (ω)x , yN = 0, where yB is the subvector
associated with the columns of B and yN includes the remaining
components of y .

A basis is feasible if yB ≥ 0 and a feasible basis is optimal if
aB(ω)TB(ω)−1W (ω) ≤ q(ω)T .

As long as these conditions hold, we have
Q(x , ξ) = qB(ω)TB(ω)−1(h(ω)− T (ω)x), which is linear in q, h, T and
x on a domain defined by the feasibility and optimality conditions.

Piecewise linearity follows from the existence of finitely many different
optimal bases for the second-stage program.
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Example

min 2y1 + y2

s.t. y1 + 2y2 ≥ ξ1 − x1,

y1 + y2 ≥ ξ2 − x1 − x2,

y1, y2 ≥ 0.
To reduce the calculations, assume 0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 1.

(i) If ξ ≤ x1 + x2 ⇒ y1 = 0, y2 = 1− x1 ;
(ii) If ξ > x1 + x2 ⇒ y1 = ξ − x1 − x2 and

y2 = (1− ξ + x2)+ where a+ = max(a, 0)

Q(x , ξ) =

 1− x1 for 0 ≤ ξ < x1 + x2,
ξ + 1− 2x1 − x2 for x1 + x2 ≤ ξ ≤ 1 + x2,
2(ξ − x1 − x2) for 1 + x2 ≤ ξ.

Q(x , ξ) is clearly piecewise linear in x .
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Another property when q and T are fixed

For any λ ≥ 0

Q(x , [q, λ(h′) + Tx ,T ]) = λQ(x , [q, h′ + Tx ,T ]) (7)

Because a dual optimal solution for h = h′ + Tx is also dual
feasible for h = λ(h′) + Tx and complementary with y∗

optimal for h = h′ + Tx .

Because λy∗ is also feasible for h = λ(h′) + Tx , λy∗ is
optimal for h = λ(h′) + Tx , demonstrating (7).

This says that Q(x , [q, h′ + Tx ,T ]) is a positively
homogeneous function of h′.

From the convexity of Q(x , [q, h′ + Tx ,T ]) in h = h′ + Tx ,
this function is also sublinear in h′.
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ξ is not a discrete random variable
For fixed value of x and ξ, the value of the second-stage program is, as
before, given by (6).

Q(x , ξ) = min
y
{q(ω)T y |W (ω)y = h(ω)− T (ω)x , y ≥ 0}.

When the mathematical program (6) is unbounded below or infeasible,
the value of the second-stage program is defined to be −∞ or +∞,
respectively.

The expected second-stage value is, as given in (3) Q(x) = Eξ[x , ξ(ω)]

+∞+ (−∞) = +∞
Conservative attitude, rejecting any first-stage decision that
could lead to an undefined recourse action for some realization
even if some other realization would induce an infinitely
low-cost.
Reflects the fact that second-stage programs can easily be
bounded by bounding y , while infeasibilities may be inherent
to the problem.
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Elementary feasibility set
For any given ξ,

K2(ξ) = {x |Q(x , ξ) <∞}
K2(ξ) = {x |y ≥ 0 exists s. t. W (ω)y = h(ω)− T (ω)x}.

Both definitions are equivalent for a given ξ and enjoy the properties of
Theorem (Page 9).

When ξ is not a discrete random variable, we define K2 in two different
ways:

K2 = {x |Q(x) <∞}
or

KP
2 =

⋂
ξ∈Ξ

K2(ξ)

KP
2 is said to define the possibility interpretation of the second-stage

feasibility set.

A first-stage decision x belongs to KP
2 if, for all possible values of the

random vector ξ, a feasible second-stage decision can be taken.
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Two sets, K2 and KP
2 , can indeed be different when the random variable is a

continuous random variable.

Example

Consider an example where the second stage is defined by

Q(x , ξ) = min
y
{y |ξy = 1− x , y ≥ 0}

ξ has a triangular distribution on [0,1], namely, P(ξ ≤ u) = u2

W reduces to a 1× 1 matrix and is the only random element.

For all ξ in (0,1], the optimal y is 1−x
ξ

K2(ξ) = {x |x ≤ 1}

Q(x , ξ) =
1− x

ξ
, ∀x ≤ 1
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Example

Example (Continued)

When ξ = 0, K2(0) = {x |x = 1}.
for x 6= 1, Q(x , 0) should normally be +∞. However, because the
probability that ξ = 0 is zero, the convention is to take Q(x , 0) = 0. This
corresponds to defining 0×∞ = 0.

KP
2 = {x |x = 1} ∩ {x |x ≤ 1} = {x |x = 1} while

Q(x) =

∫ 1

0

1− x

ξ
× 2ξdξ = 2(1− x), ∀x ≤ 1

K2 = {x |x ≤ 1} and KP
2 is strictly contained in K2.

