
Springer Series in Operations Research
and Financial Engineering

Series Editors:
Thomas V. Mikosch
University of Copenhagen
Laboratory of Actuarial Mathematics
DK-1017 Copenhagen
Denmark
mikosh@act.ku.dk

Sidney I. Resnick
Cornell University
School of Operations Research and

Industrial Engineering
Ithaca, NY 14853
U.S.A.
sirl@cornell.edu

Stephen M. Robinson
University of Wisconsin-Madison
Department of Industrial Engineering
Madison, WI 53706
U.S.A.
smrobins@wisc.edu

For further volumes:
http://www.springer.com/series/3182

mikosh@act.ku.dk
sirl@cornell.edu
smrobins@wisc.edu
http://www.springer.com/series/3182

John R. Birge • François Louveaux

Introduction to Stochastic
Programming

Second Edition

123

John R. Birge
Booth School of Business
University of Chicago
5807 South Woodlawn Avenue
Chicago, Illinois 60637
USA
john.birge@chicagobooth.edu

François Louveaux
Department of Business Administration
University of Namur
Rempart de la Vierge 8
B-5000, Namur
Belgium
francois.louveaux@fundp.ac.be

ISSN 1431-8598
ISBN 978-1-4614-0236-7 e-ISBN 978-1-4614-0237-4
DOI 10.1007/978-1-4614-0237-4
Springer New York Dordrecht Heidelberg London

Library of Congress Control Number: 2011929942

Mathematics Subject Classification (2010): 37N40, 46N10, 49L20, 49Mxx (all), 49N30, 49N15, 90-01,
90B50, 90C05, 90C06, 90C15, 90C39

c© Springer Science+Business Media, LLC 2011
All rights reserved. This work may not be translated or copied in whole or in part without the written
permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York,
NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in
connection with any form of information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject
to proprietary rights.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

john.birge@chicagobooth.edu
francois.louveaux@fundp.ac.be
www.springer.com

To Richard and Joelle,
Sebastien, Jérôme, Quentin, and

Géraldine.

Preface

Since the publication of the first edition of this book, we have been encouraged by
the growing interest in stochastic programming and its application in a variety of
areas, including routine use in many industries from transportation and logistics to
finance and energy. We have also been heartened by the many new methodological
and theoretical advances within the field. In this second edition, we have attempted
to capture aspects of both recent applications and models as well as new practically
relevant methods and theory. As in the first edition, our primary goal is to provide
students and other readers with an appreciation of how to build uncertainty into an
optimization model, what differences in decisions might result from recognizing the
presence of uncertainty, and how and what kinds of models are amenable to solution.
We have focused the second edition on satisfying these main objectives while also
uncovering basic research questions to give beginning researchers a foundation upon
which to build more in-depth knowledge.

To help make the relevant issues in modeling, solving, and analyzing stochas-
tic programs more evident, we have incorporated more examples than in the first
edition so that the each of the main modeling, solution, and analysis processes are
illustrated with a detailed example. We have also added many exercises whose so-
lutions provide additional insights into stochastic programming concepts and tools.
Many of these exercises assume the availability of software to solve basic linear
and nonlinear optimization models and to construct algorithmic procedures involv-
ing matrix operations. Since we view completing these exercises as a key part of
understanding the material, instructors should ensure that students have adequate
programming skills to implement the methods described in the book.

Besides additional examples and exercises throughout the book, we have re-
organized the material to improve the logical flow and to eliminate unnecessary or
complicating issues before explaining the most practically relevant material. Spe-
cific changes in the second edition include the following:

• a new section (Section 1.5) and routing example in Chapter 1;
• a worked-out modeling exercise (Section 2.8) and a section on risk modeling and

robust formulation (Section 2.9 in Chapter 2;

vii

viii Preface

• re-arrangement and simplification of the material in Chapter 3 to emphasize basic
model characteristics and illustrate them with examples;

• complete re-organization and combination of Chapters 5 and 6 into a new Chap-
ter 5 that unifies the treatment of cutting-plane methods and again provides addi-
tional examples;

• an additional section on Lagrangian multistage methods in Chapter 6 (formerly
Chapter 7);

• a completely re-organized version of Chapter 7 (formerly Chapter 8) including
new methods and review material on combinatorial optimization;

• additional examples in Chapter 8 (formerly Chapter 9) including bounds on loss
probabilities in loan portfolios;

• re-organization of Chapter 9 (formerly Chapter 10) to place practical methods
earlier and to include a new section on Monte Carlo methods for probabilistic
constraints;

• re-organization of Chapter 10 (formerly Chapter 11) to include new sections
on scenario generation, multistage sampling methods, and approximate dynamic
programming methods;

• removal of the short chapter (formerly Chapter 12) on a capacity expansion case
study.

We anticipate that classes would follow much of the same sequence as we sug-
gested for the first edition, but, with the increased availability of software to im-
plement methods, we recommend that instructors include more computational exer-
cises and additional modeling projects to fit students’ interests. Any course should
again start with the first two chapters to provide the application and modeling con-
text. Depending on student interest, a typical class would generally include Chapters
3, 4, and Sections 5.1, 5.2, and 5.5 to present the most typical types of methods. For
basic approximations, a modeling-focused class could focus on the main techniques
in Chapters 8, 9, and 10 (for dynamic models), while a theoretically-oriented class
might emphasize the analytical results in those chapters. A more computationally
focussed class might emphasize the remainder of Chapter 5 plus Chapters 6 and 7.

We wish to thank the many people who sent us comments and suggestions about
the first edition of the book and the numerous students we have worked with and
all those who have helped us see stochastic programming from a fresh perspective
every time we encounter something new. Among the many who have contributed,
we thank Michael Dempster, Michel Gendreau, Maarten van der Vlerk, and Bill
Ziemba. Thanks are also due to Martine Van Caeneghem for her patient typing of
the modifications in Namur. We also again thank Fonds National de la Recherche
Scientifique, the National Science Foundation, as well as the U.S. Department of
Energy, and the University of Chicago Booth School of Business for their financial
support.

In our first edition, we finished the preface with special thanks to our wives,
Pierrette and Marie, to whom our book was dedicated. These thanks are more than
ever very much present in our hearts. Now, we also want to express our proudness
and joy of having such great children. We have thus decided to dedicate this second
edition to them. We may thus expect that the third edition will be dedicated to our

Preface ix

grandchildren, although the timing of this edition and the number of lines needed
for this future dedication remain unknown.

Chicago, Illinois, USA John R. Birge
Namur, Belgium François Louveaux

Preface to the First Edition

According to a French saying “Gérer, c’est prévoir,” which we may translate as
“(The art of) Managing is (in) foreseeing.” Now, probability and statistics have long
since taught us that the future cannot be perfectly forecast but instead should be
considered random or uncertain. The aim of stochastic programming is precisely
to find an optimal decision in problems involving uncertain data. In this terminol-
ogy, stochastic is opposed to deterministic and means that some data are random,
whereas programming refers to the fact that various parts of the problem can be
modeled as linear or nonlinear mathematical programs. The field, also known as
optimization under uncertainty, is developing rapidly with contributions from many
disciplines such as operations research, economics, mathematics, probability, and
statistics. The objective of this book is to provide a wide overview of stochastic
programming, without requiring more than a basic background in these various dis-
ciplines.

Introduction to Stochastic Programming is intended as a first course for begin-
ning graduate students or advanced undergraduate students in such fields as opera-
tions research, industrial engineering, business administration (in particular, finance
or management science), and mathematics. Students should have some basic knowl-
edge of linear programming, elementary analysis, and probability as given, for ex-
ample, in an introductory book on operations research or management science or
in a combination of an introduction to linear programming (optimization) and an
introduction to probability theory.

Instructors may need to add some material on convex analysis depending on the
choice of sections covered. We chose not to include such introductory material be-
cause students’ backgrounds may vary widely and other texts include these concepts
in detail. We did, however, include an introduction to random variables while mod-
eling stochastic programs in Section 2.1 and short reviews of linear programming,
duality, and nonlinear programming at the end of Chapter 2. This material is given
as an indication of the prerequisites in the book to help instructors provide any miss-
ing background. In the Subject Index, the first reference to a concept is where it is
defined or, for concepts specific to a single section, where a source is provided.

xi

xii Preface

In our view, the objective of a first course based on this book is to help students
build an intuition on how to model uncertainty into mathematical programs, which
changes uncertainty brings into the decision process, what difficulties uncertainty
may bring, and what problems are solvable. To begin this development, the first sec-
tion in Chapter 1 provides a worked example of modeling a stochastic program. It
introduces the basic concepts, without using any new or specific techniques. This
first example can be complemented by any one of the other proposed cases of Chap-
ter 1, in finance, in multistage capacity expansion, and in manufacturing. Based
again on examples, Chapter 2 describes how a stochastic model is formally built.
It also stresses the fact that several different models can be built, depending on the
type of uncertainty and the time when decisions must be taken. This chapter links
the various concepts to alternative fields of planning under uncertainty.

Any course should begin with the study of those two chapters. The sequel would
then depend on the students’ interests and backgrounds. A typical course would
consist of elements of Chapter 3, Sections 4.1 to 4.5, Sections 5.1 to 5.3 and 5.7,
and one or two more advanced sections of the instructor’s choice. The final case
study may serve as a conclusion. A class emphasizing modeling might focus on
basic approximations in Chapter 9 and sampling in Chapter 10. A computational
class would stress methods from Chapters 6 to 8. A more theoretical class might
concentrate more deeply on Chapter 3 and the results from Chapters 9 to 11.

The book can also be used as an introduction for graduate students interested
in stochastic programming as a research area. They will find a broad coverage of
mathematical properties, models, and solution algorithms. Broad coverage cannot
mean an in-depth study of all existing research. The reader will thus be referred to
the original papers for details. Advanced sections may require multivariate calculus,
probability measure theory, or an introduction to nonlinear or integer programming.
Here again, the stress is clearly in building knowledge and intuition in the field.
Mathematical results are given so long as they are either basic properties or helpful
in developing efficient solution procedures. The importance of the various sections
clearly reflects our own interests, which focus on results that may lead to practical
applications of stochastic programming.

To conclude, we may use the following little story. An elderly person, celebrating
her one hundredth birthday, was asked how she succeeded in reaching that age. She
answered, “It’s very simple. You just have to wait.”

In comparison, stochastic programming may well look like a field of young im-
patient people who not only do not want to wait and see but who consider waiting
to be suboptimal. We realize how much patience was needed from our friends and
colleagues who encouraged us to write this book, which took us much longer than
expected. To all of them, we are extremely thankful for their support. The authors
also wish to thank the Fonds National de la Recherche Scientifique and the National
Science Foundation for their financial support. Both authors are deeply grateful to
the people who introduced us to the field, George Dantzig, Roger Wets, Jacques

Preface xiii

Drèze, and Guy de Ghellinck. Our special thanks go to our wives, Pierrette and
Marie, to whom we dedicate this book.

Ann Arbor, Michigan John R. Birge
Namur, Belgium François Louveaux

Contents

Part I Models

1 Introduction and Examples . 3
1.1 A Farming Example and the News Vendor Problem 4

a. The farmer’s problem . 4
b. A scenario representation . 6
c. General model formulation . 10
d. Continuous random variables . 11
e. The news vendor problem . 15

1.2 Financial Planning and Control . 20
1.3 Capacity Expansion . 28
1.4 Design for Manufacturing Quality . 35
1.5 A Routing Example . 40

a. Presentation . 40
b. Wait-and-see solutions . 42
c. Expected value solution . 43
d. Recourse solution . 44
e. Other random variables . 46
f. Chance-constraints . 47

1.6 Other Applications . 48

2 Uncertainty and Modeling Issues . 55
2.1 Probability Spaces and Random Variables . 55
2.2 Deterministic Linear Programs . 57
2.3 Decisions and Stages . 57
2.4 Two-Stage Program with Fixed Recourse . 59

a. Fixed distribution pattern, fixed demand,
ri,v j,ti j stochastic . 62

b. Fixed distribution pattern, uncertain demand 63
c. Uncertain demand, variable distribution pattern 64
d. Stages versus periods; Two-stage versus multistage 65

xv

xvi Contents

2.5 Random Variables and Risk Aversion . 66
2.6 Implicit Representation of the Second Stage . 68

a. A closed form expression is available for Q(x) 69
b. For a given x , Q(x) is computable . 70

2.7 Probabilistic Programming . 71
a. Deterministic linear equivalent: a direct case 71
b. Deterministic linear equivalent: an indirect case 72
c. Deterministic nonlinear equivalent: the case of random

constraint coefficients . 73
2.8 Modeling Exercise . 74

a. Presentation . 74
b. Discussion of solutions . 76

2.9 Alternative Characterizations and Robust Formulations 84
2.10 Relationship to Other Decision-Making Models 87

a. Statistical decision theory and decision analysis 87
b. Dynamic programming and Markov decision processes 89
c. Machine learning and online optimization 90
d. Optimal stochastic control . 91
e. Summary . 93

2.11 Short Reviews . 94
a. Linear programming . 94
b. Duality for linear programs . 96
c. Nonlinear programming and convex analysis 97

Part II Basic Properties

3 Basic Properties and Theory . 103
3.1 Two-Stage Stochastic Linear Programs with Fixed Recourse 103

a. Formulation . 103
b. Discrete random variables . 105
c. General cases . 109
d. Special cases: relatively complete, complete,

and simple recourse . 113
e. Optimality conditions and duality . 115
f. Stability and nonanticipativity . 118

3.2 Probabilistic or Chance Constraints . 124
a. General case . 124
b. Probabilistic constraints with discrete random variables 130

3.3 Stochastic Integer Programs . 135
a. Recourse problems . 135
b. Simple integer recourse . 140
c. Probabilistic constraints . 146

3.4 Multistage Stochastic Programs with Recourse 149
3.5 Stochastic Nonlinear Programs with Recourse 156

Contents xvii

4 The Value of Information and the Stochastic Solution 163
4.1 The Expected Value of Perfect Information . 163
4.2 The Value of the Stochastic Solution . 165
4.3 Basic Inequalities . 166
4.4 The Relationship between EVPI and VSS . 167

a. EVPI = 0 and VSS �= 0 . 168
b. VSS = 0 and EVPI �= 0 . 169

4.5 Examples . 170
4.6 Bounds on EVPI and VSS . 171

Part III Solution Methods

5 Two-Stage Recourse Problems . 181
5.1 The L -Shaped Method . 182

a. Optimality cuts . 184
b. Feasibility cuts . 191
c. Proof of convergence . 196
d. The multicut version . 198

5.2 Regularized Decomposition . 202
5.3 The Piecewise Quadratic Form of the L -shaped Methods 210
5.4 Bunching and Other Efficiencies . 217

a. Full decomposability . 218
b. Bunching . 219

5.5 Basis Factorization and Interior Point Methods 222
5.6 Inner Linearization Methods and Special Structures 237
5.7 Simple and Network Recourse Problems . 242
5.8 Methods Based on the Stochastic Program Lagrangian 253
5.9 Additional Methods and Complexity Results . 262

6 Multistage Stochastic Programs . 265
6.1 Nested Decomposition Procedures . 266
6.2 Quadratic Nested Decomposition . 276
6.3 Block Separability and Special Structure . 282
6.4 Lagrangian-Based Methods for Multiple Stages 284

7 Stochastic Integer Programs . 289
7.1 Stochastic Integer Programs and LP-Relaxation 289
7.2 First-stage Binary Variables . 291

a. Improved optimality cuts . 294
b. Example with continuous random variables 299

7.3 Second-stage Integer Variables . 302
a. Looking in the space of tenders . 303
b. Discontinuity points . 305
c. Algorithm . 306

7.4 Reformulation . 312
a. Difficulties of reformulation in stochastic integer programs . 312

xviii Contents

b. Disjunctive cuts . 314
c. First-stage dependence . 316
d. An algorithm . 317

7.5 Simple Integer Recourse . 319
a. χ restricted to be integer . 322
b. The case where S = 1 , χ not integral 325

7.6 Cuts Based on Branching in the Second Stage 326
a. Feasibility cuts . 326
b. Optimality cuts . 329

7.7 Extensive Forms and Decomposition . 331
7.8 Short Reviews . 334

a. Branch-and-bound . 334
b. A simple example of valid inequalities 335
c. Disjunctive cuts . 336

Part IV Approximation and Sampling Methods

8 Evaluating and Approximating Expectations . 341
8.1 Direct Solutions with Multiple Integration . 342
8.2 Discrete Bounding Approximations . 346
8.3 Using Bounds in Algorithms . 352
8.4 Bounds in Chance-Constrained Problems. 357
8.5 Generalized Bounds . 363

a. Extensions of basic bounds . 363
b. Bounds based on separable functions . 367
c. General-moment bounds . 372

8.6 General Convergence Properties . 381

9 Monte Carlo Methods . 389
9.1 Sample Average Approximation and Importance Sampling

in the L -Shaped Method . 390
9.2 Stochastic Decomposition . 395
9.3 Stochastic Quasi-Gradient Methods . 399
9.4 Sampling Methods for Probabilistic Constraints and Quantiles 404
9.5 General Results for Sample Average Approximation and

Sequential Sampling . 409

10 Multistage Approximations . 417
10.1 Extensions of the Jensen and Edmundson-Madansky Inequalities . . 418
10.2 Bounds Based on Aggregation . 422
10.3 Scenario Generation and Distribution Fitting . 426
10.4 Multistage Sampling and Decomposition Methods 432
10.5 Approximate Dynamic Programming and Special Cases 436

a. Network revenue management . 438
b. Vehicle allocation problems . 439
c. Piecewise-linear separable bounds . 441

Contents xix

d. Nonlinear bounds and a production planning example 444
e. Extensions . 446

Sample Distribution Functions . 449
A.1 Discrete Random Variables . 449
A.2 Continuous Random Variables . 450

References . 451

Author Index . 471

Subject Index . 477

Notation

The following describes the major symbols and notations used in the text. To the
greatest extent possible, we have attempted to keep unique meanings for each item.
In those cases where an item has additional uses, they should be clear from context.
We include here only notation used in more than one section. Additional notation
may be needed within specific sections and is explained when used.

In general, vectors are assumed to be columns with transposes to indicate row
vectors. This yields cT x to denote the inner product of two n -vectors, c and x .
We reserve prime (′) for first derivatives with respect to time (e.g., f ′ = d f/dt).

Vectors in primal programs are represented by lowercase Latin letters while ma-
trices are uppercase. Dual variables and certain scalars are generally Greek letters.
Superscripts indicate a stage while subscripts indicate components followed by re-
alization index. Boldface indicates a random quantity. Expectations of random vari-
ables are indicated by a bar (ξ̄), μ , or (E(ξ)). We also use the bar notation to
denote sample means in Chapter 9.

Equations are numbered consecutively in the text by section and number within
the section (e.g., (1.2) for Section 1, Equation 2). For references to chapters other
than the current one, we use three indices: chapter, section, and equation, (e.g.,
(3.1.2) for Chapter 3, Section 1, Equation 2). Exercises are given at the end of
sections (or subsections in the cases of Sections 3.2 and 5.1) and are referenced
in the same manner as equations. All other items (figures, tables, declarations, ex-
amples) are labeled consecutively through the entire chapter with a single reference
(e.g., Figure 1) if within the current chapter and chapter and number if in a different
chapter (e.g., Figure 3.1 for Chapter 3, Figure 1).

xxi

xxii Notation

Symbol Definition
+ Superscript indicates the positive part of a real

(i.e., a+ = max(a,0)) or unrestricted variable (e.g.,
y = y+ − y−,y+ ≥ 0,y− ≥ 0) and its objective
coefficients (e.g., q+), subscript as non-negative
values in a set (e.g., ℜ+) or the
right-limit (F+(t) = lims↓t F(s))

− Superscript indicates the negative part of a real
(i.e., a− = max(−a,0)) or unrestricted variable (e.g.,
y = y+ − y−,y+ ≥ 0,y− ≥ 0) and its objective
coefficients (e.g., q−) or the left-limit (F−(t) =
lims↑t F(s))

∗ Indicates an optimal value or solution (e.g., x∗)
0 ˆ ′ ˜ Indicate given nonoptimal values or

solutions (e.g., x0 , x̂ , x′ , x̃)
0 Zero matrix (subscripts denote dimension when present)

1X Indicator function of set X
a Ancestor scenario, real value or vector
A First-stage matrix (e.g., Ax = b), also used

to indicate an event or subset, A ∈ A ⊂Ω
A Collection of subsets
b First-stage right-hand side (e.g., Ax = b)
B Matrix, basis submatrix, Borel sets,

or index set of a basis
B Collection of subsets (notably Borel sets)
c First-stage objective (cT x), t -th stage objective

((ct(ω))T xt) or real vectors
C Matrix or index set of continuous variables
d Right-hand side of a feasibility cut in the L-shaped

method, a demand, or real vector
D Left-hand side vector of a feasibility cut in the

L-shaped method, a matrix, a set, or an index set
of discrete variables

D Set of descendant scenarios
e Exponential, right-hand side of an optimality cut

in the L-shaped method, an extreme point,
or the unit vector (eT = (1, . . . ,1))

E Mathematical expectation operator, left-hand
side vector of an optimality cut in the
L-shaped method, or an event

f Function (usually in an objective (f (x) or fi(x))
or a density

F Cumulative probability distribution

Notation xxiii

Symbol Definition
g Function (usually in constraints (g(x) or g j(x)))
h Right-hand side in second-stage (Wy = h−Tx),

also ht(ω) in multistage problems
H Number of stages (horizon) in multistage problems
i Subscript index of functions (fi)

or vector elements (xi , xi j)
I Identity matrix or index set (i ∈ I)
j Subscript index of functions (g j)

or vector elements (y j , yi j)
J Matrix or index set
k Index of a realization of a random

vector (k = 1, . . . ,K)
K Feasibility sets (K1,K2) or total number of

realizations of a discrete random vector
K Number of realizations or sample paths in a scenario tree

with K t nodes at stage t
l Index, lower bound on a variable, or

Lagrangian function
L The L-shaped method, objective value lower

bound, or real value
m Number of constraints (m1,m2) or

number of elements (i = 1, . . . ,m)
n Number of variables (n1,n2) or

number of elements (i = 1, . . . ,n)
N Set, normal cone, normal distribution,

or number of random elements
p Probability of a random element (e.g., pk

= P(ξ = ξk)) or matrix of probabilities
P Probability of events (e.g., P(ξ ≤ 0))
q Second-stage objective vector (qT y)
Q Second-stage (multistage) value function

with random argument (Q(x,ξ) or Qt(xt ,ξ t))
Q Second-stage (multistage) expected value

value (recourse) function (Q(x) or Qt(xt))
r Revenue or return in examples, real vector,

or index
ℜ Real numbers
R Matrix or set
s Scenario or index

xxiv Notation

Symbol Definition
S Set or matrix
t Superscript stage or period index for multistage

programs (t = 1, . . . ,H), a real-valued parameter,
or an index

T Technology matrix (Wy = h−Tx or
Tt−1(ω)(x)); as a superscript, the transpose of
a matrix or vector

u General vector, upper-bound vector, or
expected shortage

U Objective value upper bound
v Variable vector or expected surplus
V Set, matrix or an operator
w Second-stage decision vector in some examples
W Recourse matrix (Wy = h−Tx)
x First-stage decision vector or multistage

decision vector (xt)
X First-stage feasible set (x ∈ X) or

t th stage feasible set (Xt)
y Second-stage decision vector
Y Second-stage feasible set (y ∈ Y)
z Objective value (minz = cT x + · · ·)
Z Integers
α Real value, vector, or probability level with

probabilistic constraints
β Real value or vector
γ Real value or function
δ Real value or function
ε Real value
ζ Random variable
η Real value or random variable
θ Lower bound on Q(x) in the

L-shaped method
κ Index
λ Dual multiplier, parameter in a convex

combination, or measure
μ Expectation (used mostly in examples of densities)

or a parameter for non-negative multiples
ν Algorithm iteration index (sometimes also the number

of samples in Monte Carlo sampling algorithms)
ξ Random vector (often indexed by time,

ξ t) with realizations as ξ (without boldface)
Ξ Support of the random vector ξ
π Dual multiplier

Notation xxv

Symbol Definition
Π Product, projection operator, or

aggregated problem dual multiplier
ρ Dual multiplier or discount factor
σ Dual multiplier, standard deviation, or

σ -field
Σ Summation or covariance matrix
τ Possible right-hand side in bundles

or index of time
φ Function in computing the value of

the stochastic solution or a measure
Φ Function, cumulative distribution of standard

normal
/0 Empty set
χ Tender or offer from first to second

period (χ = Tx)
ψ Second stage value function defined on tenders

and with random argument, ψ(χ ,ξ (ω)))
Ψ Expected second stage value function

defined on tenders, Ψ (χ))
ω Random event (ω ∈Ω)
Ω Set of all random events

Part I
Models

Chapter 1
Introduction and Examples

This chapter presents stochastic programming examples from a variety of areas with
wide application. These examples are intended to help the reader build intuition
on how to model uncertainty. They also reflect different structural aspects of the
problems. In particular, we show the variety of stochastic programming models in
terms of the objectives of the decision process, the constraints on those decisions,
and their relationships to the random elements.

In each example, we investigate the value of the stochastic programming model
over a similar deterministic problem. We show that even simple models can lead to
significant savings. These results provide the motivation to lead us into the following
chapters on stochastic programs, solution properties, and techniques.

In the first section, we consider a farmer who must decide on the amounts of
various crops to plant. The yields of the crops vary according to the weather. From
this example, we illustrate the basic foundation of stochastic programming and the
advantage of the stochastic programming solution over deterministic approaches.
We also introduce the classical news vendor (or newsboy) problem and give the
fundamental properties of these problems’ general class, called two-stage stochastic
linear programs with recourse.

The second section contains an example in planning finances for a child’s educa-
tion. This example fits the situation in many discrete time control problems. Deci-
sions occur at different points in time so that the problem can be viewed as having
multiple stages of observations and actions.

The third section considers power system capacity expansion. Here, decisions
are taken dynamically about additional capacity and about the allocation of capac-
ity to meet demand. The resulting problem has multiple decision stages and a valu-
able property known as block separable recourse that allows efficient solution. The
problem also provides a natural example of constraints on reliability within the area
called probabilistic or chance-constrained programming.

The fourth example concerns the design of a simple axle. It includes market
reaction to the design and performance characteristics of products made by a man-
ufacturing system with variable performance. The essential characteristics of the

J.R. Birge and F. Louveaux, Introduction to Stochastic Programming, Springer Series 3
in Operations Research and Financial Engineering, DOI 10.1007/978-1-4614-0237-4 1,
c© Springer Science+Business Media, LLC 2011

4 1 Introduction and Examples

maximum performance of the product illustrate a problem with fundamental non-
linearities incorporated directly into the stochastic program.

The fifth section presents a simple routing problem. It illustrates models where
some decisions (traveling on an arc or not) are represented by integer decision vari-
ables. As this example is easily illustrated and does not require any solver, it may
also be used as a preliminary example.

The final section of this chapter briefly describes several other major applica-
tion areas of stochastic programs. The exercises at the end of the chapter develop
modeling techniques. This chapter illustrates some of the range of stochastic pro-
gramming applications but is not meant to be exhaustive. Applications in location
and distribution, for example, are discussed in Chapter 2.

1.1 A Farming Example and the News Vendor Problem

a. The farmer’s problem

Consider a European farmer who specializes in raising wheat, corn, and sugar beets
on his 500 acres of land. During the winter, he wants to decide how much land to
devote to each crop. (We refer to the farmer as “he” for convenience and not to imply
anything about the gender of European farmers.)

The farmer knows that at least 200 tons (T) of wheat and 240 T of corn are needed
for cattle feed. These amounts can be raised on the farm or bought from a wholesaler.
Any production in excess of the feeding requirement would be sold. Over the last
decade, mean selling prices have been $170 and $150 per ton of wheat and corn,
respectively. The purchase prices are 40% more than this due to the wholesaler’s
margin and transportation costs.

Another profitable crop is sugar beet, which he expects to sell at $36/T; however,
the European Commission imposes a quota on sugar beet production. Any amount
in excess of the quota can be sold only at $10/T. The farmer’s quota for next year is
6000 T.

Based on past experience, the farmer knows that the mean yield on his land is
roughly 2.5 T, 3 T, and 20 T per acre for wheat, corn, and sugar beets, respectively.
Table 1 summarizes these data and the planting costs for these crops.

To help the farmer make up his mind, we can set up the following model. Let

x1 = acres of land devoted to wheat,
x2 = acres of land devoted to corn,
x3 = acres of land devoted to sugar beets,
w1 = tons of wheat sold,
y1 = tons of wheat purchased,
w2 = tons of corn sold,
y2 = tons of corn purchased,
w3 = tons of sugar beets sold at the favorable price,

1.1 A Farming Example and the News Vendor Problem 5

Table 1 Data for farmer’s problem.

Wheat Corn Sugar Beets
Yield (T/acre) 2.5 3 20
Planting cost ($/acre) 150 230 260
Selling price ($/T) 170 150 36 under 6000 T

10 above 6000 T
Purchase price ($/T) 238 210 –
Minimum require- 200 240 –
ment (T)
Total available land: 500 acres

w4 = tons of sugar beets sold at the lower price.

The problem reads as follows:

min 150x1 + 230x2 + 260x3 + 238y1 −170w1

+ 210y2 −150w2 −36w3 −10w4

s. t. x1 + x2 + x3 ≤ 500 , 2.5 x1 + y1 −w1 ≥ 200 ,

3 x2 + y2 −w2 ≥ 240 , w3 + w4 ≤ 20x3,w3 ≤ 6000 ,

x1,x2,x3, y1,y2, w1,w2,w3,w4 ≥ 0 .

(1.1)

After solving (1.1) with his favorite linear program solver, the farmer obtains an
optimal solution, as in Table 2.

Table 2 Optimal solution based on expected yields.

Culture Wheat Corn Sugar Beets
Surface (acres) 120 80 300
Yield (T) 300 240 6000
Sales (T) 100 – 6000
Purchase (T) – – –
Overall profit: $118,600

This optimal solution is easy to understand. The farmer devotes enough land to
sugar beets to reach the quota of 6000 T. He then devotes enough land to wheat and
corn production to meet the feeding requirement. The rest of the land is devoted to
wheat production. Some wheat can be sold.

To an extent, the optimal solution follows a very simple heuristic rule: to allocate
land in order of decreasing profit per acre. In this example, the order is sugar beets
at a favorable price, wheat, corn, and sugar beets at the lower price. This simple

6 1 Introduction and Examples

heuristic would, however, no longer be valid if other constraints, such as labor re-
quirements or crop rotation, would be included.

After thinking about this solution, the farmer becomes worried. He has indeed
experienced quite different yields for the same crop over different years mainly be-
cause of changing weather conditions. Most crops need rain during the few weeks
after seeding or planting, then sunshine is welcome for the rest of the growing pe-
riod. Sunshine should, however, not turn into drought, which causes severe yield
reductions. Dry weather is again beneficial during harvest. From all these factors,
yields varying 20 to 25% above or below the mean yield are not unusual.

In the next sections, we study two possible representations of these variable
yields. One approach using discrete, correlated random variables is described in
Sections 1.1b. and 1.1c. Another, using continuous uncorrelated random variables,
is described in Section 1.1d.

The influence of price fluctuations, illustrated by the dramatic price increases in
2007, is discussed in Exercise 8.

b. A scenario representation

A first possibility is to assume some correlation among the yields of the different
crops. A very simplified representation of this would be to assume that years are
good, fair, or bad for all crops, resulting in above average, average, or below average
yields for all crops. To fix these ideas, “above” and “below” average indicate a yield
20% above or below the mean yield given in Table 1. For simplicity, we assume
that weather conditions and yields for the farmer do not have a significant impact on
prices.

The farmer wishes to know whether the optimal solution is sensitive to variations
in yields. He decides to run two more optimizations based on above average and
below average yields. Tables 3 and 4 give the optimal solutions he obtains in these
cases.

Again, the solutions in Tables 3 and 4 seem quite natural. When yields are high,
smaller surfaces are needed to raise the minimum requirements in wheat and corn
and the sugar beet quota. The remaining land is devoted to wheat, whose extra pro-
duction is sold. When yields are low, larger surfaces are needed to raise the mini-
mum requirements and the sugar beet quota. In fact, corn requirements cannot be
satisfied with the production, and some corn must be bought.

The optimal solution is very sensitive to changes in yields. The optimal surfaces
devoted to wheat range from 100 acres to 183.33 acres. Those devoted to corn
range from 25 acres to 80 acres and those devoted to sugar beets from 250 acres
to 375 acres. The overall profit ranges from $59,950 to $167,667.

Long-term weather forecasts would be very helpful here. Unfortunately, as even
meteorologists agree, weather conditions cannot be accurately predicted six months
ahead. The farmer must make up his mind without perfect information on yields.

1.1 A Farming Example and the News Vendor Problem 7

Table 3 Optimal solution based on above average yields (+ 20%).

Culture Wheat Corn Sugar Beets
Surface (acres) 183.33 66.67 250
Yield (T) 550 240 6000
Sales (T) 350 – 6000
Purchase (T) – – –
Overall profit: $167,667

Table 4 Optimal solution based on below average yields (−20%).

Culture Wheat Corn Sugar Beets
Surface (acres) 100 25 375
Yield (T) 200 60 6000
Sales (T) – – 6000
Purchase (T) – 180 –
Overall profit: $59,950

The main issue here is clearly on sugar beet production. Planting large surfaces
would make it certain to produce and sell the quota, but would also make it likely to
sell some sugar beets at the unfavorable price. Planting small surfaces would make
it likely to miss the opportunity to sell the full quota at the favorable price.

The farmer now realizes that he is unable to make a perfect decision that would be
best in all circumstances. He would, therefore, want to assess the benefits and losses
of each decision in each situation. Decisions on land assignment (x1,x2,x3) have
to be taken now, but sales and purchases (wi, i = 1, . . . ,4, y j, j = 1,2) depend
on the yields. It is useful to index those decisions by a scenario index s = 1,2,3
corresponding to above average, average, or below average yields, respectively. This
creates a new set of variables of the form wis , i = 1,2,3,4 , s = 1,2,3 and y js ,
j = 1,2 , s = 1,2,3 . As an example, w32 represents the amount of sugar beets sold
at the favorable price if yields are average.

Assuming the farmer wants to maximize long-run profit, it is reasonable for him
to seek a solution that maximizes his expected profit. (This assumption means that
the farmer is neutral about risk. For a discussion of risk aversion and alternative
utilities, see Chapter 2.) If the three scenarios have an equal probability of 1/3 , the
farmer’s problem reads as follows:

8 1 Introduction and Examples

min 150x1 + 230x2 + 260x3

− 1
3 (170w11 −238y11 + 150w21 −210y21 + 36w31 + 10w41)

− 1
3 (170w12 −238y12 + 150w22 −210y22 + 36w32 + 10w42)

− 1
3 (170w13 −238y13 + 150w23 −210y23 + 36w33 + 10w43)

s.t. x1 + x2 + x3 ≤ 500 , 3x1 + y11 −w11 ≥ 200 ,
3.6x2 + y21 −w21 ≥ 240 , w31 + w41 ≤ 24x3 , w31 ≤ 6000 ,
2.5x1 + y12 −w12 ≥ 200 , 3x2 + y22 −w22 ≥ 240 ,
w32 + w42 ≤ 20x3 , w32 ≤ 6000 , 2x1 + y13 −w13 ≥ 200,
2.4x2 + y23 −w23 ≥ 240, w33 + w43 ≤ 16x3 ,
w33 ≤ 6000, x,y,w ≥ 0 .

(1.2)

Such a model of a stochastic decision program is known as the extensive form of the
stochastic program because it explicitly describes the second-stage decision vari-
ables for all scenarios. The optimal solution of (1.2) is given in Table 5. The top
line gives the planting areas, which must be determined before realizing the weather
and crop yields. This decision is called the first stage. The other lines describe the
yields, sales, and purchases in the three scenarios. They are called the second stage.
The bottom line shows the overall expected profit.

Table 5 Optimal solution based on the stochastic model (1.2).

Wheat Corn Sugar Beets
First Area (acres) 170 80 250
Stage
s = 1 Yield (T) 510 288 6000
Above Sales (T) 310 48 6000

(favor. price)
Purchase (T) – – –

s = 2 Yield (T) 425 240 5000
Average Sales (T) 225 – 5000

(favor. price)
Purchase (T) – – –

s = 3 Yield (T) 340 192 4000
Below Sales (T) 140 – 4000

(favor. price)
Purchase (T) – 48 –
Overall profit: $108,390

The optimal solution can be understood as follows. The most profitable decision
for sugar beet land allocation is the one that always avoids sales at the unfavorable
price even if this implies that some portion of the quota is unused when yields are
average or below average.

The area devoted to corn is such that it meets the feeding requirement when
yields are average. This implies sales are possible when yields are above average

1.1 A Farming Example and the News Vendor Problem 9

and purchases are needed when yields are below average. Finally, the rest of the land
is devoted to wheat. This area is large enough to cover the minimum requirement.
Sales then always occur.

This solution illustrates that it is impossible, under uncertainty, to find a solution
that is ideal under all circumstances. Selling some sugar beets at the unfavorable
price or having some unused quota is a decision that would never take place with a
perfect forecast. Such decisions can appear in a stochastic model because decisions
have to be balanced or hedged against the various scenarios.

The hedging effect has an important impact on the expected optimal profit. Sup-
pose yields vary over years but are cyclical. A year with above average yields is
always followed by a year with average yields and then a year with below average
yields. The farmer would then take optimal solutions as given in Table 3, then Ta-
ble 2, then Table 4, respectively. This would leave him with a profit of $167,667
the first year, $118,600 the second year, and $59,950 the third year. The mean profit
over the three years (and in the long run) would be the mean of the three figures,
namely $115,406 per year.

Now, assume again that yields vary over years, but on a random basis. If the
farmer gets the information on the yields before planting, he will again choose the
areas on the basis of the solution in Table 2, 3, or 4, depending on the information
received. In the long run, if each yield is realized one third of the years, the farmer
will get again an expected profit of $115,406 per year. This is the situation under
perfect information.

As we know, the farmer unfortunately does not get prior information on the
yields. So, the best he can do in the long run is to take the solution as given by
Table 5. This leaves the farmer with an expected profit of $108,390. The differ-
ence between this figure and the value, $115,406, in the case of perfect information,
namely $7016, represents what is called the expected value of perfect information
(EVPI). This concept, along with others, will be studied in Chapter 4. At this intro-
ductory level, we may just say that it represents the loss of profit due to the presence
of uncertainty.

Another approach the farmer may have is to assume expected yields and always
to allocate the optimal planting surface according to these yields, as in Table 2. This
approach represents the expected value solution. It is common in optimization but
can have unfavorable consequences. Here, as shown in Exercise 1, using the ex-
pected value solution every year results in a long run annual profit of $107,240. The
loss by not considering the random variations is the difference between this and the
stochastic model profit from Table 5. This value, $108,390 − 107,240=$1,150, is the
value of the stochastic solution (VSS), the possible gain from solving the stochastic
model. Note that it is not equal to the expected value of perfect information, and, as
we shall see in later models, may in fact be larger than the EVPI .

These two quantities give the motivation for stochastic programming in general
and remain a key focus throughout this book. EVPI measures the value of know-
ing the future with certainty while VSS assesses the value of knowing and using
distributions on future outcomes. Our emphasis will be on problems where no fur-
ther information about the future is available so the VSS becomes more practically

10 1 Introduction and Examples

relevant. In some situations, however, more information might be available through
more extensive forecasting, sampling, or exploration. In these cases, EVPI would
be useful for deciding whether to undertake additional efforts.

c. General model formulation

We may also use this example to illustrate the general formulation of a stochastic
problem. We have a set of decisions to be taken without full information on some
random events. These decisions are called first-stage decisions and are usually rep-
resented by a vector x . In the farmer example, they are the decisions on how many
acres to devote to each crop. Later, full information is received on the realization
of some random vector ξ . Then, second-stage or corrective actions y are taken.
We use boldface notation here and throughout the book to denote that these vectors
are random and to differentiate them from their realizations. We also sometimes
use a functional form, such as ξ (ω) or y(s) , to show explicit dependence on an
underlying element, ω or s .

In the farmer example, the random vector is the set of yields and the corrective
actions are purchases and sales of products. In mathematical programming terms,
this defines the so-called two-stage stochastic program with recourse of the form

min cT x + EξQ(x,ξ)
s. t. Ax = b ,

x ≥ 0 ,

(1.3)

where Q(x,ξ) = min{qT y | Wy = h − Tx,y ≥ 0} , ξ is the vector formed by the
components of qT , hT , and T , and Eξ denote mathematical expectation with
respect to ξ . We assume here that W is fixed (fixed recourse). Reasons for this
restriction are explained in Section 3.1.

In the farmer example, the random vector is a discrete variable with only three
different values. Only the T matrix is random. A second-stage problem for one
particular scenario s can thus be written as

Q(x,s) = min {238y1 −170w1 + 210y2 −150w2 −36w3 −10w4}
s. t. t1(s)x1 + y1 −w1 ≥ 200 ,

t2(s)x2 + y2 −w2 ≥ 240 ,

w3 + w4 ≤ t3(s)x3 ,

w3 ≤ 6000 ,

y,w ≥ 0 ,

(1.4)

where ti(s) represents the yield of crop i under scenario s (or state of nature s).
To illustrate the link between the general formulation (1.3) and the example (1.4),
observe that in (1.4) we may say that the random vector ξ = (t1, t2, t3) is formed by

1.1 A Farming Example and the News Vendor Problem 11

the three yields and that ξ can take on three different values, say ξ1 , ξ2 , and ξ3 ,
which represent (t1(1),t2(1),t3(1)) , (t1(2), t2(2), t3(2)) , and (t1(3), t2(3), t3(3)) ,
respectively.

An alternative interpretation would be to say that the random vector ξ (s) in fact
depends on the scenario s , which takes on three different values1.

In this section, we have illustrated two possible representations of a stochastic
program. The form (1.2) given earlier for the farmer’s example is known as the ex-
tensive form. It is obtained by associating one decision vector in the second-stage
to each possible realization of the random vector. The second form (1.3) or (1.4)
is called the implicit representation of the stochastic program. A more condensed
implicit representation is obtained by defining Q(x) = EξQ(x,ξ) as the value func-
tion or recourse function so that (1.3) can be written as

min cT x +Q(x)
s. t. Ax = b ,

x ≥ 0 .

(1.5)

d. Continuous random variables

Contrary to the assumption made in Section 1.1b., we may also assume that yields
for the different crops are independent. In that case, we may as well consider a
continuous random vector for the yields. To illustrate this, let us assume that the
yield for each crop i can be appropriately described by a uniform random variable,
inside some range [li,ui] (see Appendix A.2). For the sake of comparison, we may
take li to be 80% of the mean yield and ui to be 120% of the mean yield so
that the expectations for the yields will be the same as in Section 1.1b. Again, the
decisions on land allocation are first-stage decisions because they are taken before
knowledge of the yields. Second-stage decisions are purchases and sales after the
growing period. The second-stage formulation can again be described as Q(x) =
EξQ(x,ξ) , where Q(x,ξ) is the value of the second stage for a given realization of
the random vector.

Now, in this particular example, the computation of Q(x,ξ) can be separated
among the three crops due to independence of the random vector. (Note that this
separability property also holds in the discrete representation of Section 1.1b.) We
can then write:

EξQ(x,ξ) =
3

∑
i=1

EξQi(xi,ξ) =
3

∑
i=1

Qi(xi) , (1.6)

where Qi(xi,ξ) is the optimal second-stage value of purchases and sales of crop i .
We are in fact in position to give an exact analytical expression for the second-

stage value functions Qi(xi) , i = 1, . . . ,3 . We first consider sugar beet sales. For

1 Note that the decisions y1 , y2 , w1 , w2 , w3 , and w4 also depend on the scenario. This
dependence is not always made explicit. It appears explicitly in (1.7) but not in (1.4).

12 1 Introduction and Examples

a given value t3(ξ) of the sugar beet yield, one obtains the following second-stage
problem:

Q3(x3,ξ) = min −36w3(ξ)−10w4(ξ)
s. t. w3(ξ)+ w4(ξ) ≤ t3(ξ)x3 ,

w3(ξ) ≤ 6000 ,

w3(ξ),w4(ξ) ≥ 0 .

(1.7)

The optimal decisions for this problem are clearly to sell as many sugar beets as
possible at the favorable price, and to sell the possible remaining production at the
unfavorable price, namely

w3(ξ) = min[6000, t3(ξ)x3] ,
w4(ξ) = max[t3(ξ)x3 −6000,0] . (1.8)

This results in a second-stage value of

Q3(x3,ξ) = −36min[6000,t3(ξ)x3]−10max[t3(ξ)x3 −6000,0] .

We first assume that the surface x3 devoted to sugar beets will not be so large
that the quota would be exceeded for any possible yield or so small that production
would always be less than the quota for any possible yield. In other words, we
assume that the following relation holds:

l3x3 ≤ 6000 ≤ u3x3 , (1.9)

where, as already defined, l3 and u3 are the bounds on the possible values of t3(ξ) .
Under this assumption, the expected value of the second stage for sugar beet sales
is

Q3(x3) = EξQ3(x3,ξ3)

= −
∫ 6000/x3

l3
36tx3 f (t)dt

−
∫ u3

6000/x3

(216000 + 10tx3−60000) f (t)dt,

where f (t) denotes the density of the random yield t3(ξ) . Given the assumption
that this density is uniform over the interval [l3,u3] , one obtains, after some com-
putation, the following analytical expression

Q3(x3) = −18
(u2

3 − l2
3)x3

u3 − l3
+

13(u3x3 −6000)2

x3(u3 − l3)
,

which can also be expressed as

Q3(x3) = −36t̄3x3 +
13(u3x3 −6000)2

x3(u3 − l3)
, (1.10)

1.1 A Farming Example and the News Vendor Problem 13

where t̄3 denotes the expected yield for sugar beet production, which is u3+l3
2 for

a uniform density.
Note that assumption (1.9) is not really limiting. We can still compute the ana-

lytical expression of Q3(x3) for the other situations.
For example, if the surface x3 is such that the production exceeds the quota

for any possible yield (l3x3 > 6000) , then the optimal second-stage decisions are
simply

w3(ξ) = 6000 ,

w4(ξ) = t3(ξ)x3 −6000 , for all ξ .

The second-stage value for a given ξ is now

Q3(x3,ξ) = −216000−10(t3(ξ)x3 −6000) = −156000−10t3(ξ)x3 ,

and the expected value is simply

Q3(x3) = −156000−10t̄3x3 . (1.11)

Similarly, if the surface devoted to sugar beets is so small that for any yield the
production is lower than the quota, the second-stage value function is

Q3(x3) = −36t̄3x3 . (1.12)

We may therefore draw the graph of the function Q3(x3) for all possible values of
x3 as in Figure 1. Note that with our assumption of t̄3 = 20 , we would then have
the limits on x3 in (1.9) as 250 ≤ x3 ≤ 375 .