A point is not in KP
2 as soon as it is infeasible for some ξ value, regardless of

the distribution of ξ, while K2 does not consider infeasibilities occurring with
zero probability.
This kind of difficulty rarely occurs for programs with a fixed W matrix. It
never occurs when the random vector satisfies some conditions.
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Proposition 3.

If ξ has finite second moments, then

P(ω|Q(x , ξ) <∞) = 1 implies Q(x) <∞.

See (Walkup and Wets [1967]).

Theorem

For a stochastic program with fixed recourse where ξ has finite second
moments, the sets K2 and KP

2 coincide.
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Proof.

First consider x ∈ KP
2 .

This implies Q(x , ξ) <∞ with probability one, so that, by Proposition 3,
Q(x) is bounded above and x ∈ K2.

Now, consider x ∈ K2.

It follows that {ξ|Q(x , ξ) <∞} is a set of measure one.

Observe that Q(x , ξ) <∞ is equivalent to h(ω)− T (ω)x ∈ posW and
that h(ω)− T (ω)x is a linear function of ξ, and {ξ ∈ Σ|Q(x , ξ) <∞} is
a closed subset of Σ of measure one, for any set Σ of measure one.

In particular, {ξ ∈ Ξ|Q(x , ξ) <∞} is a closed subset of Ξ having
measure one.

By definition of Ξ, this set can only be Ξ itself, so that
{ξ|Q(x , ξ) <∞}Ξ and therefore x ∈ KP

2 .
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A third definition of the second-stage feasibility set:
{x |Q(x , ξ) <∞with probability one}.
For problems with fixed recourse where ξ has finite second
moments, this set also coincides with K2 and KP

2 .

In the following, we simply speak of K2, the second-stage feasibility
set.

Theorem

When W is fixed and ξ has finite second moments:

(a) K2 is closed and convex.

(b) If T is fixed, K2 is polyhedral.

(c) Let ΞT be the support of the distribution of T . If h(ξ)
and T (ξ) are independent and ΞT is polyhedral, then K2

is polyhedral.
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Proof.

The proof of (a) is elementary under the possibility representation
of K2.

If T is fixed, x ∈ K2 if and only if h(ξ)−Tx ∈ posW for all ξ ∈ Ξh,
where Ξh is the support of the distribution of h(ξ).

Consider some x and ξ s.t. h(ξ)− Tx /∈ posW . Then there must
exist some hyperplane, say {x |σT x = 0} that separates h(ξ)− Tx
from posW .

This hyperplane must satisfy σT t ≤ 0 for t ∈ posW and
σT (h(ξ)− Tx) > 0.

Because W is fixed, there need only be finitely many different such
hyperplanes, so that h(ξ)− Tx ∈ posW is equivalent to
W ∗(h(ξ)− Tx) ≤ 0 for some matrix W ∗.
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Proof (Continued)

This matrix, called the polar matrix of W , is obtained by choosing
some minimal set of separating hyperplanes.

The set is minimal if removing any hyperplane would no longer
guarantee the equivalence between h(ξ)− Tx ∈ posW and
W ∗(h(ξ)− Tx) ≤ 0 for all x and ξ in Ξh.

It follows that x ∈ K2 if and only if W ∗(h(ξ)−Tx) ≤ 0 for all ξinΞ.

This can still be an infinite system of linear inequalities due to h(ξ).

We may, however, replace this system by

(W ∗T )i.x ≥ u∗i = sup
h(ξ)∈Ξh

W ∗i.h(ξ), i = 1, . . . , l , (8)

where W ∗i. is the i -th row of W ∗ and l is the finite number of rows
of W ∗.
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Proof (Continued)

If for some i , u∗i is unbounded, then the problem is infeasible and
the result in (b) is trivially satisfied.

If, for all i , u∗i <∞, then the system (8) constitutes a finite system
of linear inequalities defining the polyhedron K2 = {x |W ∗Tx ≥ u∗}
where u∗ is the vector whose i- th component is u∗i . This proves (b).

When T is stochastic, a relation similar to (8) holds, which, unless
ΞT is finite, defines an infinite system of inequalities.

Whenever ΞT is polyhedral, (c) can be proved by working on the
extremal elements of ΞT . (See Wets [1974, Corollary 4.13].)
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Q(x , ξ) it is not −∞

Theorem

For a stochastic program with fixed recourse where ξ has finite second
moments,

(a) Q(x) is a Lipschitzian convex function and is finite on K2.

(b) If F (ξ) is an absolutely continuous distribution, Q(x) is
differentiable on ri K2.

Proof.

Convexity and finiteness in (a) are immediate. A proof of the Lipschitz
condition can be found in Wets [1972] or Kall [1976].
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Remarks

When the random variables are appropriately described by a finite

distribution,

The constraint set K2 is defined by the possibility
interpretation and is easily seen to be polyhedral.
The second-stage recourse function Q(x) is piecewise linear
and convex on K2.

When the random variables cannot be described by a finite distribution,

They can usually be associated with some probability density.
Many common probability densities are absolutely continuous
and have finite second moments; so, the constraints set
definitions K2 and KP

2 coincide and the second-stage value
function Q(x) is differentiable and convex.
Classical nonlinear programming techniques could then be
applied.
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In general, one can only compute Q(x) by numerical integration of
Q(x , ξ), for a given value of x .

Most nonlinear techniques would also require the gradients of Q(x),
which in turn require numerical integration.

We come to the conclusion that numerical integration, as of today,
produces an effective computational method only when the random
vector is of small dimensionality.

As a consequence, the practical solution of stochastic programs
having continuous random variables is, in general, a difficult
problem.

One line of approach is to approximate the random variable by a
discrete one and let the discretization be finer and finer, hoping that
the solutions of the successive problems with discrete random
variables will converge to the optimal solution of the problem with a
continuous random variable.
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Special case: K1 ⊆ K2

Every solution x that satisfies the first-period constraints,
Ax = b, also has a feasible completion in the second stage.

The stochastic program has relatively complete recourse.

Although relatively complete recourse is very useful in practice
and in many of the theoretical results that follow, it may be
difficult to identify because it requires some knowledge of the
sets K1 and K2.

A special type of relatively complete recourse may be
identified from the structure of W .

This form, called complete recourse, holds when there exists
y ≥ 0 such that Wy = t for all t ∈ Rm2 .
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Complete recourse is also represented by posW = Rm2

It says that W contains a positive linear basis of Rm2 .
Complete recourse is often added to a model to ensure that
no outcome can produce infeasible results.
With most practical problems, this should be the case.
In some instances, complete recourse may not be apparent.
A special type of complete recourse offers additional
computational advantages to stochastic programming
solutions.
It is called simple recourse.
For a simple recourse problem, W = [I ,−I ], y is divided
correspondingly as (y+, y−), and q = (q+, q−).
In this case, the optimal values of y+

i (ω), y−i (ω) are
determined purely by the sign of hi (ω)− Ti .(ω)x provided
that q+

i + q−i ≥ 0 with probability one.
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Theorem

Suppose the two-stage stochastic program in (1) is feasible and has simple
recourse and that ξ has finite second moments. Then Q(x) is finite if and only
if q+

i + q−i ≥ 0 with probability one.

Proof.

If q+
i (ω) + q−i (ω) < 0 for ω ∈ Ω1 where P(Ω1) > 0, then, for any feasible

x in (1), for all ω ∈ Ω1 where hi (ω)− Ti.(ω)x > 0, let
y+
i (ω) = h − i(ω)− Ti.(ω)x + u, y−i (ω) = u. By letting u →∞,
Q(x , ω)→ −∞. A similar argument applies if hi (ω)− Ti.(ω)x ≤ 0, so
Q(x) is not finite.

If q+
i + q−i ≥ 0 with probability one, then

Q(x , ω) =

m2∑
i=1

(q+
i (ω)(hi (ω)− Ti.(ω)x)+ + q−i (ω)(−hi (ω) + Ti.(ω)x)+)

which is finite for all ω. Using Proposition 2, we obtain the result.
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Assumption: q+
i + q−i ≥ 0 with probability one.

Q(x) =
∑m2

i=1Qi (x),

Qi (x) = Eω[Qi (x , ξ(ω))],

Qi (x , ξ(ω)) = q+
i (ω)(hi (ω)−Ti.(ω)x)++q−i (ω)(−hi (ω)+Ti.(ω)x)+.

When q and T are fixed, this characterization of Q allows its
expression as a separable function in the remaining random
components hi .

Often, in this case, Ti.x is substituted with χi and Ψ is substituted
for ξ so that Q(x) = Ψ(χ).

We then obtain Ψ(χ) =
∑m2

i=1 Ψi (χi ) where Ψi (χi ) = Ehi [ψi (χi , hi )]
and ψi (χi , hi ) = q+

i (hi − χi )
+ + q−i (−hi + χi )

+.

We, however, continue to use Q(x) to maintain consistency with
our previous results.
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We can define the objective function even further.

In this case, let hi have an associated distribution function Fi , mean
value hi , and let qi = q+

i + q−i .

We can then write

Qi (x) = q+
i hi − (q+

i − qiFi (Ti.x))Ti.x − qi

∫
hi≤Ti.x

hidFi (hi ). (9)

Of particular importance in optimization is the subdifferential of this
function, which has the following simple form:

∂Qi (x) = {π(Ti.)
T | − q+

i + qiF
−
i (Ti.x) ≤ π ≤ −q+

i + qiF
+
i (Ti.x)},

(10)

F−i (h) = lim t ↑ hFi (t) and F+
i (h) = limt↓h Fi (t) = Fi (h).
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Optimality conditions for stochastic programs

Special conditions that can apply to stochastic programs

Stochastic programs may differ from other mathematical
programs.