Fig. 1 The expected recourse value for sugar beets as a function of acres planted.

We immediately see that the function has three different pieces. Two of these pieces
are linear and one is nonlinear, but the function Q3(x3) is continuous and convex.
This property will be proved when we consider the generalization of this problem,

14 1 Introduction and Examples

known as the news vendor, newsboy, or Christmas tree problem. In fact, this prop-
erty holds for a large class of second-stage problems, as will be seen in Chapter 3.

Similar computations can be done for the other two crops. For wheat, we obtain

Q1(x1) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

47600−595x1 for x1 ≤ 200/3 ,

119 (200−2x1)2

x1
−85 (200−3x1)2

x1
for 200

3 ≤ x1 ≤ 100 ,

34000−425x1 for x1 ≥ 100 ,

and, for corn, we obtain

Q2(x2) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

50400−630x2 for x2 ≤ 200/3 ,

87.5 (240−2.4x2)2

x2
−62.5 (240−3.6x2)2

x2
for 200/3 ≤ x2 ≤ 100 ,

36000−450x2 for x2 ≥ 100 .

The global problem is therefore

min 150x1 + 230x2 + 260x3 +Q1(x1)+Q2(x2)+Q3(x3)
s. t. x1 + x2 + x3 ≤ 500 ,

x1,x2,x3 ≥ 0 .

Given that the three functions Qi(xi) are convex, continuous, and differentiable
functions and the first-stage objective is linear, this problem is a convex program for
which Karush-Kuhn-Tucker (K-K-T) conditions are necessary and sufficient for a
global optimum. (This result is from nonlinear programming. For more on this result
about optimality, see Section 2.11.) Denoting by λ the multiplier of the surface
constraint and as before by ci the first-stage objective coefficient of crop i , the
K-K-T conditions require

xi

[
ci +

∂Qi(xi)
∂xi

+λ
]

= 0 , ci +
∂Qi(xi)
∂xi

+λ ≥ 0 , xi ≥ 0 , i = 1,2,3 ;

λ [x1 + x2 + x3 −500] = 0 , x1 + x2 + x3 ≤ 500 , λ ≥ 0 .

Assume the optimal solution is such that 100 ≤ x1 , 200
3 ≤ x2 ≤ 100 , and 250 ≤

x3 ≤ 375 with λ �= 0 . Then the conditions read

1.1 A Farming Example and the News Vendor Problem 15

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−275 +λ = 0 ,

−76− 1.44 106

x2
2

+λ = 0 ,

476− 5.85 107

x2
3

+λ = 0 ,

x1 + x2 + x3 = 500 .

Solving this system of equations gives λ = 275.00 , x1 = 135.83 , x2 = 85.07 ,
x3 = 279.10 , which satisfies all the required conditions and is therefore optimal.
We observe that this solution is similar to the one obtained by using the scenario
approach, although more surface is devoted to sugar beet and less to wheat than be-
fore. This similarity represents a characteristic robustness of a well-formed stochas-
tic programming formulation. We shall consider it in more detail in our discussion
of approximations in Chapter 8.

e. The news vendor problem

The previous section illustrates an example of a famous and basic problem in
stochastic optimization, the news vendor problem. In this problem, a news vendor
goes to the publisher every morning and buys x newspapers at a price of c per pa-
per. This number is usually bounded above by some limit u , representing either the
news vendor’s purchase power or a limit set by the publisher to each vendor. The
vendor then walks along the streets to sell as many newspapers as possible at the
selling price q . Any unsold newspaper can be returned to the publisher at a return
price r , with r < c .

We are asked to help the news vendor decide how many newspapers to buy every
morning. Demand for newspapers varies over days and is described by a random
variable ξ .

It is assumed here that the news vendor cannot return to the publisher during the
day to buy more newspapers. Other news vendors would have taken the remaining
newspapers. Readers also only want the last edition.

To describe the news vendor’s profit, we define y as the effective sales and w as
the number of newspapers returned to the publisher at the end of the day. We may
then formulate the problem as

min cx +Q(x)
0 ≤ x ≤ u ,

where
Q(x) = EξQ(x,ξ)

and

16 1 Introduction and Examples

Q(x,ξ) = min −qy(ξ)− rw(ξ)
s. t. y(ξ) ≤ ξ ,

y(ξ)+ w(ξ) ≤ x ,

y(ξ),w(ξ) ≥ 0 ,

where again Eξ denotes the mathematical expectation with respect to ξ .
In this notation, −Q(x) is the expected profit on sales and returns, while

−Q(x,ξ) is the profit on sales and returns if the demand is at level ξ . The model
illustrates the two-stage aspect of the news vendor problem. The buying decision
has to be taken before any information is given on the demand. When demand is
known in the so-called second stage, which represents the end of the sales period of
a given edition, the profit can be computed. This is done using the following simple
rule:

y∗(ξ) = min(ξ,x) ,

w∗(ξ) = max(x−ξ,0) .

Sales can never exceed the number of available newspapers or the demand. Re-
turns occur only when demand is less than the number of newspapers available. The
second-stage expected value function is simply

Q(x) = Eξ[−qmin(ξ,x)− r max(x−ξ,0)] .

As we will learn later, this function is convex and continuous. It is also differentiable
when ξ is a continuous random vector. In that case, the optimal solution of the news
vendor’s problem is simply:

⎧⎪⎨
⎪⎩

x = 0 if c +Q′(0) > 0 ,

x = u if c +Q′(u) < 0 ,

a solution of c +Q′(x) = 0 otherwise,

where Q′(x) denotes the first order derivative of Q(x) evaluated at x .
By construction, Q(x) can be computed as

Q(x) =
∫ x

−∞
(−qξ − r(x− ξ))dF(ξ)+

∫ ∞

x
−qx dF(ξ)

= −(q− r)
∫ x

−∞
ξ dF(ξ)− rx F(x)−qx(1−F(x)) ,

where F(ξ) represents the cumulative probability distribution of ξ (see Sec-
tion 2.1).

Integrating by parts, we observe that
∫ x

−∞
ξ dF(ξ) = xF(x)−

∫ x

−∞
F(ξ)dξ

under mild conditions on the distribution function F(ξ) . It follows that

1.1 A Farming Example and the News Vendor Problem 17

Q(x) = −qx +(q− r)
∫ x

−∞
F(ξ)dξ .

We may thus conclude that

Q′(x) = −q +(q− r)F(x)

and therefore that the optimal solution is

⎧⎪⎨
⎪⎩

x∗ = 0 if q−c
q−r < F(0) ,

x∗ = u if q−c
q−r > F(u) ,

x∗ = F−1(q−c
q−r) otherwise,

where F−1(α) is the α -quantile of F (see Section 2.1). If F is continuous, x =
F−1(α) means α = F(x) . Any reasonable representation of the demand would
imply F(0) = 0 so that the solution is never x∗ = 0 .

As we shall see in Chapter 3, this problem is an example of a basic type of
stochastic program called the stochastic program with simple recourse. The ideas
of this section can be generalized to larger problems in this class of examples. Also
observe that, as such, we only come to a partial answer, under the form of an ex-
pression for x∗ . The vendor may still need to consult a statistician, who would
provide an accurate cumulative distribution F(·) . Only then will a precise figure be
available for x∗ .

Exercises

1. Value of the stochastic solution
Assume the farmer allocates his land according to the solution of Table 2, i.e.,
120 acres for wheat, 80 acres for corn, and 300 acres for sugar beets. Show that if
yields are random (20% below average, average, and 20% above average for all
crops with equal probability one third), his expected annual profit is $107,240.
To do this observe that planting costs are certain but sales and purchases depend
on the yield. In other words, fill in a table such as Table 5 but with the first-stage
decisions given here.

2. Price effect
When yields are good for the farmer, they are usually also good for many other
farmers. The supply is thus increasing, which will lower the prices. As an ex-
ample, we may consider prices going down by 10% for corn and wheat when
yields are above average and going up by 10% when yields are below average.
Formulate the model where these changes in prices affect both sales and pur-
chases of corn and wheat. Assume sugar beet prices are not affected by yields.

18 1 Introduction and Examples

3. Binary first stage
Consider the case where the farmer possesses four fields of sizes 185 , 145 ,
105 , and 65 acres, respectively. Observe that the total of 500 acres is unchanged.
Now, the fields are unfortunately located in different parts of the village. For rea-
sons of efficiency the farmer wants to raise only one type of crop on each field.
Formulate this model as a two-stage stochastic program with a first-stage pro-
gram with binary variables.

4. Integer second stage
Consider the case where sales and purchases of corn and wheat can only be
obtained through contracts involving multiples of hundred tons. Formulate the
model as a stochastic program with a mixed-integer second stage.

5. Consider any one of Exercises 2 to 4. Using standard mixed integer program-
ming software, obtain an optimal solution of the extensive form of the stochastic
program. Compute the expected value of perfect information and the value of
the stochastic solution.

6. Multistage program
It is typical in farming to implement crop rotation in order to maintain good soil
quality. Sugar beets would, for example, appear in triennial crop rotation, which
means they are planted on a given field only one out of three years. Formulate
a multistage program to describe this situation. To keep things simple, describe
the case when sugar beets cannot be planted two successive years on the same
field, and assume no such rule applies for wheat and corn.

(On a two-year basis, this exercise consists purely of formulation: with the
basic data of the example, the solution is clearly to repeat the optimal solution
in Table 5, i.e., to plant 170 acres of wheat, 80 acres of corn, and 250 acres of
sugar beets. The problem becomes more relevant on a three-year basis. It is also
relevant on a two-year basis with fields of the sizes given in Exercise 1.

In terms of formulation, it is sufficient to consider a three-stage model. The
first stage consists of first-year planting. The second stage consists of first-
year purchases and sales and second-year planting. The third-stage consists
of second-year purchases and sales. Alternatively, a four-stage model can be
built, separating first-year purchases and sales from second-year planting. Also
discuss the question of discounting the revenues and expenses of the various
stages.)

7. Risk aversion
Economic theory tells us that, like many other people, the farmer would nor-
mally act as a risk-averse person. There are various ways to model risk aver-
sion. One simple way is to plan for the worst case. More precisely, it consists of
maximizing the profit under the worst situation. Note that for some models, it is
not known in advance which scenario will turn out to induce the lowest profit.

1.1 A Farming Example and the News Vendor Problem 19

In our example, the worst situation corresponds to Scenario 3 (below average
yields). Planning for the worst case implies the solution of Table 4 is optimal.

(a) Compute the loss in expected profit if that solution is taken.
(b) A median situation would be to require a reasonable profit under the worst

case. Find the solution that maximizes the expected profit under the con-
straint that in the worst case the profit does not fall below $58,000. What is
now the loss in expected profit?

(c) Repeat part (b) with other values of minimal profit: $56,000, $54,000,
$52,000, $50,000, and $48,000. Graph the curve of expected profit loss.
Also compare the associated optimal decisions.

8. Data fluctuations
Table 1 contains mean data over a relatively long period, from the late nineties
till 2006. Yield fluctuations have been treated through random yields. What
about other data’s fluctuations? Planting costs in euros have not changed so
much over time. (The story is different when expressed in dollars. However, the
farmer’s decisions are unaffected by currency modifications as they simply shift
the objective function. The only element which could be affected by currency
rates is the world price of sugar beets, but it has stayed low enough to play no
significant role for the farmer.) Starting from the deterministic model (1.1), sen-
sitivity analysis tells us that the optimal solution remains valid if wheat and corn
selling prices remain below 220 and 168.333, respectively, and if sugar beet’s
favorable price remains over 26.75. This implies the solution of model (1.1) re-
mains stable even if relatively large changes in prices occur (with the provision
that the results of linear programming sensitivity analysis are guaranteed to hold
when only one price is changing at a time). For joint modifications of prices, it
is interesting to look at the returns of each crop. Then, one can see that profound
changes in solutions only occur if the sales of a given crop provide a higher re-
turn than sugar beets at the favorable price. This happened in 2007, with wheat’s
price more than doubling in a 12-month period. At the moment of this writing,
the current costs and prices are as follows (rounded figures):

Wheat Corn Sugar Beets
Yield (T/acre) 2.5 3 20
Planting cost ($/acre) 180 280 310
Selling price ($/T) 300 170 41 under 6000 T

11 above 6000 T

The increase in wheat’s selling price is due to a strong demand and low yields
in Asia. These conditions may not prevail next year. Consider a model with a
random selling price of wheat being 300 or 220 with equal probability. Purchase
prices are as before 40% higher than selling prices. Compare the optimal solu-
tion with that of Table 5. How much would a farmer be willing to pay for a
perfect forecast on the selling price of wheat?

20 1 Introduction and Examples

9. If prices are also random variables, the news vendor’s problem becomes more
complicated. However, if prices and demands are independent random variables,
show that the solution of the news vendor’s problem is the one obtained before,
where q and r are replaced by their expected values. Indicate under which
conditions the same proposition is true for the farmer’s problem.

10. In the news vendor’s problem, we have assumed for simplicity that the random
variable takes value from −∞ to +∞ . Show that the optimal decisions are
insensitive to this assumption, so that if the random variables have a nonzero
density on a limited interval then the optimal solutions are obtained by the same
analytical expression.

11. Suppose c = 10 , q = 25 , r = 5 , and demand is uniform on [50,150] . Find the
optimal solution of the news vendor problem. Also, find the optimal solution of
the deterministic model obtained by assuming a demand of 100 . What is the
value of the stochastic solution?

1.2 Financial Planning and Control

Financial decision-making problems can often be modeled as stochastic programs.
In fact, the essence of financial planning is the incorporation of risk into investment
decisions. The area represents one of the largest application areas of stochastic pro-
gramming. Many references can be found in, for example, Mulvey and Vladimirou
[1989, 1991b, 1992], Ziemba and Vickson [1975], and Zenios [1993].

We consider a simple example that illustrates additional stochastic programming
properties. As in the farming example of Section 1.1, this example involves random-
ness in the constraint matrix instead of the right-hand side elements. These random
variables reflect uncertain investment yields.

This section’s example also has the characteristic that decisions are highly depen-
dent on past outcomes. In the following capacity expansion problem of Section 1.3,
this is not the case. In Chapter 3, we define this difference by a block separable
recourse property that is present in some capacity expansion and similar problems.

For the current problem, suppose we wish to provide for a child’s college educa-
tion Y years from now. We currently have $ b to invest in any of I investments.
After Y years, we will have a wealth that we would like to have exceed a tuition
goal of $ G . We suppose that we can change investments every υ years, so we
have H = Y/υ investment periods. For our purposes here, we ignore transaction
costs and taxes on income although these considerations would be important in re-
ality. We also assume that all figures are in constant dollars.

In formulating the problem, we must first describe our objective in mathematical
terms. We suppose that exceeding $ G after Y years would be equivalent to our
having an income of q % of the excess while not meeting the goal would lead to
borrowing for a cost r % of the amount short. This gives us the concave utility

1.2 Financial Planning and Control 21

function in Figure 2. Many other forms of nonlinear utility functions are, of course,
possible. See Kallberg and Ziemba [1983] for a description of their relevance in
financial planning.

Fig. 2 Utility function of wealth at year Y for a goal G .

The major uncertainty in this model is the return on each investment i within
each period t . We describe this random variable as ξ(i, t) = ξ (i, t,ω) where ω
is some underlying random element. The decisions on investments will also be ran-
dom. We describe these decisions as x(i,t) = x(i, t,ω) . From the randomness of the
returns and investment decisions, our final wealth will also be a random variable.

A key point about this investment model is that we cannot completely observe the
random element ω when we make all our decisions x(i, t,ω) . We can only observe
the returns that have already taken place. In stochastic programming, we say that we
cannot anticipate every possible outcome so our decisions are nonanticipative of
future outcomes. Before the first period, this restriction corresponds to saying that
we must make fixed investments, x(i,1) , for all ω ∈ Ω , the space of all random
elements or, more specifically, returns that could possibly occur.

To illustrate the effects of including stochastic outcomes as well as modeling
effects from choosing the time horizon Y and the coarseness of the period approx-
imations H , we use a simple example with two possible investment types, stocks
(i = 1) and government securities (bonds) (i = 2). We begin by setting Y at 15
years and allow investment changes every five years so that H = 3 .

We assume that, over the three decision periods, eight possible scenarios may
occur. The scenarios correspond to independent and equal likelihoods of having
(inflation-adjusted) returns of 1.25 for stocks and 1.14 for bonds or 1.06 for
stocks and 1.12 for bonds over the five-year period. We indicate the scenarios by
an index s = 1, . . . ,8 , which represents a collection of the outcomes ω that have
common characteristics (such as returns) in a specific model. When we wish to al-
low more general interpretations of the outcomes, we use the base element ω . With
the scenarios defined here, we assign probabilities for each s , p(s) = 0.125 . The
returns are ξ (1,t,s) = 1.25 , ξ (2,t,s) = 1.14 for t = 1,s = 1, . . . ,4 , for t = 2 ,

22 1 Introduction and Examples

s = 1,2,5,6 , and for t = 3 , s = 1,3,5,7 . In the other cases, ξ (1, t,s) = 1.06 ,
ξ (2, t,s) = 1.12 .

Fig. 3 Tree of scenarios for three periods.

The eight scenarios are represented by the tree in Figure 3. The scenario tree divides
into branches corresponding to different realizations of the random returns. Because
Scenarios 1 to 4, for example, have the same return for t = 1 , they all follow the
same first branch. Scenarios 1 and 2 then have the same second branch and finally
divide completely in the last period. To show this more explicitly, we may refer
to each scenario by the history of returns indexed by st for periods t = 1,2,3 as
indicated on the tree in Figure 3. In this way, Scenario 1 may also be represented as
(s1,s2,s3) = (1,1,1) .

With the tree representation, we need only have a decision vector for each node of
the tree. The decisions at t = 1 are just x(1,1) and x(2,1) for the amounts invested
in stocks (1) and bonds (2) at the outset. For t = 2 , we would have x(i,2,s1) where
i = 1,2 for the type of investment and s1 = 1,2 for the first-period return outcome.
Similarly, the decisions at t = 3 are x(i,3,s1,s2) .

With these decision variables defined, we can formulate a mathematical program
to maximize expected utility. Because the concave utility function in Figure 1 is
piecewise linear, we just need to define deficit or shortage and excess or surplus
variables, w(i1, i2, i3) and y(i1, i2, i3) , and we can maintain a linear model. The
objective is simply a probability- and penalty-weighted sum of these terms, which,
in general, becomes:

1.2 Financial Planning and Control 23

∑
sH

· · ·∑
s1

p(s1, . . . ,sH)(−rw(s1, . . . ,sH)+ qy(s1, . . . ,sH)) .

The first-period constraint is simply to invest the initial wealth:

∑
i

x(i,1) = b .

The constraints for periods t = 2, . . . ,H are, for each s1, . . . ,st−1 :

∑
i
−ξ (i,t −1,s1, . . . ,st−1)x(i,t −1,s1, . . . ,st−2)

+∑
i

x(i, t,s1, . . . ,st−1) = 0 ,

while the constraints for period H are:

∑
i
ξ (i,H,s1, . . . ,sH)x(i,H,s1, . . . ,sH−1)

− y(s1, . . . ,sH)+ w(s1, . . . ,sH) = G .

Other constraints restrict the variables to be non-negative.
To specify the model in this example, we use initial wealth, b = 55,000 ; target

value, G = 80,000 ; surplus reward, q = 1 ; and shortage penalty, r = 4 . The re-
sult is a stochastic program in the following form where the units are thousands of
dollars:

maxz =
2

∑
s1=1

2

∑
s2=1

2

∑
s3=1

0.125(y(s1,s2,s3)−4w(s1,s2,s3)) (2.1)

s. t. x(1,1)+ x(2,1) = 55 ,
−1.25x(1,1)−1.14x(2,1)+ x(1,2,1)+ x(2,2,1) = 0 ,
−1.06x(1,1)−1.12x(2,1)+ x(1,2,2)+ x(2,2,2) = 0 ,

−1.25x(1,2,1)−1.14x(2,2,1)+ x(1,3,1,1)+ x(2,3,1,1) = 0 ,
−1.06x(1,2,1)−1.12x(2,2,1)+ x(1,3,1,2)+ x(2,3,1,2) = 0 ,
−1.25x(1,2,2)−1.14x(2,2,2)+ x(1,3,2,1)+ x(2,3,2,1) = 0 ,
−1.06x(1,2,2)−1.12x(2,2,2)+ x(1,3,2,2)+ x(2,3,2,2) = 0 ,
1.25x(1,3,1,1)+ 1.14x(2,3,1,1)− y(1,1,1)+w(1,1,1) = 80 ,
1.06x(1,3,1,1)+ 1.12x(2,3,1,1)− y(1,1,2)+w(1,1,2) = 80 ,
1.25x(1,3,1,2)+ 1.14x(2,3,1,2)− y(1,2,1)+w(1,2,1) = 80 ,
1.06x(1,3,1,2)+ 1.12x(2,3,1,2)− y(1,2,2)+w(1,2,2) = 80 ,
1.25x(1,3,2,1)+ 1.14x(2,3,2,1)− y(2,1,1)+w(2,1,1) = 80 ,
1.06x(1,3,2,1)+ 1.12x(2,3,2,1)− y(2,1,2)+w(2,1,2) = 80 ,
1.25x(1,3,2,2)+ 1.14x(2,3,2,2)− y(2,2,1)+w(2,2,1) = 80 ,
1.06x(1,3,2,2)+ 1.12x(2,3,2,2)− y(2,2,2)+w(2,2,2) = 80 ,

x(i,t,s1, . . . ,st−1) ≥ 0 , y(s1,s2,s3) ≥ 0 , w(s1,s2,s3) ≥ 0 ,
for all i,t,s1,s2,s3 .

24 1 Introduction and Examples

Solving the problem in (2.1) yields an optimal expected utility value of −1.514 . We
call this value, RP , for the expected recourse problem solution value. The optimal
solution (in thousands of dollars) appears in Table 6.

Table 6 Optimal solution with three-period stochastic program.

Period, Scenario Stock Bonds
1,1-8 41.5 13.5
2,1-4 65.1 2.17
2,5-8 36.7 22.4
3,1-2 83.8 0.00
3,3-4 0.00 71.4
3,5-6 0.00 71.4
3,7-8 64.0 0.00

Scenario Above G Below G
1 24.8 0.00
2 8.87 0.00
3 1.43 0.00
4 0.00 0.00
5 1.43 0.00
6 0.00 0.00
7 0.00 0.00
8 0.00 12.2

In this solution, the initial investment is heavily in stock ($41,500) with only
$13,500 in bonds. Notice the reaction to first-period outcomes, however. In the case
of Scenarios 1 to 4, stocks are even more prominent, while Scenarios 5 to 8 reflect a
more conservative government security portfolio. In the last period, notice how the
investments are either completely in stocks or completely in bonds. This is a general
trait of one-period decisions. It occurs here because in Scenarios 1 and 2, there is no
risk of missing the target. In Scenarios 3 to 6, stock investments may cause one to
miss the target, so they are avoided. In Scenarios 7 and 8, the only hope of reaching
the target is through stocks.

We compare the results in Table 6 to a deterministic model in which all random
returns are replaced by their expectation. For that model, because the expected return
on stock is 1.155 in each period, while the expected return on bonds is only 1.13
in each period, the optimal investment plan places all funds in stocks in each period.
If we implement this policy each period, but instead observed the random returns,
we would have an expected utility called the expected value solution, or EV . In this
case, we would realize an expected utility of EV = −3.788 , while the stochastic
program value is again RP = −1.514 . The difference between these quantities is
the value of the stochastic solution:

VSS = RP−EV = −1.514− (−3.788)= 2.274 .