Additional assumptions that guarantee necessary and
sufficient conditions for two-stage stochastic linear programs.

1 When is a solution to (2) attainable?
2 What form do the optimality conditions take and how can

they be simplified?
3 What types of dual problems can be formulated to accompany

(2) and do they obtain bounds on optimal values?
4 How stable is an optimal solution to (2) to changes in the

parameters and distributions?
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Assumptions: ξ has finite second moments, and Q is Lipschitzian.

Then, we can apply a direct subgradient result.

Question: Whether the solution of (2) can indeed be obtained, i.e.,
whether the optimal objective value is finite and attained by some value
of x .

Example

Find

inf{Eξ[y + (ξ)]|y+(ξ), y−(ξ) ≥ 0, x + y+(ξ)− y−(ξ) = ξ, a.s.}, (11)

where ξ is, for example, negative exponentially distributed on [0,∞). For any
finite value of x , (11) has a positive value, but the infimum over x is zero.

almost surely (denoted a.s.), i.e., for all ω ∈ Ω except perhaps for
sets with zero probability.
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Recession cone, Recession value

definition

The recession cone (rc),

{v |u+λv ∈ S , ∀λ ≥ 0 and u ∈ S}

when applied to a set, S, and the
recession value,
supx∈dom f (f (x + v)− f (x))when
applied to a proper convex
function, f .
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Sufficient conditions to guarantee that a solution to (2) exists

Theorem

Suppose that the random elements ξ have finite second moments and one of
the following:
(a) the feasible region K is bounded; or
(b) the recourse function Q is eventually linear in all recession directions of K,
i.e., Q(x + λv) = Q(x + λv) + (λ− λ)rcQ(v) for some λ ≥ 0 (dependent on
x), all λ ≥ λ, and some constant recession value, rcQ(v), for all v such that
x + λv ∈ K for all x ∈ K and λ ≥ 0.
Then, if problem (2) has a finite optimal value, it is attained for some x ∈ Rn.

Note

As shown in Wets [1974], if T is fixed and Ξ is compact, the condition in (b) is
obtained.
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Assumption: An optimal solution can be attained (we would
expect in most practical situations).

The general deterministic equivalent form gives us the
following result in terms of Karush-Kuhn-Tucker conditions.

Theorem

Suppose (2) has a finite optimal value. A solution x∗ ∈ K1 , is
optimal in (2) if and only if there exists some
λ∗ ∈ Rm1 , µ∗ ∈ Rn1

+ , µ
∗Tx∗ = 0, such that,

− c + ATλ∗ + µ∗ ∈ ∂Q(x∗). (12)
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This result can be combined with our previous results on simple
recourse functions to obtain specific conditions for that problem as
follows.

Corollary

Suppose (1) has simple recourse and a finite optimal value. Then
x∗ ∈ K1 is optimal in (2) corresponding to this problem if and only
if there exists some λ∗ ∈ Rm1 , µ∗ ∈ Rn1

+ , µ∗T x∗ = 0, π∗i such
that −(q+

i − qiF
−
i (Ti .x

∗)) ≤ π∗i ≤ −(q+
i − qiF

+
i (Ti .x

∗)) and

− c + ATλ∗ + µ∗ − (π∗)TT = 0. (13)
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Inclusion (12) suggests that a subgradient method or other
nondifferentiable optimization procedure may be used to solve
(2).

Finite realizations of the random vector lead to equivalent
linear programs (although of large scale),

Absolutely continuous distributions lead to a differentiable
recourse function Q .

if Q is differentiable, we can replace ∂Q(x∗) with ∇Q(x∗) to
obtain:

c +∇Q(x∗) = ATλ∗ + µ∗ (14)

Possible algorithms based on convex minimization subject to
linear constraints are then admissible.
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The main practical possibilities for solutions of (2): either
large-scale linear programming or smooth nonlinear optimization.

The chief difficulty is in characterizing ∂Q because even evaluating
this function is difficult.

This evaluation is decomposable into subgradients of the recourse
function for each realization of ξ , which form the subdifferential set
∂Q(x , ξ(ω)) , where we interpret the subgradient elements as being
defined with respect to the decision variables x .

Theorem

If x ∈ K , then

∂Q(x) = Eω∂Q(x , ξ(ω)) + N(K2, x), (15)

where N(K2, x) = {v |vT y ≤ 0,∀y such that x + y ∈ K2} , the normal
cone to K2 at x .
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If the problem has relatively complete recourse, then, for any y
such that x + y ∈ K1 , we must also have x + y ∈ K2 . Hence,
N(K2, x) ⊂ N(K1, x) = {v |v = ATλ+ µ, µTx = 0, µ ≥ 0}.