1.2 Financial Planning and Control 25

This comparison gives us a measure of the utility value in using a decision from a
stochastic program compared to a decision from a deterministic program. Another
comparison of models is in terms of the probability of reaching the goal. Models
with these types of objectives are called chance-constrained programs or programs
with probabilistic constraints (see Charnes and Cooper [1959] and Prékopa [1973]).
Notice that the stochastic program solution reaches the goal 87.5% of the time. The
expected value deterministic model solution only reaches the goal 50% of the time.
In this case, the value of the stochastic solution may be even more significant.

The formulation we gave in (2.1) can become quite cumbersome as the time
horizon, H , increases and the decision tree of Figure 3 grows quite bushy. Another
modeling approach to this type of multistage problem is to consider the full horizon
scenarios, s , directly, without specifying the history of the process. We then sub-
stitute a scenario set S for the random elements Ω . Probabilities, p(s) , returns,
ξ (i, t,s) , and investments, x(i,t,s) , become functions of the H -period scenarios
and not just the history until period t .

The difficulty is that, when we have split up the scenarios, we may have lost
nonanticipativity of the decisions because they would now include knowledge of
the outcomes up to the end of the horizon. To enforce nonanticipativity, we add
constraints explicitly in the formulation. First, the scenarios that correspond to the
same set of past outcomes at each period form groups, St

s1,...,st−1
, for scenarios at

time t . Now, all actions up to time t must be the same within a group. We do this
through an explicit constraint. The new general formulation of (2.1) becomes:

maxz =∑
s

p(s)(qy(s)− rw(s))

s. t.
I

∑
i=1

x(i,1,s) = b , ∀s ∈ S , (2.2)

I

∑
i=1

ξ (i,t,s)x(i,t −1,s)−
I

∑
i=1

x(i, t,s) = 0 , ∀s ∈ S ,

t = 2, . . . ,H ,

I

∑
i=1

ξ (i,H,s)x(i,H,s)− y(s)+ w(s) = G ,

⎛
⎝ ∑

s′∈St
J(s,t)

p(s′)x(i,t,s′)

⎞
⎠−

⎛
⎝ ∑

s′∈St
J(s,t)

p(s′)

⎞
⎠x(i, t,s) = 0 ,

∀1 ≤ i ≤ I , ∀1 ≤ t ≤ H , ∀s ∈ S ,

x(i,t,s) ≥ 0 , y(s) ≥ 0 , w(s) ≥ 0 ,

∀ 1 ≤ i ≤ I , ∀ 1 ≤ t ≤ H , ∀ s ∈ S ,

where J(s,t) = {s1, . . . ,st−1} such that s ∈ St
s1,...,st−1

. Note that the last equality
constraint indeed forces all decisions within the same group at time t to be the
same. Formulation (2.2) has a special advantage for the problem here because these

26 1 Introduction and Examples

nonanticipativity constraints are the only constraints linking the separate scenarios.
Without them, the problem would decompose into a separate problem for each s ,
maintaining the structure of that problem.

In modeling terms, this simple additional constraint makes it relatively easy to
move from a deterministic model to a stochastic model of the same problem. This
ease of conversion can be especially useful in modeling languages. For example,
Figure 4 gives a complete AMPL (Fourer, Gay, and Kernighan [1993]) model of
the problem in (2.2). In this language, set, param, and var are keywords for sets,
parameters, and variables. The addition of the scenario indicators and nonanticipa-
tivity constraints (nonanticip) are the only additions to a deterministic model.

This problem describes a simple financial planning problem
for financing college education
set investments; # different investment options
param initwealth; # initial holdings
param H; # number of periods
param scenarios; # number of scenarios (total S)
The following 0-1 array shows which scenarios are combined at period H
param scen links { 1..scenarios,1..scenarios,1..H } ;
param target; # target value G at time H
param invest; # value of investing beyond target value
param penalty; # penalty for not meeting target
param return { investments,1..scenarios,1..H } ; # return on each inv
param prob { 1..scenarios } ; # probability of each scenario
variables
var amtinvest { investments,1..scenarios,1..H } ¿= 0; #actual amounts inv’d
var above target { 1..scenarios } ¿= 0; # amt above final target
var below target { 1..scenarios } ¿= 0; # amt below final target
objective
maximize exp value : sum { i in 1..scenarios } prob[i]*(invest*above target[i]
- penalty*below target[i]);
constraints
subject to budget { i in 1..scenarios } :
sum { k in investments } (amtinvest[k,i,1]) = initwealth;#invest initial wealth
subject to nonanticip { k in investments,j in 1..scenarios,t in 1..H } :
(sum { i in 1..scenarios } scen links[j,i,t]*prob[i]*amtinvest[k,i,t]) -
(sum { i in 1..scenarios } scen links[j,i,t]*prob[i])*
amtinvest[k,j,H] = 0; # makes all investments nonanticipative
subject to balance { j in 1..scenarios, t in 1..H-1 } :
(sum { k in investments } return[k,j,t]*amtinvest[k,j,t]) - sum { k in
investments } amtinvest[k,j,t+1] = 0; # reinvest each time period
subject to scenario value { j in 1..scenarios } : (sum { k in
investments } return[k,j,H]*amtinvest[k,j,H]) - above target[j] +
below target[j] = target; # amounts not meeting target

Fig. 4 AMPL format of financial planning model.

Given the ease of this modeling effort, standard optimization procedures can be
simply applied to this problem. However, as we noted earlier, the number of sce-
narios can become extremely large. Standard methods may not be able to solve the
problem in any reasonable amount of time, necessitating other techniques. The re-
maining chapters in this book focus on these other methods and on procedures for
creating models that are amenable to those specialized techniques.

In financial problems, it is particularly worthwhile to try to exploit the underly-
ing structure of the problem without the nonanticipativity constraints. This relaxed

1.2 Financial Planning and Control 27

problem is in fact a generalized network that allows the use of efficient network
optimization methods that cannot apply to the full problem in (2.2). We discuss this
option more thoroughly in Chapter 5.

With either formulation (2.1) or (2.2), in completing the model, some decisions
must be made about the possible set of outcomes or scenarios and the coarseness
of the period structure, i.e., the number of periods H allowed for investments. We
must also find probabilities to attach to outcomes within each of these periods. These
probabilities are often approximations that can, as we shall see in Chapter 8, provide
bounds on true values or on uncertain outcomes with incompletely known distribu-
tions. A key observation is that the important step is to include stochastic elements
at least approximately and that deterministic solutions most often give misleading
results.

In closing this section, note that the mathematical form of this problem actually
represents a broad class of control problems (see, for example, Varaiya and Wets
[1989]). In fact, it is basically equivalent to any control problem governed by a linear
system of differential equations. We have merely taken a discrete time approach
to this problem. This approach can be applied to the control of a wide variety of
electrical, mechanical, chemical, and economic systems. We merely redefine state
variables (now, wealth) in each time period and controls (investment levels). The
random gain or loss is reflected in the return coefficients. Typically, these types of
control problems would have nonlinear (e.g., quadratic) costs associated with the
control in each time period. This presents no complication for our purposes, so we
may include any of these problems as potential applications. In Section 1.4, we will
look at a fundamentally nonlinear problem in more detail.

Exercises

1. Suppose you consider just a five-year planning horizon. Choose an appropriate
target and solve over this horizon with a single first-period decision.

2. Suppose you implement a buy-and-hold strategy and make a single investment
decision without any additional trading until the end of the time horizon. For-
mulate and solve this problem to determine an optimal allocation.

3. Suppose that goal G is also a random parameter and could be $75,000 or
$85,000 with equal probabilities. Formulate and solve this problem. Compare
this solution to the solution for the problem with a known target.

4. Suppose that every trade (purchase or sale) of an asset involves a transaction
cost that is equal to 1% of the amount traded. Re-formulate the problem with
this transaction cost and solve for the optimal solution.

28 1 Introduction and Examples

1.3 Capacity Expansion

Capacity expansion models optimal choices of the timing and levels of investments
to meet future demands of a given product. This problem has many applications.
Here we illustrate the case of power plant expansion for electricity generation: we
want to find optimal levels of investment in various types of power plants to meet
future electricity demand.

We first present a static deterministic analysis of the electricity generation prob-
lem. Static means that decisions are taken only once. Deterministic means that the
future is supposed to be fully and perfectly known.

Three properties of a given power plant i can be singled out in a static analysis:
the investment cost ri , the operating cost qi , and the availability factor ai , which
indicates the percent of time the power plant can effectively be operated. Demand
for electricity can be considered a single product, but the level of demand varies
over time. Analysts usually represent the demand in terms of a so-called load dura-
tion curve that describes the demand over time in decreasing order of demand level
(Figure 5). The curve gives the time, τ , that each demand level, D , is reached. Be-
cause here we are concerned with investments over the long run, the load duration
curve we consider is taken over the life cycle of the plants.

The load duration curve can be approximated by a piecewise constant curve (Fig-
ure 6) with m segments. Let d1 = D1 , d j = D j − D j−1 , j = 2, . . . ,m represent
the additional power demanded in the so-called mode j for a duration τ j . To obtain
a good approximation of the load curve, it is necessary to consider large values of
m . In the static situation, the problem consists of finding the optimal investment for
each mode j , i.e., to find the particular type of power plant i , i = 1, . . . ,n , that
minimizes the total cost of effectively producing 1 MW (megawatt) of electricity
during the time τ j . It is given by

i(j) = argmin i=1,...,n

{
ri + qi τ j

ai

}
, (3.1)

where n is the number of available technologies and argmin represents the index
i for which the minimum is achieved.

The static model (3.1) captures one essential feature of the problem, namely,
that base load demand (associated with large values of τ j , i.e., small indices j)
is covered by equipment with low operating costs (scaled by availability factor),
while peak-load demand (associated with small values of τ j , i.e., large indices j)
is covered by equipment with low investment costs (also scaled by their availabil-
ity factor). For the sake of completeness, peak-load equipment should also offer
operational flexibility.

At least four elements justify considering a dynamic or multistage model for the
electricity generation investment problem:

• the long-term evolution of equipment costs;
• the long-term evolution of the load curve;

1.3 Capacity Expansion 29

Fig. 5 The load duration curve.

Fig. 6 A piecewise constant approximation of the load duration curve.

30 1 Introduction and Examples

• the appearance of new technologies;
• the obsolescence of currently available equipment.

The equipment costs are influenced by technological progress but also (and, for
some, drastically) by the evolution of fuel costs.

Of significant importance in the evolution of demand is both the total energy
demanded (the area under the load curve) and the peak-level Dm , which determines
the total capacity that should be available to cover demand. The evolution of the load
curve is determined by several factors, including the level of activity in industry,
energy savings in general, and the electricity producers’ rate policy.

The appearance of new technologies depends on the technical and commercial
success of research and development while obsolescence of available equipment
depends on past decisions and the technical lifetime of equipment. All the elements
together imply that it is no longer optimal to invest only in view of the short-term
ordering of equipment given by (3.1) but that a long-term optimal policy should be
found.

The following multistage model can be proposed. Let

• t = 1, . . . ,H index the periods or stages;
• i = 1, . . . ,n index the available technologies;
• j = 1, . . . ,m index the operating modes in the load duration curve.

Also define the following:

• ai = availability factor of i ;
• Li = lifetime of i ;
• gt

i = existing capacity of i at time t , decided before t = 1 ;
• rt

i = unit investment cost for i at time t (assuming a fixed plant life cycle for
each type i of plant);

• qt
i = unit production cost for i at time t ;

• dt
j = maximal power demanded in mode j at time t ;

• τt
j = duration of mode j at time t .

Consider, finally, the set of decisions

• xt
i = new capacity made available for technology i at time t ;

• wt
i = total capacity of i available at time t ;

• yt
i j = capacity of i effectively used at time t in mode j .

The electricity generation H-stage problem can be defined as

min
x,y,w

H

∑
t=1

(
n

∑
i=1

rt
i ·wt

i +
n

∑
i=1

m

∑
j=1

qt
i · τt

j · yt
i j

)
(3.2)

s. t. wt
i = wt−1

i + xt
i − xt−Li

i , i = 1, . . . ,n , t = 1, . . . ,H , (3.3)
n

∑
i=1

yt
i j = dt

j , j = 1, . . . ,m , t = 1, . . . ,H , (3.4)

1.3 Capacity Expansion 31

m

∑
j=1

yt
i j ≤ ai(gt

i + wt
i) , i = 1, . . . ,n , t = 1, . . . ,H , (3.5)

x,y,w ≥ 0 .

Decisions in each period t involve new capacities xt
i made available in each tech-

nology and capacities yt
i j operated in each mode for each technology.

Newly decided capacities increase the total capacity wt
i made available, as given

by (3.3), where the equipment’s becoming obsolete after its lifetime is also consid-
ered. We assume xt

i = 0 if t ≤ 0 , so equation (3.3) only involves newly decided
capacities.

By (3.4), the optimal operation of equipment must be chosen to meet demand
in all modes using available capacities, which by (3.5) depend on capacities gt

i
decided before t = 1 , newly decided capacities xt

i , and the availability factor.
The objective function (3.2) is the sum of the investment plus maintenance costs

and operating costs. Compared to (3.1), availability factors enter constraints (3.5)
and do not need to appear in the objective function. The operating costs are exactly
the same and are based on operating decisions yt

i j , while the investment annuities
and maintenance costs rt

i apply on the cumulative capacity wt
i . Placing annuities on

the cumulative capacity, instead of charging the full investment cost to the decision
xt

i , simplifies the treatment of end of horizon effects and is currently used in many
power generation models. It is a special case of the salvage value approach and other
period aggregations discussed in Section 10.2.

The same reasons that plead for the use of a multistage model motivate resorting
to a stochastic model. The evolution of equipment costs, particularly fuel costs, the
evolution of total demand, the date of appearance of new technologies, even the life-
time of existing equipment, can all be considered truly random. The main difference
between the stochastic model and its deterministic counterpart is in the definition of
the variables xt

i and wt
i . In particular, xt

i now represents the new capacity of i

decided at time t , which becomes available at time xt+Δi
i , where Δi is the con-

struction delay for equipment i . In other words, to have extra capacity available at
time t , it is necessary to decide at t −Δi , when less information is available on the
evolution of demand and equipment costs. This is especially important because it
would be preferable to be able to wait until the last moment to take decisions that
would have immediate impact.

Assume that each decision is now a random variable. Instead of writing an ex-
plicit dependence on the random element, ω , we again use boldface notation to
denote random variables. We then have:

• xt
i = new capacity decided at time t for equipment i , i = 1, . . . ,n ;

• wt
i = total capacity of i available and in order at time t ;

• ξ = the vector of random parameters at time t ;

and all other variables as before. The stochastic model is then

32 1 Introduction and Examples

min Eξ

H

∑
t=1

(
n

∑
i=1

rt
iw

t
i +

n

∑
i=1

m

∑
j=1

qt
i τ t

j yt
i j

)
(3.6)

s. t. wt
i = wt−1

i + xt
i −xt−Li

i , i = 1, . . . ,n , t = 1, . . . ,H , (3.7)
n

∑
i=1

yt
i j = dt

j , j = 1, . . . ,m , t = 1, . . . ,H , (3.8)

m

∑
j=1

yt
i j ≤ ai(gt

i + wt−Δi
i) , i = 1, . . . ,n , t = 1, . . . ,H , (3.9)

w,x,y ≥ 0 ,

where the expectation is taken with respect to the random vector
ξ = (ξ2, . . . ,ξH) . Here, the elements forming ξt are the demands,
(dt

1, . . . ,d
t
k) , and the cost vectors, (rt ,qt) . In some cases, ξt can also contain the

lifetimes Li , the delay factors Δi , and the availability factors ai , depending on the
elements deemed uncertain in the future.

Formulation (3.6)–(3.9) is a convenient representation of the stochastic program.
At some point, however, this representation might seem a little confusing. For ex-
ample, it seems that the expectation is taken only on the objective function, while
the constraints contain random coefficients (such as dt

j in the right-hand side of
(3.8)).

Another important aspect is the fact that decisions taken at time t , (wt ,yt) , are
dependent on the particular realization of the random vector, ξt , but cannot depend
on future realizations of the random vector. This is clearly a desirable feature for a
truly stochastic decision process. If demands in several periods are high, one would
expect investors to increase capacity much more than if, for example, demands re-
main low.

Formally, if the decision variables (wt ,yt) were not dependent on ξt , the ob-
jective function in (3.6) could be replaced by

∑
t
∑

i

(
Eξ rt

i wt
i +∑

j

Eξ qt
i τ t

i yt
i j

)
=∑

t
∑

i

(
r̄t

i ·wt
i +∑

j

(qiτ j)yt
i j

)
,

(3.10)
where r̄t

i = Eξrt
i and qiτ j = Eξ(qt

i τ t
j) , making problem (3.6) to (3.9) determin-

istic. In the next section, we will make the dependence of the decision variables on
the random vector explicit.

The formulation given earlier is convenient in its allowing for both continuous
and discrete random variables. Theoretical properties such as continuity and con-
vexity can be derived for both types of variables. Solution procedures, on the other
hand, strongly differ.

Problem (3.6) to (3.9) is a multistage stochastic linear program with several
random variables that actually has an additional property, called block separable
recourse. This property stems from a separation that can be made between the
aggregate-level decisions, (xt ,wt) , and the detailed-level decisions, yt .

1.3 Capacity Expansion 33

We will formally define block separability in Chapter 3, but we can make an ob-
servation about its effect here. Suppose future demands are always independent of
the past. In this case, the decision on capacity to install in the future at some t only
depends on available capacity and does not depend on the outcomes up to time t .
The same xt must then be optimal for any realization of ξ . The only remaining
stochastic decision is in the operation-level vector, yt , which now depends sepa-
rately on each period’s capacity. The overall result is that a multiperiod problem
now becomes a much less complex two-period problem.

As a simple example, consider the following problem that appears in Louveaux
and Smeers [1988]. In this case, the resulting two period model has three operating
modes, n = 4 technologies, Δi = 1 period of construction delay, full availabilities,
a ≡ 1 , and no existing equipment, g ≡ 0 . The only random variable is d1 = ξ . The
other demands are d2 = 3 and d3 = 2 . The investment costs are r1 = (10,7,16,6)T

with production costs q2 = (4,4.5,3.2,5.5)T and load durations τ2 = (10,6,1)T .
We also add a budget constraint to keep all investment below 120 . The resulting
two-period stochastic program is:

min 10x1
1 + 7x1

2 + 16x1
3 + 6x1

4 + Eξ[
3

∑
j=1

τ2
j (4y2

1 j + 4.5y2
2 j

+ 3.2y2
3 j + 5.5y2

4 j)]

s. t. 10x1
1 + 7x1

2 + 16x1
3 + 6x1

4 ≤ 120 , (3.11)

− x1
i +

3

∑
j=1

y2
i j ≤ 0 , i = 1, . . . ,4 ,

y

∑
i=1

y2
i1 = ξ ,

y

∑
i=1

y2
i j = d2

j , j = 2,3 ,

x1
1 ≥ 0 , x1

2 ≥ 0 , x1
3 ≥ 0 , x1

4 ≥ 0 ,

y2
i j ≥ 0 , i = 1, . . . ,4 , j = 1,2,3 .

Assuming that ξ takes on the values 3 , 5 , and 7 with probabilities 0.3 , 0.4 , and
0.3 , respectively, an optimal stochastic programming solution to (3.11) includes
x1∗ = (2.67,4.00,3.33,2.00)T with an optimal objective value of 381.85 . We can
again consider the expected value solution, which would substitute ξ ≡ 5 in (3.11).
An optimal solution here (again not unique) is x̄1 = (0.00,3.00,5.00,2.00)T . The
objective value, if this single event occurs, is 365 . However, if we use this solution
in the stochastic problem, then with probability 0.3 , demand cannot be met. This
would yield an infinite value of the stochastic solution.

Infinite values probably do not make sense in practice because an action can
be taken somehow to avoid total system collapse. The power company could buy
from neighboring utilities, for example, but the cost would be much higher than

34 1 Introduction and Examples

any company operating cost. An alternative technology (internal or external to the
company) that is always available at high cost is called a backstop technology. If
we assume, for example, in problem (3.11) that some other technology is always
available, without any required investment costs at a unit operating cost of 100 ,
then the expected value solution would be feasible and have an expected stochastic
program value of 427.82 . In this case, the value of the stochastic solution becomes
427.82−381.85 = 45.97 .

In many power problems, focus is on the reliability of the system or the system’s
ability to meet demand. This reliability is often described as expressing a minimum
probability for meeting demand using the non-backstop technologies. If these tech-
nologies are 1, . . . ,n−1 , then the reliability restriction (in the two-period situation
where capacity decisions need not be random) is:

P [
n−1

∑
i=1

ai(gt
i + wt

i) ≥
m

∑
j=1

dt
j] ≥ α , ∀t , (3.12)

where 0 < α ≤ 1 . Inequality (3.12) is called a chance or probabilistic constraint in
stochastic programming. In production problems, these constraints are often called
fill rate or service rate constraints. They place restrictions on decisions so that con-
straint violations are not too frequent. Hence, we would often have α quite close
to 1 .

If the only probabilistic constraints are of the form in (3.12), then we simply
want the cumulative available capacity at time t to be at least the α quantile of the
cumulative demand in all modes at time t . We then obtain a deterministic equivalent
constraint to (3.12) of the following form:

n−1

∑
i=1

ai(gt
i + wt

i) ≥ (Ft)−1(α) , ∀t , (3.13)

where Ft is the (assumed continuous) distribution function of ∑m
j=1 dt

j and F−1(α)
is the α -quantile of F . Constraints of the form in (3.13) can then be added to (3.6)
to (3.9) or, indeed, to the deterministic problem in (3.2) to (3.5), where expected
values replace the random variables.

By adding these chance constraint equivalents, many of the problems of deter-
ministic formulations can be avoided. For example, if we choose α = 0.7 for the
problem in (3.11), then adding a constraint of the form in (3.13) would not change
the deterministic expected value solution. However, we would get a different result
if we set α = 1.0 . In this case, constraint (3.13) for the given data becomes simply:

4

∑
i=1

w1
i ≥ 12 . (3.14)

Adding (3.14) to the expected value problem results in an optimal solution with
w1∗ = (0.833,3.00,4.17,4.00)T . The expected value of using this solution in the
stochastic program is 383.99 , or only 2.14 more than the optimal value in (3.11).

1.4 Design for Manufacturing Quality 35

In general, probabilistic constraints are represented by deterministic equivalents
and are often included in stochastic programs. We discuss some of the theory of
these constraints in Chapter 3. Our emphasis in this book is, however, on optimizing
the expected value of continuous utility functions, such as the costs in this capacity
expansion problem. We, therefore, concentrate on recourse problems and assume
that probabilistic constraints are represented by deterministic equivalents within our
formulations.

This problem illustrates a multistage decision problem and the addition of prob-
abilistic constraints. The structure of the problem, however, allows for a two-stage
equivalent problem. In this way, the capacity expansion problem provides a bridge
between the two-stage example of Section 1.1 and the multistage problem of Sec-
tion 1.2.

This problem also has a natural interpretation with discrete decision variables.
For most producing units, only a limited number of possible sizes exists. Typical
sizes for high-temperature nuclear reactors would be 1000 MW and 1300 MW, so
that capacity decisions could only be taken as integer multiples of these values.

Exercises

1. The detailed-level decisions can be found quite easily according to an order of
merit rule. In this case, one begins with Mode 1 and uses the least expensive
equipment until its capacity is exhausted or demand is satisfied. One continues
to exhaust capacity or satisfy demand in order of increasing unit operating cost
and mode. Show that this procedure is indeed optimal for determining the yt

i j
values.

2. Prove that, in the case of no serial correlation (ξt and ξt+1 stochastically inde-
pendent), an optimal solution has the same value for wt and xt for all ξ . Give
an example where this does not occur with serial correlation.

3. For the example in (3.11), suppose we add a reliability constraint of the form in
(3.14) to the expected value problem, but we use a right-hand side of 11 instead
of 12 . What is the stochastic program expected value of this solution?

1.4 Design for Manufacturing Quality

This section illustrates a common engineering problem that we model as a stochastic
program. The problem demonstrates nonlinear functions in stochastic programming
and provides further evidence of the importance of the stochastic solution.

Consider a designer deciding various product specifications to achieve some
measure of product cost and performance. The specifications may not, however,
completely determine the characteristics of each manufactured product. Key charac-
teristics of the product are often random. For example, every item includes variations

36 1 Introduction and Examples

due to machining or other processing. Each consumer also does not use the product
in the same way. Cost and performance characteristics thus become random vari-
ables.

Deterministic methods may yield costly results that are only discovered after
production has begun. From this experience, designing for quality and considera-
tion of variable outcomes has become an increasingly important aspect of modern
manufacturing (see, for example, Taguchi et al. [1989]). In industry, the methods of
Taguchi have been widely used (see also Taguchi [1986]). Taguchi methods can, in
fact, be seen as examples of stochastic programming, although they are often not
described this way.

In this section, we wish to give a small example of the uses of stochastic program-
ming in manufacturing design and to show how the general stochastic programming
approach can be applied. We note that we base our analysis on actual performance
measures, whereas the Taguchi methods generally attach surrogate costs to devia-
tions from nominal parameter values.

We consider the design of a simple axle assembly for a bicycle cart. The axle has
the general appearance in Figure 7.

Fig. 7 An axle of length w and diameter ξ with a central load L .

The designer must determine the specified length w and design diameter ξ of
the axle. We use inches to measure these quantities and assume that other dimen-
sions are fixed. Together, these quantities determine the performance characteristics
of the product. The goal is to determine a combination that gives the greatest ex-
pected profit.

The initial costs are for manufacturing the components. We assume that a single
process is used for the two components. No alternative technologies are available,
although, in practice, several processes might be available. When the axle is pro-
duced, the actual dimensions are not exactly those that are specified. For this exam-
ple, we suppose that the length w can be produced exactly but that the diameter ξ
is a random variable, ξ(x) , that depends on a specified mean value, x , that repre-
sents, for example, the setting on a machine. We assume a triangular distribution for
ξ(x) on [0.9x,1.1x] . This distribution has a density,

1.4 Design for Manufacturing Quality 37

fx(ξ) =

⎧⎪⎨
⎪⎩

(100/x2)(ξ −0.9x) if 0.9x ≤ ξ < x ,

(100/x2)(1.1x− ξ) if x ≤ ξ ≤ 1.1x ,

0 otherwise.

(4.1)

The decision is then to determine w and x , subject to certain limits, w ≤ wmax

and x ≤ xmax , in order to maximize expected profits. For revenues, we assume that
if the product is profitable, we sell as many as we can produce. This amount is
fixed by labor and equipment regardless of the size of the axle. We, therefore, only
wish to determine the maximum selling price that generates enough demand for all
production. From marketing studies, we determine that this maximum selling price
depends on the length and is expressed as

r(1− e−0.1w) , (4.2)

where r is the maximum possible for any such product.
Our production costs for labor and equipment are assumed fixed, so only material

cost is variable. This cost is proportional to the mean values of the specified dimen-
sions because material is acquired before the actual machining process. Suppose c
is the cost of a single axle material unit. The total manufacturing cost for an item is
then

c

(
wπx2

4

)
. (4.3)

In this simplified model, we assume that no quantity discounts apply in the produc-
tion process.

Other costs are incurred after the product is made due to warranty claims and
potential future sales losses from product defects. These costs are often called qual-
ity losses. In stochastic programming terms, these are the recourse costs. Here, the
product may perform poorly if the axle becomes bent or broken due to excess stress
or deflection. The stress limit, assuming a steel axle and 100 -pound maximum cen-
tral load, is

w
ξ 3 ≤ 39.27 . (4.4)

For deflection, we use a maximum 2000-rpm speed (equivalent to a speed of 60
km/hour for a typical 15-centimeter wheel) to obtain:

w3

ξ 4 ≤ 63,169 . (4.5)

When either of these constraints is violated, the axle deforms. The expected cost for
not meeting these constraints is assumed proportional to the square of the violation.
We express it as

Q(w,x,ξ) = min
y

{qy2 s. t.
w
ξ 3 − y ≤ 39.27,

w3

ξ 4 −300y ≤ 63,169} , (4.6)

38 1 Introduction and Examples

where y is, therefore, the maximum of stress violation and (to maintain similar
units) 1

300 of the deflection violation.
The expected cost, given w and x , is

Q(w,x) =
∫
ξ

Q(w,x,ξ) fx(ξ)dξ , (4.7)

which can be written as:

Q(w,x) = q
∫ 1.1x

.9x
(100/x2)min{ξ − .9x,1.1x− ξ}

[max{0,

(
w
ξ 3

)
−39.27,

(
w3

300ξ 4

)
−210.56}]2dξ . (4.8)

The overall problem is to find:

max (total revenue per item − manufacturing cost per item

− expected future cost per item). (4.9)

Mathematically, we write this as:

maxz(w,x) = r(1− e−0.1w)− c

(
wπx2

4

)
−Q(w,x)

s. t. 0 ≤ w ≤ wmax ,0 ≤ x ≤ xmax . (4.10)

In stochastic programming terms, this formulation gives the deterministic equiv-
alent problem to the stochastic program for minimizing the current value for the
design decision plus future reactions to deviations in the axle diameter. Standard
optimization procedures can be used to solve this problem. Assuming maximum
values of wmax = 36 , xmax = 1.25 , a maximum sales price of $10 (r = 10), a
material cost of $0.025 per cubic inch (c = .025), and a unit penalty q = 1 , an
optimal solution is found at w∗ = 33.6 , x∗ = 1.038 , and z∗ = z(w∗,x∗) = 8.94 .
The graphs of z as a function of w for x = x∗ and as a function of x for w = w∗
appear in Figures 8 and 9. In this solution, the stress constraint is only violated when
.9x = 0.934 ≤ ξ ≤ 0.949 = (w/39.27)1/3 .

We again consider the expected value problem where random variables are re-
placed with their means to obtain a deterministic problem. For this problem, we
would obtain:

maxz(w,x, ξ̄) = r(1− e−0.1w)− c

(
wπx2

4

)

−q[max{0,
(w

x3

)
−39.27,

(
w3

300x4

)
−210.56}]2

s. t. 0 ≤ w ≤ wmax , 0 ≤ x ≤ xmax . (4.11)

1.4 Design for Manufacturing Quality 39

Fig. 8 The expected unit profit as a function of length with a diameter of 1.038 inches.

Fig. 9 The expected unit profit as a function of diameter with a length of 33.6 inches.

Using the same data as earlier, an optimal solution to (4.11) is w̄(ξ̄) = 35.0719 ,
x̄(ξ̄) = 0.963 , and z(w̄, x̄, ξ̄) = 9.07 .

At first glance, it appears that this solution obtains a better expected profit than
the stochastic problem solution. However, as we shall see in Chapter 8 on approx-
imations, this deterministic problem paints an overly optimistic picture of the ac-
tual situation. The deterministic objective is (in the case of concave maximiza-
tion) always an overestimate of the actual expected profit. In this case, the true
expected value of the deterministic solution is z(w̄, x̄) = −26.8 . This problem then
has a value of the stochastic solution equal to the difference between the expected
value of the stochastic solution and the expected value of the deterministic solution,

Expected unit profit

Length

8.94

8.93

8.92

32.5 33.5 34.534 3533

Expected unit profit

8.944

8.940

8.936

8.932

1.025 1.035 1.040 1.045
Diameter

40 1 Introduction and Examples

z∗ − z(w̄, x̄) = 35.7 . In other words, solving the stochastic program results in a sig-
nificant profit compared to a considerable loss associated with solving the determin-
istic problem.

This problem is another example of how stochastic programming can be used.
The problem has nonlinear functions and a simple recourse structure. We will dis-
cuss further computational methods for problems of this type in Chapter 5. In other
problems, decisions may also be taken after the observation of the outcome. For
example, we could inspect and then decide whether to sell the product (Exercise 3).
This often leads to tolerance settings and is the focus of much of quality control.

The general stochastic program provides a framework for uniting design and
quality control. Many loss functions can be used to measure performance degrada-
tion to help improve designs in their initial stages. These functions may include the
stress and performance penalties described earlier, the Taguchi-type quadratic loss,
or methods based on reliability characterizations.

Most traditional approaches assume some form for the distribution as we have
done here. This situation rarely matches practice, however. Approximations can
nevertheless be used that obtain bounds on the actual solution value so that robust
decisions may be made without complete distributional information. This topic will
be discussed further in Chapter 8.

Exercises

1. For the example given, what is the probability of exceeding the stress constraint
for an axle designed according to the stochastic program optimal specifications?

2. Again, for the example given, what is the probability of exceeding the stress
constraint for an axle designed according to the deterministic program’s (4.11)
optimal specifications?

3. Suppose that every axle can be tested before being shipped at a cost of s per test.
The test completely determines the dimensions of the product and thus informs
the producer of the risk of failure. Formulate the new problem with testing.

1.5 A Routing Example

a. Presentation

Consider the following simplified vehicle routing problem. A vehicle has to visit
four clients (A,B,C,D) in a route starting and ending at a depot (or at the “home
sweet home” of the traveling salesperson). One single vehicle of capacity 10 is avail-
able. There is no limit on the travel time, so that the vehicle can make consecutive
legs if needed.

1.5 A Routing Example 41

It is easy to represent a routing problem on a graph (see Figure 10.). A graph
G = (V,E) consists of a set V of vertices (or nodes) and a set E of edges (or arcs).
Here, the nodes correspond to the set of clients plus the depot V = {0,A,B,C,D}
where 0 is the depot. Arc (i, j) corresponds to traveling from node i to node j .
Arcs may be traveled in either direction. We assume that the vehicle can travel from
any point (client or depot) to another. This is equivalent to saying that the graph is
complete.

The demands of clients A , B and D are known and equal to 2 . Demand of
client C is random. To put things to the extreme, assume that the demand of C is
either 1 or 7 with equal probability 1

2 . (As we will see later, the example also
works with less extreme situations, like a demand of 3 and 5 with equal probabil-
ity. Direct calculation of all cases is easier here as there are more infeasible cases).
All demands must be served. To make things clear, we assume in the sequel that
demand is collected at the client. All results and terminologies are easily adapted
if demand is delivered. The case of simultaneous pick-ups and deliveries is more
involved.

B,2

A,2

Depot

C,1 or 7

D,2

�

�

�

�

��
�
�
��

�
�

�
�

��

�
�

��

�
�

�
��

�
�

�
�

��

�
�

��

Fig. 10 Graph representation of the vehicle routing problem.

The distances between any two points are given under the form of a symmetrical
matrix C = (ci j) , where ci j is the distance between i and j . Data are in Table 7.

Table 7 Distance matrix.

0 A B C D
0 − 2 4 4 1
A 2 − 3 4 2
B 4 3 − 1 3
C 4 4 1 − 3
D 1 2 3 3 −

The distance matrix is symmetrical, which means that the distance between two
points is the same when traveling in either direction. Distance matrices usually

42 1 Introduction and Examples

satisfy the so-called triangle inequality:

ci j ≤ cik + ck j ∀i, j,k . (5.1)

The triangle inequality simply means that it is shorter (or at least not longer) to go
directly from i to j than through an intermediate node k . The distance matrix in
Table 7 satisfies the triangle inequality, but not always strictly. As an example, the
distance between A and C is equal to the distance between A and B plus that
between B and C . This is due to using small integer data.

The problem of finding the shortest route to visit all clients starting and ending
at the depot is known as the TSP (traveling salesperson problem). The optimal TSP
route is (0,A,B,C,D,0) of length 10 .

This is checked by using a TSP solver. This can also be checked by brute force
calculation of all routes. For a problem with n clients, there are n! routes. Indeed,
starting from the depot, there are n possible clients to be visited first. When the first
client is fixed, there remain (n−1) clients to be visited next and so on. By symme-
try, only half of the n! routes have to be checked. As an example, (0,D,C,B,A,0)
has the same length as (0,A,B,C,D,0) . Here, 12 routes have to be checked. Alter-
natively, you may trust the authors.

Finding the shortest distance or TSP route is not enough here: the vehicle has
a limited capacity of 10 and the demand at C is random. The treatment of the
uncertainty depends on the moment when the information becomes available.

b. Wait-and-see solutions

A first case is when the level of the demand is known before starting the route.
This could be the case, for instance, if the delivered product is part of a just-in-time
production process. If the process works in batches, the number of batches required
in C may be 1 or 7 , depending on the production process. But the number of
batches may then be adequately forecasted.

Alternatively, the products may be wastes generated during the production pro-
cess. The amount to be collected can be known if an agreement exists with the client
or if the client is a subsidiary.

This is known as a situation of a priori information. The decision process corre-
sponds to the wait-and-see approach. It consists of making the choice of the route
after getting the information on the demand level.

The optimal solution in the wait-and-see situation is illustrated in Figure 11.

• Whenever client C requires a single unit to be collected, the vehicle’s capacity
is large enough to accommodate the demand of the four clients. It is optimal to
follow the TSP route of length 10 .

• Whenever client C requires 7 units, the total demand of 13 exceeds the vehicle’s
capacity. The vehicle must travel two successive routes. The combination of

1.5 A Routing Example 43

B,2

A,2

Depot

C,1

D,2

�

�

�

�

��
�
�
��

�
�

��

�
�

�
��

�
�

��

B,2

A,2

Depot

C,7

D,2

�

�

�

�

�

�
�

�
�

�
�
�

�
�
�
�
�
�
�

�
�

��

�
�

��

Fig. 11 Wait-and-see solutions (when demand in C is 1 or 7).

two routes with smallest distance is the sequence (0,A,D,0,B,C,0) of total
distance 14 .

This can be checked as follows. As the demand of C is 7 and the vehicle capacity
is 10 , the part of the route that visits C can either visit C alone or C with one
other client.

There are three possibilities in the first case depending on the order of visit of A ,
B and D , the best one being (0,A,B,D) . There are also three possibilities for the
second case, depending on the client which belongs to the route visiting C .

As both situations occur half of the time, optimal routes of length 10 and 14
are traveled half time each. It follows that the mean (or expected) distance traveled
under the wait-and-see approach is

WS =
1
2

10 +
1
2

14 = 12 .

c. Expected value solution

If the demand is not known in advance, it is discovered when arriving at client
C . One first attitude is to forget uncertainty. The route is planned in view of the
expected demand. As the expected demand of client C is 4 , the vehicle’s capacity
is large enough to accommodate the demand of the four clients (in fact, the expected
demand of C and the known demand of the other clients). It is optimal to follow
the TSP route (0,A,B,C,D,0) of length 10 .

Planning for the expected case is in fact “forgetting” uncertainty. It does not
mean uncertainty is absent. To say it in other words, “even if you forget uncertainty,
uncertainty will not forget you”.

Demand in C is revealed when arriving in C . It is 1 half of the time and 7 the
other half of the time, but in a random fashion. Figure 12 shows what really happens.

44 1 Introduction and Examples

B,2

A,2

Depot

C,1

D,2

�

�

�

�

��
�
�
��

�
�

���
�

�
�
��

�
�

��

B,2

A,2

Depot

C,7

D,2

�

�

�

�

��
�
�
��

�
�

���
	
	
	
	
	
	
		

	
	
	
	
	�

�
�
�

��

�
�

��

Fig. 12 Effective travel (when demand in C is 1 or 7) if TSP route is planned.

• When the vehicle arrives in C and demand is 1 , it simply proceeds with the
planned route. The total demand is 7 and is less than the capacity. The traveled
distance is 10. Everything goes well in a beautiful world.

• When the vehicle arrives in C , its load is already 4 . If the demand in C is
7 , the vehicle is unable to collect the total demand. Assuming the goods are
divisible, it collects 6 units, then returns to the depot to unload, goes back to C
to take the last unit and resumes its trip. The vehicle travels (0,A,B,C,0,C,D,0)
for a total length of 18 . In the routing literature, the situation when a vehicle
is unable to load a client’s demand is known as a failure. The extra distance
traveled due to this failure is a return trip to the depot. The length of 18 is equal
to the planned distance 10 of the TSP tour plus the distance 8 of the return trip
from C . You may also observe that the same solution is obtained if goods are
not divisible.

As both situations occur half of the time, the true cost under uncertainty of the
expected value solution is the so-called expectation of the expected value problem
or

EEV =
1
2

10 +
1
2

18 = 14 .

d. Recourse solution

Let us now improve the route choice, in view of the uncertainty at C .
First, observe that it is possible to travel the TSP route (0,A,B,C,D,0) in the op-

posite direction. The situation is represented on Figure 13. Travelling (0,D,C,B,A,0)
implies that

• when the vehicle arrives in C and demand is 1 , it simply proceeds with the
planned route. The traveled distance is 10 , as before.

• when the vehicle arrives in C and demand is 7 , the vehicle is able to collect
the demand in C . It will not be able to collect the total demand. After collecting
demand in C , it returns to the depot, unloads, and then goes to B and A . This

1.5 A Routing Example 45

situation is known as a preventive return. (It is already known in C that the load
in B cannot be collected. It is thus better to return to the depot and resume the
tour in B , instead of going to B and making a return trip to the depot.) The
vehicle travels (0,D,C,0,B,A,0) for a total length of 17 .

The true cost under uncertainty of traveling (0,D,C,B,A,0) is
1
2 10 + 1

2 17 = 13.5 .

B,2

A,2

Depot

C,1

D,2

�

�

�

�

��
�
�
��

�
�

���
�

�
�
��

�
�

��

B,2

A,2

Depot

C,7

D,2

�

�

�

�

�

�
�

��

�
�
�
��

�
�

���

�
�

�
�

�
�
��

�
�

�
�
���

�
�
�

��

Fig. 13 Effective travel (when demand in C is 1 or 7) if TSP route is planned counterclockwise.

Thus, we have seen that the uncertainty implies that there is a difference between
a planned route and the route that is effectively traveled. In the stochastic terminol-
ogy, deciding on the planned route (or a priori route) is a first-stage decision, taken
before the random parameters are known. When the uncertainty is revealed, addi-
tional or second stage actions are possible. They are called recourse actions. In the
present example, we have two possible such actions: a return trip to the depot or a
preventive return.

After some calculations, it turns out that the optimal solution is to select
(0,C,B,A,D,0) as the planned route. If demand in C is 1 , the route is followed
with length 11 . Otherwise, a preventive return occurs in B . The traveled route is
(0,C,B,0,A,D,0) with length 14 . The optimal solution is represented in Figure 14.
The expected length under the optimal recourse policy is

RP =
1
2

11 +
1
2

14 = 12.5 .

This example illustrates three important aspects of stochastic programming:

• when dealing with uncertainty, it is important to consider what happens before
(first-stage) and after (second-stage) the uncertainty is revealed. It is also im-
portant to consider a wider variety of decisions (reversing the travel direction in
the first-stage, or doing return trips or preventive returns in the second-stage in
this example).

• due to uncertainty, a worse solution is often chosen in the favorable case.
This happens here. When demand is low, the vehicle travels the planned route
(0,C,B,A,D,0) , which is longer than the TSP tour. This may seem stupid: “why

46 1 Introduction and Examples

B,2

A,2

Depot

C,1

D,2

�

�

�

�

��
�
�
��

�
�
�
�
�
���

�
�

��

B,2

A,2

Depot

C,7

D,2

�

�

�

�

�

�
�
�
�
�
�
��

�
��

�
�
�
�
�
���

�
�

��

Fig. 14 Effective travel (when demand in C is 1 or 7) if optimal recourse route is planned.

didn’t you simply pick up the shortest route?” or lead to some “regret.” The rea-
son is simple. By visiting C first, the demand becomes known early in the route
and an efficient recourse action (preventive return after B) can be taken when
the demand in C is high. This implies indeed some extra cost when the demand
in C is low.

• the following relations hold :

WS ≤ RP ≤ EEV .

The first relation WS ≤ RP simply says that it is always better to get the infor-
mation in advance. The difference RP− WS is known as the EVPI , expected
value of perfect information. Here, EVPI = 0.5 . This is the maximal amount
the planner would be ready to pay client C to get the information in advance.
The second relation says that it is better to solve the stochastic program than
to pretend uncertainty does not exist. The difference EEV − RP is known as
the VSS , value of stochastic solution. Here, VSS = 1.5 . It tells says that dealing
with uncertainty really matters.

e. Other random variables

The present example may seem a bit extreme, with a demand being either 1 or 7 . In
fact, it extends to more general random variables. Let ξ denote the random demand
in C . We assume ξ has an expectation of 4 (as above). We also assume that the
probability of a negative demand is negligible and, similarly, that the probability of
ξ exceeding 8 is negligible.

Denote by p f = P (ξ > 4) , where the index f is a mnemonic to recall that
a failure will occur if the expected value solution is chosen. Then the following
relations hold:

WS = (1− p f)10 + p f 14 ,

1.5 A Routing Example 47

EEV = (1− p f)10 + p f 18 ,

RP = (1− p f)11 + p f 14 .

In the wait-and-see case, the TSP route of length 10 is optimal when demand is
less than or equal to 4 and the sequence (0,A,D,0,B,C,0) with length 14 other-
wise. In the EEV , a distinction is made between no failure (length 10) or a failure
with a return trip (length 18). Finally, in the RP , the route is either (0,C,B,A,D,0)
with length 11 when demand is less or equal to 4 or (0,C,B,0,A,D,0) with length
14 otherwise.

Now, consider that demand in C follows a normal distribution with expectation 4
and a variance such that P(ξ < 0)∼= 0 . Symmetry implies P(ξ > 8)∼= 0 . Symmetry
also implies p f = 1

2 . Thus, all results obtained in the above discrete case are also
obtained in the same manner for a normal distribution. The same is true for any
continuous uniform distribution of the type ξ ∼ U [4−a,4 + a] , with 0 < a ≤ 4 .

The table of the Poisson(4) distribution shows that p f = 0.371 . However, there
exists a nonzero probability of the demand exceeding 8 . We may denote this prob-
ability as pe = P(ξ > 8) = 0.0214 . If demand exceeds 8 , the recourse solution
must be adapted as traveling (0,B,C,0) becomes infeasible. A possible solution
for the recourse case is to travel (0,C,B,D,A,0) with length 11 when demand is
less or equal to 4 , travel (0,C,B,0,A,D,0) with length 14 when demand is be-
tween 5 and 8 and, finally, travel (0,C,0,A,B,D,0) with length 17 otherwise. The
corresponding expected cost is:

Expected cost = (1− p f)11 +(p f − pe)14 + pe17 .

f. Chance-constraints

The chance-constraint approach consists of finding the smallest distance feasible
route or sequence of routes. A route or sequence of routes is feasible if the vehicle
can collect the total demand with a large probability. A typical large probability is,
as usual, 90 or 95%. To make things concrete, we take a 95% requirement. This
corresponds to a 5% probability of failure.