Corollary

If (2) has relatively complete recourse, a solution x∗ is optimal in
(2) if and only if there exists some λ∗Rm1 , µ∗Rn1

+ , µ
∗T x∗ = 0 ,

such that
− c + ATλ∗ + µ∗Eω∂Q(x , ξ(ω)). (16)

Alireza Ghaffari-Hadigheh Stochastic Optimization



Two-Stage Stochastic Linear Programs with Fixed Recourse
Probabilistic or Chance Constraints

Formulation
Discrete random variables
General cases
Special cases
Optimality conditions and duality
Stability and nonanticipativity

(Exercise 10):

Eω∂Q(x , ξ(ω)) = {−E [πT]|πTW ≤ qT ,

πT (h− Tx) ≥ (π′)T (h − Tx), ∀(π′)TW ≤ qTa.s.}.(17)

An equivalent dual program to (2)

Under the relatively complete recourse assumption can be obtained
(Exercise 11) by solving the following maximization problem:

max v = bTλ+ Eω[h(ω)Tπ(ω)]

s.t. ATλ+ Eω[T (ω)Tπ(ω)] ≤ c , (18)

W Tπ(ω) ≤ q(ω), a.s.
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Definition

The optimal solution set is stable, if it changes continuously in
some sense when parameters of the problem change continuously.

Main Result

Stability is achieved (i.e., some optimal solution of an original
problem is close to some optimal solution of a perturbed problem)
if problem (2) has complete recourse and the set of recourse
problem dual solutions, {π|πTW ≤ q(ω)T} , is nonempty with
probability one.

In general, we wish to have a different x , y pair for every
realization of the random outcomes. We then wish to restrict the x
decisions to be the same for almost all outcomes.
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This says that the decision, (x(ω), y(ω)) , is a function (with
suitable properties) on Ω .

We restrict this to some space, X , of measurable functions
on Ω , for example, the p -integrable functions,
Lp(Ω,B, µ;Rn) , for some 1 ≤ p ≤ ∞ .

The general version of (2) is

inf
(x(ω),y(ω))∈X

∫
Ω

(cT x(ω) + q(ω)T y(ω))µ(dω)

s.t. Ax(ω) = b, a.s.,

EΩ(x(ω))− x(ω) = 0, a.s., (19)

T (ω)x(ω) + Wy(ω) = h(ω), a.s.,

x(ω), y(ω) ≥ 0, a.s.
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Problem (19) is equivalent to (2) if, for example, X is the
space of essentially bounded functions on Ω and K is bounded
for (2).

The two formulations are not necessarily the same.

The only difference in optimality conditions of (19) from
those of (12) is that we include explicit multipliers for the
nonanticipativity constraints.

For continuous distributions, these multipliers may have a
difficult representation unless (19) has relatively complete
recourse.

The difficulty is that we cannot guarantee boundedness of the
multipliers and may not be able to obtain an integrable
function to represent them.

This difficulty is caused when future constraints restrict the
set of feasible solutions at the first stage.
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For finite distributions, (19) is an implementable problem structure that is
used in several algorithms.

In this case, with K possible realizations of ξ with probabilities
pk , k = 1, . . . ,K , the problem becomes:

inf
(xh,yk ),
k=1,...,K

K∑
k=1

pk(cT xk + (qk)T y k)

s.t. Axk = b, k = 1, . . . ,K ,∑
j 6=k

pjx j + (1− pj)xk = 0, k = 1, . . . ,K , (20)

T kxk + Wy k = hk , k = 1, . . . ,K ,

xk , y k ≥ 0, k = 1, . . . ,K

Problem (20) is almost completely decomposes into K separate problems
for the K realizations.

The only links are in the second set of constraints that impose
nonanticipativity.
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Probabilistic, or chance, constraints take the form:

P{Ai (ω)x ≥ hi (ω)} ≥ αi (21)

0 < αi < 1 and i = 1, . . . , I is an index of the constraints that
must hold jointly.

We can model these constraints in a general expectational
form Eω(f i (ω, x(ω))) ≥ αi where f i is an indicator of
{ω|Ai(ω)x ≥ hi(ω)} .

The objective is often an expectational functional (the
E-model), or the variance of some result (the V-model) or the
probability of some occurrence (such as satisfying the
constraints) (the P-model).

Another variation includes an objective that is a quantile of a
random function
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The goal is to determine deterministic equivalents and their
properties.

To maintain consistency, let

K i
1(αi ) = {x |P(Ai (ω)x ≥ hi(ω)) ≥ αi}, (22)

0 < αi ≤ 1 and
⋂

i K
i
1(1) = K1.

K i
1(αi ) need not be convex or even connected.