In the initial example, demand is 1 or 7 with probability 1
2 . Feasibility with a

95% confidence level implies demand of 7 must always be collected. If not, the
confidence of the solution would only be 50%. The chance-constraint solution is the
sequence (0,A,D,0,B,C,0) of total distance 14 , much worse than the recourse
solution.

In line with the previous subsection, we now show how to deal with other random
variables.

Let ξ be the random variable representing the demand in C . Any route that does
not return to the depot has a capacity of 10 . The probability that it can cover the
demand is equal to P (6+ξ ≤ 10) = P(ξ ≤ 4) = 1− p f . Any route that returns once
to the depot consists of two legs, each having a capacity of 10 . Feasibility depends

48 1 Introduction and Examples

on the leg that visits C (as the other leg has a known demand less than the vehicle
capacity).

We can summarize all cases as follows:

• visiting C with the three other clients is feasible with probability P(ξ ≤ 4) =
1− p f . The best such route is the TSP tour (0,A,B,C,D,0) of length 10 .

• visiting C with two other clients is feasible with probability P (4 +ξ ≤ 10) =
P (ξ ≤ 6) . The smallest distance corresponding route is the sequence
(0,D,0,A,B,C,0) of total distance 12 .

• if C is visited with one other client, the route is feasible with probability
P (ξ ≤ 8) . The corresponding route with smallest distance is the sequence
(0,A,D,0,B,C,0) of total distance 14 .

• if the leg that visits C does not visit any other client, it is feasible with proba-
bility P (ξ ≤ 10) . The best corresponding route is (0,C,0,A,B,D,0) of length
17 .

The various solutions have increased lengths but also increased probabilities of
being feasible. To find the chance-constraint solution, it suffices to consider each
case in turn. The first that has a probability larger than the requested 95% is the
chance-constraint solution.

For a Poisson random variable with expectation 4 , p f = 0.371 and thus any
route that does not return to the depot is infeasible. A route that returns once to the
depot and visits C with two other clients has a probability P(ξ ≤ 6) = 0.8893 to
cover the demand and is thus infeasible. A route that returns once to the depot and
visits C with at most one other client has a probability P(ξ ≤ 8) = 0.9786 to cover
the demand. The route (0,A,D,0,B,C,0) is, as before, the optimal solution for a
95% chance-constraint.

Exercises

1. Consider a continuous uniform distribution of the type ξ ∼U [4−a,4+a] , with
0 < a ≤ 4 . Obtain the optimal chance constraint solution as a function of a .

2. Consider the case where the demand in C follows a Normal distribution with
expectation 4 and a variance such that P(ξ < 0)∼= 0 . Obtain the optimal chance
constraint solution as a function of σ .

1.6 Other Applications

In this chapter, we discussed a few examples of stochastic programming applica-
tions. The examples were chosen because of their frequency in stochastic program-
ming application as well as to illustrate various aspects of stochastic programming
models in terms of number of stages, continuous or discrete variables, separable or

1.6 Other Applications 49

nonseparable recourse, probabilistic constraints, and linear or nonlinear constraint
and objective functions.

Several other application areas deserve some recognition but were not discussed
yet. A particular example is in airline planning. One of the first applications of
stochastic programming was a decision on the allocation of aircraft to routes (fleet
assignment) by Ferguson and Dantzig [1956]. In this problem, penalties were in-
curred for lost passengers. The problem becomes a simple recourse problem in
stochastic programming terms that they solved using a variant of the standard trans-
portation simplex method (see Section 5.7).

Production planning is another major area that was not in our examples. This area
also has been the subject of stochastic programming models for many years. The
original chance-constrained stochastic programming model of Charnes, Cooper, and
Symonds [1958], for example, considered the production of heating oil with con-
straints on meeting sales and not exceeding capacity. Other examples include the
study by Escudero et al. [1993] for IBM procurement policies.

Water resource modeling has also received widespread application. A good ex-
ample of this area is the paper by Prékopa and Szántai [1976], where they discuss
regulation of Lake Balaton’s water level and show how stochastic programming
could have avoided floods that occurred before such planning methods were avail-
able. Approaches to pollution and the environmental area of water resource planning
are also common. An example discussion appears in Somlyódy and Wets [1988].

Energy planning has been the focus of many stochastic programming studies.
We note in particular Manne’s [1974] analysis of the U.S. decision on whether to
invest in breeder reactors. The more recent work of Manne and Richels [1992] on
buying insurance against the greenhouse effect is also an excellent example of how
stochastic programming can model uncertain future situations so that informed pub-
lic policy decisions may be made.

Stochastic programming has been applied in many other areas. Of particular note
is the forestry planning model in Gassmann ([1989]) and the hospital staffing prob-
lem in Kao and Queyranne ([1985]). We also include two exercises in stochastic pro-
gramming in sports. Many other references appear in King’s survey (King [1988b]),
the volume by Ermoliev and Wets [1988], and the collection edited by Wallace and
Ziemba [2005]. Many more applications are open to stochastic programming, es-
pecially with the powerful techniques now available. In the remainder of this book,
we will explore those methods, their properties, and the general classes of problems
they solve.

Exercises

These exercises all contain a stochastic programming problem that can be solved
using standard linear, nonlinear and integer programming software. For each prob-
lem, you should develop the model, solve the stochastic program, solve the expected
value problem, and find the value of the stochastic solution.

50 1 Introduction and Examples

1. Northam Airlines is trying to decide how to partition a new plane for its
Chicago–Detroit route. The plane can seat 200 economy class passengers. A
section can be partitioned off for first class seats but each of these seats takes
the space of 2 economy class seats. A business class section can also be in-
cluded, but each of these seats takes as much space as 1.5 economy class seats.
The profit on a first class ticket is, however, three times the profit of an economy
ticket. A business class ticket has a profit of two times an economy ticket’s
profit. Once the plane is partitioned into these seating classes, it cannot be
changed. Northam knows, however, that the plane will not always be full in
each section. They have decided that three scenarios will occur with about the
same frequency: (1) weekday morning and evening traffic, (2) weekend traffic,
and (3) weekday midday traffic. Under Scenario 1, they think they can sell as
many as 20 first class tickets, 50 business class tickets, and 200 economy tick-
ets. Under Scenario 2, these figures are 10 , 25 , and 175 . Under Scenario 3,
they are 5 , 10 , and 150 . You can assume they cannot sell more tickets than
seats in each of the sections. (In reality, the company may allow overbooking,
but then it faces the problem of passengers with reservations who do not appear
for the flight (no-shows). The problem of determining how many passengers to
accept is part of the field called yield management or revenue management. For
one approach to this problem, see Brumelle and McGill [1993]. This subject is
explored further in Exercise 1 of Section 2.7.)

2. Tomatoes Inc. (TI) produces tomato paste, ketchup, and salsa from four re-
sources: labor, tomatoes, sugar, and spices. Each box of the tomato paste re-
quires 0.5 labor hours, 1.0 crate of tomatoes, no sugar, and 0.25 can of spice. A
ketchup box requires 0.8 labor hours, 0.5 crate of tomatoes, 0.5 sacks of sugar,
and 1.0 can of spice. A salsa box requires 1.0 labor hour, 0.5 crate of tomatoes,
1.0 sack of sugar, and 3.0 cans of spice.

The company is deciding production for the next three periods. It is restricted
to using 200 hours of labor, 250 crates of tomatoes, 300 sacks of sugar, and 100
cans of spices in each period at regular rates. The company can, however, pay
for additional resources at a cost of 2.0 per labor hour, 0.5 per tomato crate,
1.0 per sugar sack, and 1.0 per spice can. The regular production costs for each
product are 1.0 for tomato paste, 1.5 for ketchup, and 2.5 for salsa.

Demand is not known with certainty until after the products are made in each
period. TI forecasts that in each period two possibilities are equally likely, cor-
responding to a good or bad economy. In the good case, 200 boxes of tomato
paste, 40 boxes of ketchup, and 20 boxes of salsa can be sold. In the bad case,
these values are reduced to 100 , 30 , and 5 , respectively. Any surplus produc-
tion is stored at costs of 0.5 , 0.25 , and 0.2 per box for tomato paste, ketchup,
and salsa, respectively. TI also considers unmet demand important and assigns
costs of 2.0 , 3.0 , and 6.0 per box for tomato paste, ketchup, and salsa, re-
spectively, for any demand that is not met in each period.

3. The Clear Lake Dam controls the water level in Clear Lake, a well-known resort
in Dreamland. The Dam Commission is trying to decide how much water to re-
lease in each of the next four months. The Lake is currently 150 mm below flood

1.6 Other Applications 51

stage. The dam is capable of lowering the water level 200 mm each month, but
additional precipitation and evaporation affect the dam. The weather near Clear
Lake is highly variable. The Dam Commission has divided the months into two
two-month blocks of similar weather. The months within each block have the
same probabilities for weather, which are assumed independent of one another.
In each month of the first block, they assign a probability of 1/2 to having a
natural 100-mm increase in water levels and probabilities of 1/4 to having a
50-mm decrease or a 250-mm increase in water levels. All these figures corre-
spond to natural changes in water level without dam releases. In each month of
the second block, they assign a probability of 1/2 to having a natural 150-mm
increase in water levels and probabilities of 1/4 to having a 50-mm increase or
a 350-mm increase in water levels. If a flood occurs, then damage is assessed at
$10,000 per mm above flood level. A water level too low leads to costly impor-
tation of water. These costs are $5000 per mm less than 250 mm below flood
stage. The commission first considers an overall goal of minimizing expected
costs. They also consider minimizing the probability of violating the maximum
and minimum water levels. (This makes the problem a special form of chance-
constrained model.) Consider both objectives.

4. The Energy Ministry of a medium-size country is trying to decide on expen-
ditures for new resources that can be used to meet energy demand in the next
decade. There are currently two major resources to meet energy demand. These
resources are, however, exhaustible. Resource 1 has a cost of 5 per unit of de-
mand met and a total current availability equal to 25 cumulative units of de-
mand. Resource 2 has a cost of 10 per unit of demand met and a total current
availability of 10 demand units. An additional resource from outside the country
is always available at a cost of 16.7 per unit of demand met.

Some investment is considered in each of Resources 1 and 2 to discover new
supplies and build capital. Resource 1 is, however, elusive. A unit of investment
in new sources of Resource 1 yields only 0.1 demand unit of Resource 1 with
probability 0.5 and yields 1 demand unit with probability 0.5 . For Resource 2,
investment is well known. Each unit of investment yields a demand unit equiva-
lent of Resource 2. Cumulative demand in the current decade is projected to be
10 , while demand in the next decade will be 25 .

The ministry wants to minimize expected costs of meeting demands in the
current and following decade assuming that the results of Resource 1 invest-
ment will only be known when the current decade ends. Next-decade costs are
discounted to 60% of their future real values (which should not change).

5. Pacific Pulp and Paper is deciding how to manage their main forest. They have
trees at a variety of ages, which we will break into Classes 1 to 4 . Currently,
they have 8000 acres in Class 1 , 10,000 acres in Class 2 , 20,000 in Class 3,
and 60,000 in Class 4 . Each class corresponds to about 25 years of growth.
The company would like to determine how to harvest in each of the next four 25-
year periods to maximize expected revenue from the forest. They also foresee
the company’s continuing after a century, so they place a constraint of having
40,000 acres in Class 4 at the end of the planning horizon.

52 1 Introduction and Examples

Each class of timber has a different yield. Class 1 has no yield, Class 2 yields
250 cubic feet per acre, Class 3 yields 510 cubic feet per acre, and Class 4
yields 700 cubic feet per acre. Without fires, the number of acres in Class i (for
i = 2,3) in one period is equal to the amount in Class i−1 from the previous
period minus the amount harvested from Class i − 1 in the previous period.
Class 1 at period t consists of the total amount harvested in the previous period
t −1 , while Class 4 includes all remaining Class 4 land plus the increment from
Class 3.

While weather effects do not vary greatly over 25-year periods, fire damage
can be quite variable. Assume that in each 25-year block, the probability is 1/3
that 15% of all timber stands are destroyed and that the probability is 2/3 that
5% is lost. Suppose that discount rates are completely overcome by increasing
timber value so that all harvests in the 100-year period have the same current
value. Revenue is then proportional to the total wood yield.

6. A hospital emergency room is trying to plan holiday weekend staffing for a
Saturday, Sunday, and Monday. Regular-time nurses can work any two days
of the weekend at a rate of $300 per day. In general, a nurse can handle 10
patients during a shift. The demand is not known, however. If more patients
arrive than the capacity of the regular-time nurses, they must work overtime at
an average cost of $50 per patient overload. The Saturday demand also gives a
good indicator of Sunday–Monday demand. More nurses can be called in for
Sunday–Monday duty after Saturday demand is observed. The cost is $400 per
day, however, in this case. The hospital would like to minimize the expected
cost of meeting demand.

Suppose that the following scenarios of 3-day demand are all equally likely:
(100,90,20) , (100,110,120) , (100,100,110) , (90,100,110) , (90,80,110) ,
(90,90,100) , (80,90,100) , (80,70,100) , and (80,80,90) .

7. After winning the pole at Monza, you are trying to determine the quickest way
to get through the first right-hand turn, which begins 200 meters from the start
and is 30 meters wide. You are through the turn at 100 meters past the begin-
ning of the next stretch (see Figure 15). As in the figure, you will attempt to stay
10 meters inside the barrier on the starting stretch (maintaining this distance
from each barrier as accelerate as fast as possible until point d1 . At this dis-
tance, you will start braking as hard as possible and take the turn at the current
velocity reached at some point d2 . (Assume a circular turn with radius equal
to the square of velocity divided by maximum lateral acceleration.) Obviously,
you do not want to go off the course.

The problem is that you can never be exactly sure of the car and track speed
until you start braking at point d1 . At that point, you can tell whether the track is
fast, medium, or slow, and you can then determine the point d2 where you enter
the turn. You suppose that the three kinds of track/car combinations are equally
likely. If fast, you accelerate at 27 m/sec 2 , decelerate at 45 m/sec 2 , and have
a maximum lateral acceleration of 1.8 g (= 17.5 m/sec 2). For medium, these
values are 24 , 42 , and 16 ; for slow, the values are 20 , 35 , and 14 . You
want to minimize the expected time through this section. You also assume that

1.6 Other Applications 53

Fig. 15 Opening straight and turn for Problem 7.

if you follow an optimal strategy, other competitors will not throw you out of the
race (although you may not be sure of that). After finding the optimal strategy
for any feasible position on the second straight-away, find an optimal strategy
with a constraint to remain no more than 10 meters from the inside wall after
completing the turn and compare the results.

8. In training for the Olympic decathlon, you are trying to choose your takeoff
point for the long jump to maximize your expected official jump. Unfortunately,
when you aim at a certain spot, you have a 50/50 chance of actually taking off
10 cm beyond that point. If that violates the official takeoff line, you foul and
lose that jump opportunity. Assume that you have three chances and that your
longest jump counts as your official finish.

You then want to determine your aiming strategy for each jump. Assume that
your actual takeoff is independent from jump to jump. Initially you are equally
likely to hit a 7.4- or 7.6-meter jump from your actual takeoff point. If you hit
a long first jump, then you have a 2/3 chance of another 7.6-meter jump and
1/3 chance of jumping 7.4 meters. The probabilities are reversed if you jumped
7.4 meters the first time. You always seem to hit the third jump the same as the
second.

First, find a strategy to maximize the expected official jump. Then, maximize
decathlon points from the following Table 8.

54 1 Introduction and Examples

Table 8 Decathlon Points for Problem 8.

Distance Points Distance Points
7.30 886 7.46 925
7.31 888 7.47 927
7.32 891 7.48 930
7.33 893 7.49 932
7.34 896 7.50 935
7.35 898 7.51 937
7.36 900 7.52 940
7.37 903 7.53 942
7.38 905 7.54 945
7.39 908 7.55 947
7.40 910 7.56 950
7.41 913 7.57 952
7.42 915 7.58 955
7.43 918 7.59 957
7.44 920 7.60 960
7.45 922 7.61 962

Chapter 2
Uncertainty and Modeling Issues

In the previous chapter, we gave several examples of stochastic programming mod-
els. These formulations fit into different categories of stochastic programs in terms
of the characteristics of the model. This chapter presents those basic characteristics
by describing the fundamentals of any modeling effort and some of the standard
forms detailed in later chapters.

Before beginning general model descriptions, however, we first describe the
probability concepts that we will assume in the rest of the book. Familiarity with
these concepts is essential in understanding the structure of a stochastic program.
This presentation is made simple enough to be understood by readers unfamiliar
with the field and, thus, leaves aside some questions related to measure theory. Sec-
tions 2.2 through 2.7 build on these fundamentals and give the general forms in var-
ious categories. Section 2.8 provides a detailed discussion of a modeling exercise.
Sections 2.9 and 2.10 give alternative characterizations of stochastic optimization
problems and some background on the relationship of stochastic programming to
other areas of decision making under uncertainty. Section 2.11 briefly reviews the
main optimization concepts used in the book.

2.1 Probability Spaces and Random Variables

Several parameters of a problem can be considered uncertain and are thus repre-
sented as random variables. Production and distribution costs typically depend on
fuel costs, which are random. Future demands depend on uncertain market condi-
tions. Crop returns depend on uncertain weather conditions.

Uncertainty is represented in terms of random experiments with outcomes de-
noted by ω . The set of all outcomes is represented by Ω . In a transport and distri-
bution problem, the outcomes range from political conditions in the Middle East to
general trade situations, while the random variable of interest may be the fuel cost.
The relevant set of outcomes is clearly problem-dependent. Also, it is usually not

J.R. Birge and F. Louveaux, Introduction to Stochastic Programming, Springer Series 55
in Operations Research and Financial Engineering, DOI 10.1007/978-1-4614-0237-4 2,
c© Springer Science+Business Media, LLC 2011

56 2 Uncertainty and Modeling Issues

very important to be able to define those outcomes accurately because the focus is
mainly on their impact on some (random) variables.

The outcomes may be combined into subsets of Ω called events. We denote by
A a collection of random events. As an example, if Ω contains the six possible
results of the throw of a die, A also contains combined outcomes such as an odd
number, a result smaller than or equal to four, etc. If Ω contains weather conditions
for a single day, A also contains combined events such as “a day without rain,”
which might be the union of a sunny day, a partly cloudy day, a cloudy day without
showers, etc.

Finally, to each event A ∈ A is associated a value P(A) , called a probability,
such that 0 ≤ P(A) ≤ 1 , P (/0) = 0 , P (Ω) = 1 and P (A1 ∪A2) = P(A1)+ P(A2)
if A1 ∩A2 = /0 . The triplet (Ω ,A ,P) is called a probability space that must sat-
isfy a number of conditions (see, e.g., Chung [1974]). It is possible to define several
random variables associated with a probability space, namely, all variables that are
influenced by the random events in A . If one takes as elements of Ω events rang-
ing from the political situation in the Middle East to the general trade situations,
they allow us to describe random variables such as the fuel costs and the interest
rates and inflation rates in some Western countries. If the elements of Ω are the
weather conditions from April to September, they influence random variables such
as the production of corn, the sales of umbrellas and ice cream, or even the exam
results of undergraduate students.

In terms of stochastic programming, there exists one situation where the descrip-
tion of random variables is closely related to Ω : in some cases indeed, the elements
ω ∈ Ω are used to describe a few states of the world or scenarios. All random el-
ements then jointly depend on these finitely many scenarios. Such a situation fre-
quently occurs in strategic models where the knowledge of the possible outcomes in
the future is obtained through experts’ judgments and only a few scenarios are con-
sidered in detail. In many situations, however, it is extremely difficult and pointless
to construct Ω and A ; the knowledge of the random variables is sufficient.

For a particular random variable ξ , we define its cumulative distribution Fξ(x)=
P(ξ ≤ x) , or more precisely Fξ(x) = P ({ω | ξ ≤ x}) . Two major cases are then con-
sidered. A discrete random variable takes a finite or countable number of different
values. It is best described by its probability distribution, which is the list of possible
values, ξ k , k ∈ K , with associated probabilities,

f (ξ k) = P(ξ = ξ k) s. t. ∑
k∈K

f (ξ k) = 1 .

Continuous random variables can often be described through a so-called density
function f (ξ) . The probability of ξ being in an interval [a,b] is obtained as

P(a ≤ ξ ≤ b) =
∫ b

a
f (ξ)dξ ,

or equivalently

2.3 Decisions and Stages 57

P(a ≤ ξ ≤ b) =
∫ b

a
dF(ξ) ,

where F(·) is the cumulative distribution as earlier. Contrary to the discrete case,
the probability of a single value P(ξ = a) is always zero for a continuous random
variable. The distribution F(·) must be such that

∫ ∞
−∞ dF(ξ) = 1 .

The expectation of a random variable is computed as μ = ∑k∈K ξ k f (ξ k) or
μ =

∫ ∞
−∞ ξdF(ξ) in the discrete and continuous cases, respectively. The variance of

a random variable is E [(ξ−μ)2] . The expectation of ξr is called the r th moment
of ξ and is denoted ξ̄ (r) = E [ξr] . A point η is called the α -quantile of ξ if and
only if for 0 < α < 1 , η = min{x | F(x) ≥ α} .

The appendix lists the distributions used in the textbook and their expectations
and variances. The concepts of probability distribution, density, and expectation eas-
ily extend to the case of multiple random variables. Some of the sections in the book
use probability measure theory which generalizes these concepts. These sections
contain a warning to readers unfamiliar with this field.

2.2 Deterministic Linear Programs

A deterministic linear program consists of finding a solution to

min z = cT x

s. t. Ax = b ,

x ≥ 0 ,

where x is an (n×1) vector of decisions and c , A and b are known data of sizes
(n×1) , (m×n) , and (m×1) , respectively. The value z = cT x corresponds to the
objective function, while {x | Ax = b , x ≥ 0} defines the set of feasible solutions.
An optimum x∗ is a feasible solution such that cT x ≥ cT x∗ for any feasible x .
Linear programs typically search for a minimal-cost solution under some require-
ments (demand) to be met or for a maximum profit solution under limited resources.
There exists a wide variety of applications, routinely solved in the industry. As in-
troductory references, we cite Chvátal [1980], Dantzig [1963], and Murty [1983].
We assume the reader is familiar with linear programming and has some knowledge
of basic duality theory as in these textbooks. A short review is given in Section 2.11.

2.3 Decisions and Stages

Stochastic linear programs are linear programs in which some problem data may
be considered uncertain. Recourse programs are those in which some decisions or
recourse actions can be taken after uncertainty is disclosed. To be more precise,

58 2 Uncertainty and Modeling Issues

data uncertainty means that some of the problem data can be represented as ran-
dom variables. An accurate probabilistic description of the random variables is as-
sumed available, under the form of the probability distributions, densities or, more
generally, probability measures. As usual, the particular values the various random
variables will take are only known after the random experiment, i.e., the vector
ξ = ξ (ω) is only known after the experiment.

The set of decisions is then divided into two groups:

• A number of decisions have to be taken before the experiment. All these de-
cisions are called first-stage decisions and the period when these decisions are
taken is called the first stage.

• A number of decisions can be taken after the experiment. They are called
second-stage decisions. The corresponding period is called the second stage.

First-stage decisions are represented by the vector x , while second-stage decisions
are represented by the vector y or y(ω) or even y(ω ,x) if one wishes to stress
that second-stage decisions differ as functions of the outcome of the random exper-
iment and of the first-stage decision. The sequence of events and decisions is thus
summarized as

x → ξ (ω) → y(ω ,x) .