Example

Ω = {ω1, ω2},P[ω1] = P[ω2] = 1
2

Ai (ω1) = Ai (ω2) =

(
1
−1

)
, hi (ω1) =

(
0
−1

)
, hi (ω2) =

(
2
−3

)
, (23)

For 0 < αi ≤ 1
2 , ,K

i
1(αi ) = [0, 1] ∪ [2, 3].
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When each i corresponds to a distinct linear constraint and Ai

is a fixed row vector, obtaining a deterministic equivalent of
(22) is fairly straightforward.

In this case, P(Aix ≥ hi (ω)) = F i (Aix), where F i is the
distribution function of hi .

Hence, K i
1(αi ) = {x |F i (Aix) ≥ αi} , which immediately yields

a deterministic equivalent form.

In general, the constraints must hold jointly so that the set I
is a singleton.

This situation corresponds to requiring an α-confidence
interval that x is feasible.
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One of the main results in probabilistic constraints is that, in
the joint constraint case, a large class of probability measures
on h(ω) (for A fixed) leads to convex and closed K1(α).

Definition

A probability measure P is in this class of quasi-concave measures
if for any convex measurable sets U and V and any 0 ≤ λ ≤ 1 ,

P((1− λ)U + λV ) ≥ min{P(U),P(V )}. (24)
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Theorem

Suppose A is fixed and h has an associated quasi-concave
probability measure P . Then K1(α) is a closed convex set for
0 ≤ α ≤ 1 .

Theorem

If f is the density of a continuous probability distribution in Rm

and f −
1
m is convex on Rm, then the probability measure

P(B) =

∫
B
f (x)dx ,

defined for all Borel sets B in Rm is quasi-concave.
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This result states that any density of the form f (x) = e−l(x)

for some convex function l yields a quasi-concave probability
measure.

These measures includethe multivariate normal, beta, and
Dirichlet distributions and are logarithmically concave
(because, for

0 ≤ λ ≤ 1,P((1− λ)U + λV ) ≥ P(U)λP(V )1−λ

for all Borel sets U and V ).

These distributions lead to computable deterministic
equivalents as, for example, in the following theorem.
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Theorem

Suppose A is fixed and the components hi , i = 1, . . . ,m1 , of h are
stochastically independent random variables with logarithmically
concave probability measures, Pi , and distribution functions, Fi ,
then K1(α) = {x |

∑m1
i=1 ln(F i (Ai .x)) ≥ lnα} and is convex.

Theorem

If A1., . . . ,An1., h have a joint normal distribution with a common
covariance structure, a matrix C , such that
E [(Ai . − E (Ai .))(Aj . − E (Aj .))T ] = rijC for i , j in 1, . . . , n1 , and
E [(Ai . − E (Ai .))(h − E (h))] = siC for i = 1, . . . , n − 1, where rij
and si are constants for all i and j , then K1(α) is convex for
α ≥ 1

2 .
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Theorem

Suppose that m1 = 1, h1 = 0 , and A1. has mean A1. and
covariance matrix C1 , then
K1(α) = {x |A1. − φ−1(α)

√
xTC1x ≥ 0} , where φ is the standard

normal distribution function.

min cT x

s.t. Ax = b,

Pi [Ti .x ≥ hi ] ≥ αi , i = 1, . . . ,m2, (25)

x ≥ 0,

where Pi is the probability measure of hi and Fi is the distribution
function for hi .
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For the deterministic equivalent to (25), we just let
Fi (h

∗
i ) = αi

min cT x

s.t. Ax = b,

Ti .x ≥ h∗i , i = 1, . . . ,m2, (26)

x ≥ 0,

Suppose we solve (26) and obtain an optimal x∗ and optimal
dual solution {λ∗, π∗}, where cT x∗ = bTλ∗ + h∗Tπ∗.

If π∗i = 0 , let q+
i = 0 and, if π∗i > 0 , let q+

i =
π∗i

1−αi
.
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An equivalent stochastic program with simple recourse to (25)

min cT x + Eh[q+y+]

s.t. Ax = b,

Ti.x + y+
i − y−i = h∗i , i = 1, . . . ,m2, (27)

x , y+
i , y

−
i ≥ 0,

For problems (25) and (27) to be equivalent, we mean that any x∗

optimal in (25) corresponds to some (x∗, y∗+) optimal in (27) for a
suitable definition of q+ and that any (x∗, y∗+) optimal in (27)
corresponds to x∗ optimal in (25)for a suitable definition of αi .

Theorem

For the q+
i defined as a function of some optimal π∗ for the dual

to (25), if x∗ is optimal in (25), there exists y∗+ ≥ 0 a.s. such
that (x∗, y∗+) is optimal in (25).
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If ξ(ω) is a discrete random variable, there exists a finite
number of scenarios which correspond to the realizations of ξ
. They are represented as ξ1, ξ2, . . . , ξK . Scenario k has a
probability pk with

K∑
k=1

pk = 1.

Scenarios can be obtained through experts opinions.

Another typical way to get scenarios is when the information
over the random variables comes from historical data.

The distribution of the random vector is then known as the
empirical distribution.
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Assume we have a constraint of the form

P{g(x , y(ω), ξ(ω)) ≤ 0} ≥ α. (28)

It is a joint probabilistic constraint:
g(.) ≤ 0 may contain several constraints under a vector
representation.
This includes classical cases such as
g(x , y(ω), ξ(ω)) = h(ω)− Ax .
This also includes cases where the probabilistic constraint
depends on the recourse actions.

g(x , y(ω), ξ(ω)) = h(ω)− T (ω)x −W (ω)y(ω).

Definition

Indicator function η(a) = 0 if a ≤ 0 and 1 if at least one
component of a is strictly positive.
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The probabilistic constraint is equivalent to

K∑
k=1

pkη(g(x , yk , ξk)) ≤ 1− α. (29)

The left-hand side of (29) sums up the probability of the
scenarios for which g(.) ≤ 0 is violated.

Assume that for each scenario k , an upper bound vector uk
can be found such that g(x , yk , ξk) ≤ uk for all feasible x , yk .

Then, (29) can be transformed into

K∑
k=1

pkwk ≤ 1− α, (30)

g(x , yk , ξk) ≤ ukwk , k = 1, . . . ,K , (31)

wk ∈ {0, 1} , k = 1, . . . ,K . (32)
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The binary variable wk plays the role of the indicator function.

When g(x , yk , ξk) ≤ 0 , wk takes the value 0 .
When at least one component of g(x , yk , ξk) is strictly
positive, then wk = 1 and scenario k contributes pk to the
left-hand side in (30).

The joint probabilistic constraint (28) with a discrete random
variable is transformed into a mixed integer programming
(MIP) formulation.

When g(.) is linear, the stochastic program with probabilistic
constraint is transformed into a mixed integer linear program
(MILP) and can be solved using your favorite MILP solver.
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Example

Find the numbers x1 and x2 of seats in first and business class for a plane of
200 seats. Assume a joint probabilistic constraint

P(x1 ≥ ξF , x1 + x2 ≥ ξF + ξB) ≥ 0.95, (33)

where ξF and ξB represents the weekdays demands in first and business class.
This corresponds to the classical case where g(x , y(ω), ξ(ω)) = h(ω)− Ax ,

with h(ω)T = (ξF , ξF + ξB) and A =

(
1 0
1 1

)
Assume the random variables (ξF , ξB) are given by the empirical data of
last year. (These data must correspond to the number of calls and not to
the number of passengers, which may depend on the acceptance policy at
that time).

This creates an empirical distribution of 260 pairs (ξF , ξB) for each
weekday of last year. Each of the 260 pairs is a scenario of probability 1

260

.

Alireza Ghaffari-Hadigheh Stochastic Optimization



Two-Stage Stochastic Linear Programs with Fixed Recourse
Probabilistic or Chance Constraints

General case
Probabilistic constraints with discrete random variables
Improved formulation of a probabilistic constraint with discrete random variables

Example

Continued...

we need an upper bound on ξF − x1 and on ξF + ξB − x1 − x2 for each k .

Here, it suffices to take ξF and ξF + ξB , respectively.

As an illustration, if scenario k has demands (14,32) in first and business,
then the two corresponding constraints in (31) are

14− x1 ≤ 14wk ,

46− x1 − x2 ≤ 46wk

Thus, (33) is formulated using 260 binary variables wk s, one constraint
(30) and 520 constraints in (31).

To put it in more general terms, (33) is reformulated using K extra binary
variables and 2K + 1 extra constraints.
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Example

Consider the farmer problem.

The example was built assuming a discrete random variable
with only three scenarios: good, fair, and bad.

This number can easily be extended either in a similar manner
or by taking past observations of the yields.

We now assume K scenarios, each consisting of a vector of
three yields.

The farmer finds it inappropriate to purchase large quantities
of wheat and/or corn.

He considers it excessive to purchase more than a total of 20
T. Owing to the uncertainty of mother nature, he allows for a
20% probability of excessive purchases.

Alireza Ghaffari-Hadigheh Stochastic Optimization



Two-Stage Stochastic Linear Programs with Fixed Recourse
Probabilistic or Chance Constraints

General case
Probabilistic constraints with discrete random variables
Improved formulation of a probabilistic constraint with discrete random variables

Example

Continued...

Thus, his probabilistic constraint is

P(y1(ω) + y2(ω) ≤ 20) ≥ 0.80 (34)

y1(ω) and y2(ω) are the purchases of wheat and corn,
respectively.

Here is a case where the probabilistic constraint depends on
the recourse actions under the general form
g(x , y(ω), ξ(ω)) = h(ω)− T (ω)x −W (ω)y(ω).