Observe here that the definitions of first and second stages are only related to before
and after the random experiment and may in fact contain sequences of decisions
and events. In the farming example of Section 1.1, the first stage corresponds to
planting and occurs during the whole spring. Second-stage decisions consist of sales
and purchases. Selling extra corn would probably occur very soon after the harvest
while buying missing corn will take place as late as possible.

A more extreme example is the following. A traveling salesperson receives one
item every day. She visits clients hoping to sell that item. She returns home when
a buyer is found or when all clients are visited. Clients buy or do not buy in a
random fashion. The decision is not influenced by the previous days’ decisions. The
salesperson wishes to determine the order in which to visit clients, in such a way
as to be at home as early as possible (seems reasonable, does it not?). Time spent
involves the traveling time plus some service time at each visited client.

To make things simple, once the sequence of clients to be visited is fixed, it is
not changed. Clearly the first stage consists of fixing the sequence and traveling to
the first client. The second stage is of variable duration depending on the successive
clients buying the item or not. Now, consider the following example. There are two
clients with probability of buying 0.3 and 0.8 , respectively and traveling times
(including service) as in the graph of Figure 1.

Assume the day starts at 8 A.M. If the sequence is (1,2) , the first stage goes
from 8 to 9:30. The second stage starts at 9:30 and finishes either at 11 A.M. if 1
buys or 4:30 P.M. otherwise. If the sequence is (2,1) , the first stage goes from 8
to 12:00, the second stage starts at 12:00 and finishes either at 4:00 P.M. or at 4:30
P.M. Thus, the first stage if sequence (2,1) is chosen may sometimes end after the
second stage is finished when (1,2) is chosen if Client 1 buys the item.

2.4 Two-Stage Program with Fixed Recourse 59

Fig. 1 Traveling salesperson example.

2.4 Two-Stage Program with Fixed Recourse

The classical two-stage stochastic linear program with fixed recourse (originated by
Dantzig [1955] and Beale [1955]) is the problem of finding

minz = cT x + Eξ[minq(ω)T y(ω)] (4.1)

s. t. Ax = b , (4.2)

T (ω)x +Wy(ω) = h(ω) , (4.3)

x ≥ 0 ,y(ω) ≥ 0 . (4.4)

As in the previous section, a distinction is made between the first stage and the
second stage. The first-stage decisions are represented by the n1 × 1 vector x .
Corresponding to x are the first-stage vectors and matrices c , b , and A , of sizes
n1×1 , m1 ×1 , and m1 ×n1 , respectively. In the second stage, a number of random
events ω ∈ Ω may realize. For a given realization ω , the second-stage problem
data q(ω) , h(ω) and T (ω) become known, where q(ω) is n2 × 1 , h(ω) is
m2 ×1 , and T (ω) is m2 ×n1 .

Each component of q , T , and h is thus a possible random variable. Let Ti·(ω)
be the i th row of T (ω) . Piecing together the stochastic components of the second-
stage data, we obtain a vector ξ T (ω) = (q(ω)T ,h(ω)T ,T1·(ω), . . . ,Tm2·(ω)) , with
potentially up to N = n2 +m2+(m2×n1) components. As indicated before, a single
random event ω (or state of the world) influences several random variables, here,
all components of ξ .

60 2 Uncertainty and Modeling Issues

Let also Ξ ⊂ ℜN be the support of ξ , that is, the smallest closed subset in
ℜN such that P (Ξ) = 1 . As just said, when the random event ω is realized, the
second-stage problem data, q , h , and T , become known. Then, the second-stage
decision y(ω) or (y(ω ,x)) must be taken. The dependence of y on ω is of a
completely different nature from the dependence of q or other parameters on ω . It
is not functional but simply indicates that the decisions y are typically not the same
under different realizations of ω . They are chosen so that the constraints (4.3) and
(4.4) hold almost surely (denoted a.s.), i.e., for all ω ∈ Ω except perhaps for sets
with zero probability. We assume random constraints to hold in this way throughout
this book unless a specific probability is given for satisfying constraints.

The objective function of (4.1) contains a deterministic term cT x and the expec-
tation of the second-stage objective q(ω)T y(ω) taken over all realizations of the
random event ω . This second-stage term is the more difficult one because, for each
ω , the value y(ω) is the solution of a linear program. To stress this fact, one some-
times uses the notion of a deterministic equivalent program. For a given realization
ω , let

Q(x,ξ (ω)) = min
y

{q(ω)T y | Wy = h(ω)−T(ω)x,y ≥ 0} (4.5)

be the second-stage value function. Then, define the expected second-stage value
function

Q(x) = EξQ(x,ξ (ω)) (4.6)

and the deterministic equivalent program (DEP)

minz = cT x +Q(x) (4.7)

s. t. Ax = b ,

x ≥ 0 .

(4.8)

This representation of a stochastic program clearly illustrates that the major differ-
ence from a deterministic formulation is in the second-stage value function. If that
function is given, then a stochastic program is just an ordinary nonlinear program.

Formulation (4.1)–(4.4) is the simplest form of a stochastic two-stage program.
Extensions are easily modeled. For example, if first-stage or second-stage decisions
are to be integers, constraint (4.4) can be replaced by a more general form:

x ∈ X , y(w) ∈ Y ,

where X = Zn1
+ and Y = Zn2

+ . Similarly, nonlinear first-stage and second-stage ob-
jectives or constraints can easily be incorporated.

2.4 Two-Stage Program with Fixed Recourse 61

Examples of recourse formulation and interpretations

The definition of first stage versus second stage is not only problem dependent but
also context dependent. We illustrate different examples of recourse formulations
for one class of problems: the location problem.

Let i = 1, . . . ,m index clients having demand di for a given commodity. The
firm can open a facility (such as a plant or a warehouse) in potential sites j =
1, . . . ,n . Each client can be supplied from an open facility where the commodity is
made available (i.e., produced or stored). The problem of the firm is to choose the
number of facilities to open, their locations, and market areas to maximize profit or
minimize costs.

Let us first present the deterministic version of the so-called simple plant location
or uncapacitated facility location problem. Let x j be a binary variable equal to one
if facility j is open and zero otherwise. Let c j be the fixed cost for opening and
operating facility j and let v j be the variable operating cost of facility j . Let yi j

be the fraction of the demand of client i served from facility j and ti j be the unit
transportation cost from j to i .

All costs and profits should be taken in conformable units, typically on a yearly
equivalent basis. Let ri denote the unit price charged to client i and qi j = (ri −
v j − ti j)di be the total revenue obtained when all of client i ’s demand is satisfied
from facility j . Then the simple plant location problem or uncapacitated facility
location problem (UFLP) reads as follows:

UFLP: max
x,y

z(x,y) =−
n

∑
j=1

c jx j +
m

∑
i=1

n

∑
j=1

qi jyi j (4.9)

s. t.
n

∑
j=1

yi j ≤ 1 , i = 1, . . . ,m , (4.10)

0 ≤ yi j ≤ x j , i = 1, . . . ,m , j = 1, . . . ,n , (4.11)

x j ∈ {0,1} , j = 1, . . . ,n . (4.12)

Constraints (4.10) ensure that the sum of fractions of clients i ’s demand served
cannot exceed one. Constraints (4.11) ensure that clients are served only through
open plants.

It is customary to present the uncapacitated facility location in a different canon-
ical form that minimizes the sum of the fixed costs of opening facilities and of the
transportation costs plus possibly the variable operating costs. (There are several
ways to arrive at this canonical representation. One is to assume that unit prices are
much larger than unit costs in such a way that demand is always fully satisfied.) This
presentation more clearly stresses the link between the deterministic and stochastic
cases.

In the UFLP, a trade-off is sought between opening more plants, which results
in higher fixed costs and lower transportation costs and opening fewer plants with
the opposite effect. Whenever the optimal solution is known, the size of an open

62 2 Uncertainty and Modeling Issues

facility is computed as the sum of demands it serves. (In the deterministic case, it is
always optimal to have each yi j equal to either zero or one.) The market areas of
each facility are then well-defined.

The notation x j for the location variables and yi j for the distribution variables
is common in location theory and is thus not meant here as first stage and second
stage, respectively, although in some of the models it is indeed the case.

Several parameters of the problem may be uncertain and may thus have to be
represented by random variables. Production and distribution costs may vary over
time. Future demands for the product may be uncertain.

As indicated in the introduction of the section, we will now discuss various sit-
uations of recourse. It is customary to consider that the location decisions x j are
first-stage decisions because it takes some time to implement decisions such as mov-
ing or building a plant or warehouse. The main modeling issue is on the distribution
decisions. The firm may have full control on the distribution, for example, when the
clients are shops owned by the firm. It may then choose the distribution pattern after
conducting some random experiments. In other cases, the firm may have contracts
that fix which plants serve which clients, or the firm may wish fixed distribution pat-
terns in view of improved efficiency because drivers would have better knowledge
of the regions traveled.

a. Fixed distribution pattern, fixed demand, ri,v j, ti j stochastic

Assume the only uncertainties are in production and distribution costs and prices
charged to the client. Assume also that the distribution pattern is fixed in advance,
i.e., is considered first stage. The second stage then just serves as a measure of
the cost of distribution. We now show that the problem is in fact a deterministic
problem in which the total revenue qi j = (ri − v j − ti j)di can be replaced by its
expectation. To do this, we formally introduce extra second-stage variables wi j ,
with the constraint wi j(ω) = yi j for all ω . We obtain

max −
n

∑
j=1

c jx j + Eξ

m

∑
i=1

n

∑
j=1

qi j(ω)wi j(ω)

s.t. (4.10), (4.11), (4.12), and

wi j(ω) = yi j, i = 1, . . . ,m , j = 1, . . . ,n ∀ω . (4.13)

By (4.13), the second-stage objective function can be replaced by

Eξ

m

∑
i=1

n

∑
j=1

qi j(ω)yi j

or

2.4 Two-Stage Program with Fixed Recourse 63

n

∑
i=1

n

∑
j=1

Eξqi j(ω)yi j ,

because yi j is fixed and summations and expectation can be interchanged. The
problem is thus the deterministic problem

max −
n

∑
j=1

c jx j +
m

∑
i=1

n

∑
j=1

(Eξqi j(ω))yi j

s.t. (4.10), (4.11), (4.12).
Although there exists uncertainty about the distribution costs and revenues, the

only possible action is to plan in view of the expected costs.

b. Fixed distribution pattern, uncertain demand

Assume now that demand is uncertain, but, for some of the reasons cited earlier,
the distribution pattern is fixed in the first stage. Depending on the context, the
distribution costs and revenues (v j,ti j,ri) may or may not be uncertain.

We define yi j = quantity transported from j to i , a quantity no longer defined
as a function of the demand di , because demand is now stochastic. For simplicity,
we assume that a penalty q+

i is paid per unit of demand di which cannot be satisfied
from all quantities transported to i (they might have to be obtained from other
sources) and a penalty q−

i is paid per unit on the products delivered to i in excess
of di (the cost of inventory, for example). We thus introduce second-stage variables:
w−

i (ω) = amount of extra products delivered to i in state ω ; w+
i (ω) = amount

of unsatisfied demand to i in state ω .
The formulation becomes

max−
n

∑
j=1

c jx j +
m

∑
i=1

n

∑
j=1

(Eξ(−v j − ti j))yi j + Eξ[−
m

∑
i=1

q+
i w+

i (ω)

−
m

∑
i=1

q−
i w−

i (ω)]+ Eξ

m

∑
i=1

ridi(ω) (4.14)

s. t.
m

∑
i=1

yi j ≤ Mx j , j = 1, . . . ,n , (4.15)

w+
i (ω)−w−

i (ω) = di(ω)−
n

∑
j=1

yi j , i = 1, . . . ,m , (4.16)

x j ∈ {0,1} , 0 ≤ yi j , w+
i (ω) ≥ 0 ,w−

i (ω) ≥ 0 ,

i = 1, . . . ,m , j = 1, . . . ,n . (4.17)

This model is a location extension of the transportation model of Williams [1963].
The objective function contains the investment costs for opening plants, the expected

64 2 Uncertainty and Modeling Issues

production and distribution costs, the expected penalties for extra or insufficient de-
mands, and the expected revenue. This last term is constant because it is assumed
that all demands must be satisfied by either direct delivery or some other means
reflected in the penalty for unmet demand. The problem only makes sense if q+

i is
large enough, for example, larger than Eξ(v j + ti j) for all j , although weaker con-
ditions may sometimes suffice. Constraint (4.15) guarantees that distribution only
occurs from open plants, i.e., plants such that x j = 1 . The constant M represents
the maximum possible size of a plant.

Observe that here the variables yi j are first-stage variables. Also observe that in
the second stage, the constraints (4.16), (4.17) have a very simple form, as w+

i (ω) =
di −∑n

j=1 yi j if this quantity is non-negative and w−
i (ω) =∑n

j=1 yi j −di otherwise.
This is an example of a second stage with simple recourse.

Also note that in Cases a and b, the size or capacity of plant j is simply obtained
as the sum of the quantity transported from j , namely, ∑m

i=1 diyi j in Case a and
∑m

i=1 yi j in Case b.

c. Uncertain demand, variable distribution pattern

We now consider the case where the distribution pattern can be adjusted to the real-
ization of the random event. This might be the case when uncertainty corresponds to
long-term scenarios, of which only one is realized. Then the distribution pattern can
be adapted to this particular realization. This also implies that the sizes of the plants
cannot be defined as the sum of the quantity distributed, because those quantities
depend on the random event. We thus define as before:

x j =

{
1 if plant j is open,

0 otherwise.

We now let yi j depend on ω with yi j(ω) = fraction of demand di(ω) served
from j and define new variables wj = size (capacity) of plant j , with unit invest-
ment cost g j .

The model now reads

max −
n

∑
j=1

c jx j −
n

∑
j=1

g jwj + Eξ max
m

∑
i=1

n

∑
j=1

qi j(ω)yi j(ω) (4.18)

s. t. x j ∈ {0,1} , wj ≥ 0 , j = 1, . . . ,n , (4.19)
n

∑
j=1

yi j(ω) ≤ 1 , i = 1, . . . ,m , (4.20)

m

∑
i=1

di(ω)yi j(ω) ≤ wj , j = 1, . . . ,n , (4.21)

2.4 Two-Stage Program with Fixed Recourse 65

0 ≤ yi j(ω) ≤ x j , i = 1, . . . ,m , j = 1, . . . ,n , (4.22)

where qi j(ω) = (ri − v j − ti j)di(ω) now includes the demand di(ω) .
Constraint (4.20) indicates that no more than 100% of i ’s demand can be served,

but that the possibility exists that not all demand is served. Constraint (4.21) imposes
that the quantity distributed from plant j does not exceed the capacity wj decided
in the first stage. For the sake of clarity, one could impose a constraint wj ≤ Mx j ,
but this is implied by (4.21) and (4.22). For a discussion of algorithmic solutions of
this problem, see Louveaux and Peeters [1992].

d. Stages versus periods; Two-stage versus multistage

In this section, we highlight again the difference in a stochastic program between
stages and periods of times. Consider the case of a distribution firm that makes
its plans for the next 36 months. It may formulate a model such as (4.18)–(4.22).
The location of warehouses would be first-stage decisions, while the distribution
problem would be second-stage decisions. The duration of the first stage would
be something like six months (depending on the type of warehouse) and the second
stage would run over the 30 remaining months. Although we may think of a problem
over 36 periods, a two-stage model is totally relevant. In this case, the only moment
where the number of periods is important is when the precise values of the objective
coefficients are computed.

In this example, a multistage model becomes necessary if the distribution firm
foresees additional periods where it is ready to change the location of the ware-
houses. In this example, suppose the firm decides that the opening of new ware-
houses can be decided after one year. A three-stage model can be constructed. The
first stage would consist of decisions on warehouses to be built now. The second
stage would consist of the distribution patterns between months 7 and 18 as well
and new openings decided in month 12 . The third stage would consist of distribu-
tion patterns between months 19 and 36 .

Fig. 2 Three-stage model decisions and times.

66 2 Uncertainty and Modeling Issues

Let x1 and x2(ω2) be the binary vectors representing opening warehouses in
stages 1 and 2, respectively. Let y2(ω2) and y3(ω3) be the vectors representing
the distribution decisions in stages 2 and 3, respectively, where ω2 and ω3 are the
states of the world in stages 2 and 3. Assuming each warehouse can only have a
fixed size M , the following model can be built:

max −
n

∑
j=1

c jx
1
j + Eξ2 max{

m

∑
i=1

n

∑
j=1

q2
i j(ω2)y2

i j(ω2)−
n

∑
j=1

c2
j(ω2)x2

j (ω2)

+ Eξ3|ξ2
max[

m

∑
i=1

n

∑
j=1

q3
i j(ω3)y3

i j(ω3)]}

s. t.
n

∑
j=1

y2
i j(ω2) ≤ 1 , i = 1, . . . ,m ,

m

∑
i=1

di(ω2)y2
i j(ω2) ≤ Mx1

j , j = 1, . . . ,n ,

n

∑
j=1

y3
i j(ω3) ≤ 1 , i = 1, . . . ,m ,

m

∑
i=1

di(ω3)y3
i j(ω3) ≤ M(x1

j + x2
j(ω2)) , j = 1, . . . ,n ,

x1
j + x2

j(ω2) ≤ 1 , j = 1, . . . ,n ,

x1
j ,x

2
j(ω2) ∈ {0,1} , j = 1, . . . ,n ,

y2
i j(ω2),y3

i j(ω3) ≥ 0 , i = 1, . . . ,m , j = 1, . . . ,n .

Multistage programs will be further studied in Section 3.4.

2.5 Random Variables and Risk Aversion

In our view, one can often classify random events and random variables in two major
categories. In the first category, we would place uncertainties that recur frequently
on a short-term basis. As an example, uncertainty may correspond to daily or weekly
demands. This normally leads to a model similar to the one in Section 2.4, Case b
(4.b), where allocation cannot be adjusted every time period. It follows that the
expectation in the second stage somehow represents a mean over possible values of
the random variables, of which many will occur. Thus, the expectation takes into
account realizations that might not occur and many realizations that will occur. To
fix ideas here, if in Model 4.b the units in the objective function are in a yearly
basis and the randomness involves daily or weekly demands, one may expect that
the value of the objective of stochastic model will closely match the realized total
yearly revenue.

2.5 Random Variables and Risk Aversion 67

As one interesting example of a real-world application of a location model of
this first category, we may recommend the paper by Psaraftis, Tharakan, and Ceder
[1986]. It deals with the optimal location and size of equipment to fight oil spills.
Occurrence and sizes of spills are random. The sizes of the spills are represented
by a discrete random variable taking three possible values, corresponding to small,
medium, or large spills. Sadly enough, spills are sufficiently frequent that the expec-
tation may be considered close enough to the mean cost, as just described. Occur-
rence of spills at a given site is also random. It is described by a Poisson process. By
making the assumption of non-concomitant occurrence of spills, all equipment is
made available for each spill, which simplifies the second-stage descriptions com-
pared to (4.14)–(4.17).

As a common example, consider revenue management decisions such as those
considered in Problem 1.1 for an airline that must determine reservation controls
for hundreds of daily flights. This area has become one of the most widespread
applications of analytical methods to determining optimal choices under uncertain
conditions (see Talluri and van Ryzin [2005]). Airlines routinely solve thousands of
these stochastic programs each month and can reasonably expect to receive close
to the expected revenue from their decisions each month (if not each day). Risk
aversion has little affect in that case.

In the second category, we would place uncertainties that can be represented as
scenarios, of which basically only one or a small number are realized. An example in
a similar situation to the airline might be the problem of the organizers of the World
Cup championship soccer game, which only occurs once every four years, to choose
prices and seat allocations to maximize revenues but also to protect against possible
losses. This consideration would also be the case in long-term models where sce-
narios represent the general trend or path of the variables. As already indicated, this
is the spirit in which Model 4.c is built. In the second stage, among all scenarios
over which expectation is taken, only one is realized. The objective function with
only expected values may then be considered a poor representation of risk aversion,
which is typically assumed in decision making (if we exclude gambling).

Starting from the von Neumann and Morgenstern [1944] theory of utility, this
field of modeling preferences has been developed by economics. Models such as the
mean-variance approach of Markowitz [1959] have been widely used. Other meth-
ods have been proposed based on mixes of mean-variance and other approaches
(see, e.g, Ben-Tal and Teboulle [1986]). From a theoretical point of view, consid-
ering a nonlinear utility function transforms the problems into stochastic nonlinear
programs, which can require more computational effort than linear versions. In prac-
tice, risk aversion is often captured with a piecewise-linear representation, as in the
financial planning example in Section 1.2, to maintain a linear problem structure.

One interesting alternative to nonlinear utility models is to include risk aversion
in a linear utility model under the form of a linear constraint, called downside risk
(Eppen, Martin, and Schrage [1989]). The problem there is to determine the type
and level of production capacity at each of several locations. Plants produce various
types of cars and may be open, closed, or retooled. The demand for each type of car

68 2 Uncertainty and Modeling Issues

in the medium term is random. The decisions about the locations and configurations
of plants have to be made before the actual demands are known.

Scenarios are based on pessimistic, neutral, or optimistic realizations of demands.
A scenario consists of a sequence of realizations for the next five years. The stochas-
tic model maximizes the present value of expected discounted cash flows. The linear
constraint on risk is as follows: the downside risk of a given scenario is the amount
by which profit falls below some given target value. It is thus zero for larger profits.
The expected downside risk is simply the expectation of the downside risk over all
scenarios. The constraint is thus that the expected downside risk must fall below
some level.

To give an idea of how this works, consider a two-stage model similar to (4.1)–
(4.4) but in terms of profit maximization, by

maxz = cT x + Eξ[maxqT (ω)y(ω)]

s.t. (4.2)–(4.4).

Then define the target level g on profit. The downside risk u(ξ) is thus defined by
two constraints:

u(ξ (ω)) ≥ g−qT (ω)y(ω) (5.1)

u(ξ (ω)) ≥ 0 . (5.2)

The constraint on expected downside risk is

Eξu(ξ) ≤ l , (5.3)

where l is some given level. For a problem with a discrete random vector ξ , con-
straint (5.3) is linear. Observe that (5.3) is in fact a first-stage constraint as it runs
over all scenarios. It can be used directly in the extensive form. It can also be used
indirectly in a sequential manner, by imposing such a constraint only when needed.
This can be done in a way similar to the induced constraints for feasibility that we
will study in Chapter 5.

2.6 Implicit Representation of the Second Stage

This book is mainly concerned with stochastic programs of the form (4.1)–(4.4),
assuming that an adequate and computationally tractable representation of the re-
course problem exists. This is not always the case. Two possibilities then exist that
still permit some treatment of the problem:

• A closed form expression is available for the expected value function Q(x) .
• For a given first-stage decision x , the expected value function Q(x) is com-

putable.

2.6 Implicit Representation of the Second Stage 69

These possibilities are described in the following sections.

a. A closed form expression is available for Q(x)

We may illustrate this case by the stochastic queue median model (SQM) first pro-
posed by Berman, Larson, and Chiu [1985] from which we take the following in
a simplified form. The problem consists of locating an emergency unit (such as an
ambulance). When a call arrives, there is a certain probability that the ambulance
is already busy handling an earlier demand for ambulance service. In that event,
the new service demand is either referred to a backup ambulance service or entered
into a queue of other waiting “customers.” Here, the first-stage decision consists of
finding a location for the ambulance. The second stage consists of the day-to-day
response of the system to the random demands. Assuming a first-in, first-out deci-
sion rule, decisions in the second stage are somehow automatic. On the other hand,
the quality of response, measured, e.g., by the expected service time, depends on the
first-stage decision. Indeed, when responding to a call, an ambulance typically goes
to the scene and returns to the home location before responding to the next call.
The time when it is unavailable for another call is clearly a function of the home
location.