To obtain (31), start from the representation of the constraint
under scenario k as −20 + yk1 + yk2 ≤ 0 ,where yk1 and yk2
represent the purchase of wheat and corn under scenario k .
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Example

Continued...

From Table 1 in Section 1.1, the total requirement of wheat and
corn is 440 .

The upper bound to form (31) is the value 420 , so that a single
constraint of the form

yk
1 + yk

2 ≤ 20 + 420wk (35)

(If yk
1 + yk

2 ≤ 20 , then wk is 0 ; otherwise, wk = 1 and the
constraint imposes no limit on the purchase of wheat and corn as
the total cannot exceed 440 .)

The recourse problem with K scenarios and the extra probabilistic
constraint (34) is reformulated as an MILP with K extra binary
variables and K + 1 extra constraints.
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For large values of K , the MILP may become difficult to
solve.

This is due to the structure of (31).

It is indeed a weak constraint on wk .

To see this, consider the example of (35).

Suppose that the total purchase under scenario k is 30 .

Then (35) is equivalent to 420wk ≥ 10 , or wk ≥ 0.0238 .

As (35) is the only constraint on w − k , integrality can only
be recovered through branching.

The MILP solver will have to branch on all nonzero binaries,
and none of them is likely to be spontaneously 1 .

Moreover, after some wk s are fixed by branching, additional
wks may become fractional and require extra branching.
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Definition

A valid inequality is a linear constraint added to the original
formulation, which does not eliminate any integer solution but
eliminates fractional solutions.

A valid inequality provides a reformulation of the problem that
contains fewer fractional solutions but the same integer
solutions.

To illustrate valid inequalities, we use the example of
constraint (34) and its reformulation (35).

As the probabilistic constraint only depends on corn and
wheat, we may restrict our attention for this analysis to the
first two components of the random vector.
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Definition

Scenario k dominates scenario j if ξk ≥ ξj , where the inequality
must hold componentwise.

In the current farmer example, if scenario k dominates
scenario j , the yields of wheat and corn are higher in scenario
k .

It follows that the purchases of both products can only be
smaller under scenario k .

Hence, wk ≤ wj .

A first set of potential valid inequalities is wk ≤ wj for all
pairs of scenarios such that ξk ≥ ξj .
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We now illustrate the valid inequalities in the farmer problem
with the extra probabilistic constraint (34)

Imagine the farmer is able to collect 25 scenarios, each having
probability 0.04 . (He may obtain them in a cooperative
fashion with some fellow farmers or get them from an
agricultural research institute.)

Assume that the first 9 scenarios (restricted to wheats and
corns yields) are as follows: (2.25,2.4) , (2.1,2.6) , (2.4,2.5) ,
(2.6,2.3) , (2.2,3) , (2,3.4) , (2.5,2.7) , (2.3,3.6) , (2.2,3.7) .

Assume also that, for all other scenarios, P(Ak) > 0.8 ; hence,
wk = 0 .
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There are several dominance relations: ξ3 ≥ ξ1, ξ5 ≥ ξ2, ξ7 ≥
ξ2, ξ7 ≥ ξ3, ξ8 ≥ ξ1, ξ8 ≥ ξ5, ξ8 ≥ ξ6, ξ9 ≥ ξ5, ξ9 ≥ ξ6 , implying
valid inequalities w3 ≤ w1,w5 ≤ w2,w7 ≤ w2,w7 ≤ w3,w8 ≤
w1,w8 ≤ w5,w8 ≤ w6,w9 ≤ w5,w9 ≤ w6 .
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Dominance sets Ak can be visualized by drawing an horizontal
and a vertical half-line from k .

A5 and A7 are illustrated in the Figure 1.

A5 = {2, 5} with P(A5) = 0.08 and A7 = {1, 2, 3, 7} with
P(A7) = 0.16 .

Even if P(A5) + P(A7) > 0.2 , Scenarios 5 and 7 do not
constitute a cover as P(A5 ∪ A7) = 0.2 .

Scenarios 3 and 9 have similar probabilities and constitute a
cover: A3 = {1, 3} with P(A3) = 0.08 , A9 = {2, 5, 6, 9} with
P(A9) = 0.16 and P(A3 ∪ A9) = 0.24 .

Thus w3 + w9 ≤ 1 is a valid inequality.
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This example shows that covers based on the dominance sets
Ak are difficult to find as probabilities do not sum over sets
that may intersect.

Only minimal covers are of interest.

As an example, {1, 3, 9} is a cover but it is not minimal as
removing {1} still forms a cover.

There are several other minimal covers in this example:
{1, 4, 9}, {3, 4, 5, 6}, {3, 8}, {4, 5, 7}, {4, 6, 7}, {4, 8}
,{7, 8}, {7, 9}, {8, 9} .

In general, the MILP only adds minimal covers if they are
violated by the current fractional point.
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