Let λ be the total demand rate, λ ≥ 0 . Let pi be the probability that a demand
originates from demand region i , with ∑m

i=1 pi = 1 . Let also t(i,x) denote the
travel time between location x and call i . On-scene service time is omitted for
simplicity. Given facility location x , the expected response time is the sum of the
mean-in-queue delay w(x) and the expected travel time t̄(x) ,

Q(x) = w(x)+ t̄(x) , (6.1)

where

w(x) =

{
λ t̄(2)(x)

2(1−λ t̄(x)) if λ t̄(x) < 1 ,

0 otherwise,
(6.2)

t̄(x) =
m

∑
i=1

pit(i,x) , (6.3)

and

t̄(2)(x) =
m

∑
i=1

pit
2(i,x) . (6.4)

The global problem is then of the form:

min
x∈X

Q(x) , (6.5)

70 2 Uncertainty and Modeling Issues

where the first-stage objective function is usually taken equal to zero and X repre-
sents the set of possible locations, which typically consists of a
network.

It should be clear that no possibility exists to adequately describe the exact se-
quence of decisions and events in the so-called second stage and that the expected
recourse Q(x) represents the result of a computation assuming the system is in
steady state.

b. For a given x , Q(x) is computable

The deterministic traveling salesperson problem (TSP) consists of finding a Hamil-
tonian tour of least cost or distance. Following a Hamiltonian tour means that
the traveling salesperson starts from her home location, visits all customers, (say
i = 1, . . . ,m) exactly, and returns to the home location.

Now, assume each customer has a probability pi of being present. A full opti-
mization that would allow the salesperson to decide the next customer to visit at each
step would be a difficult multistage stochastic program. A simpler two-stage model,
known as a priori optimization is as follows: in the first-stage, an a priori Hamilto-
nian tour is designed. In the second stage, the a priori tour is followed by skipping
the absent customers. The problem is to find the tour with minimal expected cost
(Jaillet [1988]).

The exact representation of such a second-stage recourse problem as a mathemat-
ical program with binary decision variables might be possible in theory but would
be so cumbersome that it would be of no practical value. On the other hand, the
expected length of the tour (and thus Q(x)) is easily computed when the tour (x)
is given.

Let ci j be the distance between i and j . Assume for simplicity of notation that
the given tour is {0,1,2, . . . ,n,0} where 0 is the depot.

Define t(k) as the expected length from k till the depot if k is present. Thus
we search for Q(x) = t(0) .

Start with t(n + 1) = 0 and t(n) = cn0 . Let p0 = 1 and cin+1 = ci0 . Then

t(k) =
n−k

∑
r=0

r

∏
j=1

(1− pk+ j) pk+r+1(ckk+r+1 + t(k + r + 1)) for k = n−1, . . . ,0,

where the condensed product is equal to 1 if r = 0 .
This calculation is a backward recursion: assuming k is present, it considers the

next present customer to be k + r+1 (and thus k +1 to k + r being absent) for all
possible successors (k + 1 to n + 1 := 0).

2.7 Probabilistic Programming 71

2.7 Probabilistic Programming

In probabilistic programming, some of the constraints or the objective are expressed
in terms of probabilistic statements about first-stage decisions. The description of
second-stage or recourse actions is thus avoided. This is particularly useful when
the cost and benefits of second-stage decisions are difficult to assess.

For some probabilistic constraints, it is possible to derive a deterministic linear
equivalent. A first example was given in Section 1.3. We now detail two other ex-
amples where a deterministic linear equivalent is obtained and one where it is not.

a. Deterministic linear equivalent: a direct case

Consider Exercise 1.6.1. An airline wishes to partition a plane of 200 seats into
three categories: first, business, economy. Now, assume the airline wishes a special
guarantee for its clients enrolled in its loyalty program. In particular, it wants 98%
probability to cover the demand of first-class seats and 95% probability to cover the
demand of business class seats (by clients of the loyalty program). First-class pas-
sengers are covered if they get a first-class seat. Business class passengers are cov-
ered if they get either a business or a first-class seat (upgrade). Assume weekday de-
mands of loyalty-program passengers are normally distributed, say ξF ∼ N(16,16)
and ξB ∼ N(30,48) for first-class and business, respectively. Also assume that the
demands for first-class and business class seats are independent.

Let x1 be the number of first-class seats and x2 the number of business seats.
The probabilistic constraints are simply

P (x1 ≥ ξF) ≥ 0.98, (7.1)

P(x1 + x2 ≥ ξF +ξB) ≥ 0.95 . (7.2)

Given the assumptions on the random variables, these probabilistic constraints can
be transformed into a deterministic linear equivalent.

Constraint (7.1) can be written as FF(x1) ≥ 0.98 , where FF(·) denotes the cu-
mulative distribution of ξF . Now, the 0.98 quantile of the normal distribution is
2.054 . As ξF ∼ N(16,16) , FF(x1) ≥ 0.98 is the same as (x1 −16)/4 ≥ 2.054 or
x1 ≥ 24.216 . Thus, the probabilistic constraint (7.1) is equivalent to a simple bound.

Similarly, constraint (7.2) can be written as FFB(x1 + x2) ≥ 0.95 , where FFB(·)
denotes the cumulative distribution of ξF + ξB . By the independence assumption
and the properties of the normal distribution, ξF +ξB ∼ N(46,64) . The 0.95 quan-
tile of the standard normal distribution is 1.645 . Thus, FFB(x1 + x2) ≥ 0.95 is the
same as (x1 + x2 −46)/8 ≥ 1.645 or x1 + x2 ≥ 59.16 .

Thus, the probabilistic constraint (7.2) is equivalent to a linear constraint. We
say that (7.2) has a linear deterministic equivalent. This is the desired situation with
probabilistic constraints.

72 2 Uncertainty and Modeling Issues

b. Deterministic linear equivalent: an indirect case

We now provide an example where finding the deterministic equivalent requires
some transformation.

Consider the following covering location problem. Let j = 1, . . . ,n be the po-
tential locations with, as usual, x j = 1 if site j is open and 0 otherwise, and c j

the investment cost. Let i = 1, . . . ,m be the clients. Client i is served if there ex-
ists an open site within distance ti . The distance between i and j is ti j . Define
Ni = { j | ti j < ti} as the set of eligible sites for client i . The deterministic covering
problem is

min
n

∑
j=1

c jx j (7.3)

s. t. ∑
j∈Ni

x j ≥ 1 , i = 1, . . . ,m , (7.4)

x j ∈ {0,1} , j = 1, . . . ,n . (7.5)

Taking again the case of an ambulance service, one site may cover more than one
region or demand area. When a call is placed, the emergency units may be busy
serving another call. Let q be the probability that no emergency unit is available at
site j . For simplicity, assume this probability is the same for every site (see Toregas
et al. [1971]). Then, the deterministic covering constraint (7.4) may be replaced by
the requirement that P (at least one emergency unit from an open eligible site is
available) ≥ α where α is some confidence level, typically 90 or 95%. Here, the
probability that none of the eligible sites has an available emergency unit is q to the
power ∑ j∈Ni

x j , so that the probabilistic constraint is

1−q∑ j∈Ni
x j ≥ α , i = 1, . . . ,m (7.6)

or
q∑ j∈Ni

x j ≤ 1−α .

Taking the logarithm on both sides, one obtains

∑
j∈Ni

x j ≥ b (7.7)

with

b =

⌈
ln(1−α)

lnq

⌉
, (7.8)

where �a� denotes the smallest integer greater than or equal to a . Thus, the prob-
abilistic constraint (7.6) has a linear deterministic equivalent (7.7).

2.7 Probabilistic Programming 73

c. Deterministic nonlinear equivalent: the case of random
constraint coefficients

The diet problem is a classical example of linear programming (discussed in Dantzig
[1963] for the case in Stigler [1945]) . It consists of selecting a number of foods in
order to get the cheapest menus that meet the daily requirements in the main nutri-
ents (energy, protein, vitamins,. . .). Consider the data in the introductory example
of Chvátal (1980). Polly wants to choose among six foods (oatmeal, chicken, eggs,
whole milk, cherry pie and pork with beans). Each food has a given serving size;
for instance, a serving of eggs is two large eggs and a serving of pork with beans
is 260 grams. Each food has therefore a known content of nutrients. If we take the
case of protein, the content is 4 , 32 , 13 , 8 , 4 and 14 grams (grams) of proteins,
respectively, for the given serving sizes.

Let x1, . . . ,x6 represent the number of servings of each product per day. As Polly
is a girl of 18 years of age, she needs 55 grams of protein per day. The protein
constraint reads as follows:

4x1 + 32x2 + 13x3 + 8x4 + 4x5 + 14x6 ≥ 55 .

(We omit here the other constraints and the objective function, which are very im-
portant to Polly but not central to our discussion.)

The same book later on contains an interesting discussion on the difficulty to get
precise reliable RDA (recommended daily allowances) as well as precise nutrient
contents per serving (Chvátal [Chapter 11, pp. 182–187]). Let us concentrate on this
second aspect. It is indeed very unlikely that every large egg has exactly 6.5 grams
of protein, or every serving of 260 grams of pork with beans has exactly 14 grams
of protein. This implies that the nutrient content of each serving is in fact a random
variable. Let a1, . . . ,a6 be the random content in proteins for the six products. The
probabilistic constraint reads as follows:

P(a1 x1 + a2 x2 + a3 x3 + a4 x4 + a5 x5 + a6 x6 ≥ 55) ≥ α . (7.9)

Let us now assume the contents of the products are normally distributed, say
ai ∼ N(μi,σ2

i) , i = 1, . . . ,6 . We can clearly assume independence between the
six products. Then a1 x1 + a2 x2 + a3 x3 + a4 x4 + a5 x5 + a6 x6 ∼ N(μ ,σ2) with
μ = μ1 x1 +μ2 x2 +μ3 x3 +μ4 x4 +μ5 x5 +μ6 x6 and σ2 = σ2

1 x2
1 +σ2

2 x2
2 +σ2

3 x2
3 +

σ2
4 x2

4 +σ2
5 x5 +σ2

6 x6 .
Classical probabilistic analysis of the normal distribution implies that (7.9) is

equivalent to
(55− μ)/σ ≤ z1−α

with z1−α the (1 −α) -quantile of the normal distribution. Taking α = 0.98 , the
constraint reads (55 − μ)/σ ≤ −2.054 or μ ≥ 55 + 2.054 ·σ . As σ2 = σ2

1 x2
1 +

σ2
2 x2

2 +σ2
3 x2

3 +σ2
4 x2

4 +σ2
5 x2

5 +σ2
6 x2

6 , this constraint is non-linear and convex.

74 2 Uncertainty and Modeling Issues

2.8 Modeling Exercise

In this section, we propose a modeling exercise and comment on a number of pos-
sible answers.

a. Presentation

Consider a production or assembly problem. It consists of producing two products,
say A and B . They are obtained by assembling two components, say C1 and C2 ,
in fixed quantities. The following table shows the components usage for the two
products:

Components usage A B
C1 6 10
C2 8 5

Components are produced within the plant. Material (and / or operating) costs for
C1 and C2 are 0.4 and 1.2 , respectively. The level of production, or capacity,
is related to the work-force and the equipment. Each unit of capacity costs 150
and 180 and can produce batches of 60 and 90 components, respectively for C1
and C2 . Current capacity level is (40,20) batches and cannot be decreased. The
total number of batches must not exceed 120. An integer number of batches is not
requested here.

In the deterministic case, the demands and unit selling prices are certain and are
as follows:

A B
Demand 500 200
Unit selling price 50 60

Unmet demand results in lost sales. This does does not imply any additional penalty.

1. Select adequate units for each data. Formulate and solve the deterministic
problem.

Then, consider a number of stochastic variants. For the sake of comparison, in all
cases, the random variables have expectations which are the corresponding deter-
ministic values.

2.8 Modeling Exercise 75

2. Stochastic prices (known demand).

The selling prices of A and B are described by a random vector, say ζT = (ζ1,ζ2) .
The rest of the data is unchanged. Formulate a recourse model in the following
cases:

(a) ζT takes on the values (54,56) , (50,60) , and (46,64) with probability 0.3 ,
0.4 and 0.3 respectively.

(b) ζ1 takes on the values (46,50,54) with probability 0.3 , 0.4 and 0.3 ; ζ2

takes on the values (56,60,64) with probability 0.3 , 0.4 and 0.3 ; ζ1 and ζ2

are independent.
(c) ζ1 has a continuous uniform distribution in the range [46,54] ; ζ2 has a con-

tinuous uniform distribution in the range [56,64] ; ζ1 and ζ2 are independent.
(d) ζT takes on the values (70,50) , (50,60) , (30,70) with probability 0.3 , 0.4

and 0.3 .
(e) ζ1 takes on the values (30,50,70) with probability 0.3 , 0.4 and 0.3 ; ζ2

takes on the values (50,60,70) with probability 0.3 , 0.4 and 0.3 ; ζ1 and ζ2

are independent.

3. Stochastic demands (known prices).

The demand levels of A and B are described by a random vector, say ηT =
(η1,η2) . The rest of the data is as in the deterministic model.

(a) Formulate and solve a recourse model when ηT takes on the values (400,100) ,
(500,200) , (600,300) with probability 0.3 , 0.4 and 0.3 .

(b) Assume η1 and η2 are independent random variables with normal distribu-
tions, η1 ∼ N(500,6000) and η2 ∼ N(200,12000) . Find the optimal solution
of the recourse problem if the production of A and B is decided in the first-
stage and there is no restriction at all on the number of batches of C1 and C2 .

(c) Consider case (b). Add the restriction that the total number of
batches must not exceed 120 . Also ensure that the probability that the demand
of B is covered must be larger than 80%.

4. Stochastic prices and demands.

Demands and prices are described by three scenarios S1 , S2 and S3 , as follows.
Demand level S1 S2 S3
A 700 500 300
B 100 200 300
Unit selling price
A 45 50 55
B 70 60 50

76 2 Uncertainty and Modeling Issues

Formulate and solve a recourse model assuming the three scenarios have probability
0.3 , 0.4 and 0.3 respectively.

5. Obtain EVPI and VSS for some relevant cases among these alternatives.

b. Discussion of solutions

1. Choice of units and deterministic model.

Units are as follows. First, define the unit of time. We may assume here data are
given per day for example. Then, demand is the number of units of A and B per
day. Selling prices are given as $ per unit of A and B . The level of production
is given by the number of batches (of 60 C1 and 90 C2) per day. Capacity cost
must include work-force cost, operating costs, and depreciation per day. Material
costs are $ per component. The distinction among these costs is important for the
stochastic model.

There is more than one formulation for the deterministic problem. The following
formulation (M1) is useful in view of later stochastic models. Let

• x1 = number of batches of C1 available for production;
• x2 = number of batches of C2 available for production;
• x3 = number of units of A produced and sold per day;
• x4 = number of units of B produced and sold per day.

For batches of C1 and C2 , the objective contains the daily capacity cost. For
products A and B , it contains the selling price minus the material costs. (Each
unit of A , e.g. has a selling price of $50. It requests 6 units of C1 and 8 units
of C2 for a total material cost of $12. The difference is the objective coefficient
38 .) The first two constraints state that the usage of components is smaller than
the availability. The third constraint is the upper limit on the number of batches.
Demand and capacity bounds follow.

(M1) z = max−150x1 −180x2 + 38x3 + 50x4

s. t. 6x3 + 10x4 ≤ 60x1,
8x3 + 5x4 ≤ 90x2,
x1 + x2 ≤ 120,

40 ≤ x1 , 20 ≤ x2 , 0 ≤ x3 ≤ 500 , 0 ≤ x4 ≤ 200.

The optimal solution of (M1) is z = 5800 , x1 = 220/3 , x2 = 140/3 , x3 = 400 ,
x4 = 200 . Product B is at the maximum corresponding to its demand. All 120
batches of capacity are used. The rest of the solutions follow.

A shorter formulation (M2) is to define two variables:

• x1 = number of units of A produced and sold per day;
• x2 = number of units of B produced and sold per day.

2.8 Modeling Exercise 77

This formulation requires computing the margins of A and B . Each unit of A
obtains the selling price of $50. It requires 6 components C1 and 8 components C2
for a total material cost of $12. It also requires 6/60 batches of capacity for C1 and
8/90 batches for C2 at a cost of $31. The net margin for A is thus $7 per unit. Sim-
ilarly, the net margin for B is $15 per unit. Note that this calculation of the margins
of A and B is only valid if there is no unused capacity or unsold product, which
is not always the case in a stochastic model. The first two constraints correspond to
maintaining at least the existing capacity levels of 40 and 20 respectively. The third
constraint corresponds to a maximal capacity level of 120 (each unit of A requires
6/60 of C1 and 8/90 of C2 , or 17/90 capacity units; each unit of B requires
10/60 of C1 and 5/90 of C2 or 20/90 capacity units). The model also includes
the demand constraints and reads as follows:

(M2) z = max7x1 + 15x2

s. t. 6x1 + 10x2 ≥ 2400,
8x1 + 5x2 ≥ 1800,
17x1 + 20x2 ≤ 10800,
0 ≤ x1 ≤ 500 , 0 ≤ x2 ≤ 200.

This model has the same optimal solution, z = 5800 , x1 = 400 , x2 = 200 , as
previously. It is clear in (M2) that the margin of B is larger than that of A . Thus,
product B is at the maximum corresponding to its demand. Product A is then
reduced from the limit of 120 batches of capacity. The number of batches for C1
and C2 can be computed from the production of A and B , and are equal to 220/3
and 140/3 , respectively.

2. Stochastic prices.

The essential modeling question concerns the timing of the decisions. Typically, the
capacity decisions are made in the long run. They are first-stage decisions. Sales oc-
cur when the price is known. They are always second-stage decisions. Depending on
the flexibility of the production process, the decision on the quantity to be produced
may be first- or second-stage. We may thus distinguish between two formulations:
production is first-stage (M3) or second-stage (M4).

2.1. Production is first-stage.

Let

• x1 = number of batches of C1 available for production;
• x2 = number of batches of C2 available for production;
• x3 = number of units of A produced per day;
• x4 = number of units of B produced per day;
• y1 = number of units of A sold per day;
• y2 = number of units of B sold per day;

78 2 Uncertainty and Modeling Issues

z = max−150x1 −180x2 −12x3 −10x4

+ Eξ(q1(ω) y1(ω)+ q2(ω) y2(ω))
s. t. 6x3 + 10x4 ≤ 60x1,

8x3 + 5x4 ≤ 90x2,
x1 + x2 ≤ 120

y1(ω) ≤ x3, y2(ω) ≤ x4,

40 ≤ x1, 20 ≤ x2, 0 ≤ x3, 0 ≤ x4,

0 ≤ y1(ω) ≤ 500, 0 ≤ y2(ω) ≤ 200,

where ξT (ω) = (q1(ω),q2(ω)) = ζT (ω) corresponds to the selling prices.
In practice, it is customary to use a simplified notation where the dependence of

y and ξ on ω is not made explicit. This (abuse of) notation is used here.

(M3) z = max−150x1 −180x2 −12x3 −10x4

+ Eξ(q1 y1 + q2 y2)
s. t. 6x3 + 10x4 ≤ 60x1,

8x3 + 5x4 ≤ 90x2,
x1 + x2 ≤ 120,

y1 ≤ x3 , y2 ≤ x4,
40 ≤ x1 , 20 ≤ x2 , 0 ≤ x3 , 0 ≤ x4 ,
0 ≤ y1 ≤ 500 , 0 ≤ y2 ≤ 200,

where ξT = (q1,q2) = ζT .
We now transform (M3) as in Section 2.4a. Assuming q1 and q2 are never

negative (a much needed assumption for the producer to survive), we obtain

(M3’) z = max−150x1 −180x2 −12x3 −10x4

+Eξ(q1 min{x3,500}+ q2 min{x4,200})
s. t. 6x3 + 10x4 ≤ 60x1,

8x3 + 5x4 ≤ 90x2,
x1 + x2 ≤ 120,

40 ≤ x1 , 20 ≤ x2 , 0 ≤ x3 , 0 ≤ x4,
or
(M3”) z = max−150x1 −180x2 −12x3 −10x4

+μ1 min{x3,500}+ μ2 min{x4,200}
s. t. 6x3 + 10x4 ≤ 60x1

8x3 + 5x4 ≤ 90x2

x1 + x2 ≤ 120
40 ≤ x1 , 20 ≤ x2 , 0 ≤ x3 , 0 ≤ x4

where (μ1,μ2) is the expectation of ξT .
As (μ1,μ2) is equal to the deterministic selling prices (50,60) , it is easy to

show that (M3”) has the same optimal solution as the model (M1). This is true
for each of the considered cases (a) to (e). To put it another way, if production is
decided in the first-stage, the stochastic model where only the selling prices are

2.8 Modeling Exercise 79

random can be replaced by a deterministic model with the random prices replaced
by their expectations.

2.2. Production is second-stage

Let x1 and x2 be as in (M3) and

• y1 = number of units of A produced and sold per day;
• y2 = number of units of B produced and sold per day.

(M4) z = max−150x1 −180x2 + Eξ(q1 y1 + q2 y2)
s. t. x1 + x2 ≤ 120,

6y1 + 10y2 ≤ 60x1,
8y1 + 5y2 ≤ 90x2,
40 ≤ x1 , 20 ≤ x2 , 0 ≤ y1 ≤ 500 , 0 ≤ y2 ≤ 200,

where ξT = (q1,q2) = ζT − (12,10) corresponds to selling prices minus material
costs.

Before using formulation (M4), consider the deterministic formulation (M2). As
long as the margin of B is larger than the margin of A and the margin of A re-
mains positive, it is optimal to produce and sell 400 A and 200 B . If this holds for
all realizations of the selling prices, the same optimal solution is obtained for all re-
alizations of ζ . It is thus the optimal solution of the stochastic model. (This will be
elaborated in the comments after Proposition 5 of Chapter 4.) The expected margin
is simply Eζ(400ζ1 + 200ζ2 − 26,200) where 26,200 is the total of the material
and capacity costs for the daily production of 400 A and 200 B . As (ζ1,ζ2) has
expectation (50,60) as in the deterministic model, the expected margin is again the
same as in the deterministic model. This situation occurs in cases (a), (b) and (c)
of this exercise: the margin of A is ζ1 − 43 , the margin of B is ζ2 − 45 and the
relation ζ2 −45 ≥ ζ1 −43 ≥ 0 holds.

If at some point, the margin of A becomes negative or exceeds that of B , then
(M4) is a truly stochastic model. For cases (d) and (e), there are values of the selling
prices where the margin of A exceeds that of B . The stochastic model (M4) has to
be solved.

In case (d), ζT takes on the values (70,50) , (50,60) , (30,70) with probability
0.3 , 0.4 and 0.3 , respectively. First-stage optimal capacity decisions are (x1,x2) =
(69.167,50.833) . Second-stage optimal production and sale decisions (x3,x4) are
(500,115) , (500,115) and (358.333,200) for the three possible scenarios. The
optimal objective value is z = 5990 .

In case (e), the two random variables ζ1 and ζ2 are independent, taking three
different values each. Thus, the second-stage must consider 9 realizations. The op-
timal solution is the same as in the deterministic case: first-stage decisions are
(x1,x2) = (73.333,46.667) , second-stage decisions are (x3,x4) = (400,200) , with
objective value z = 5800 .

80 2 Uncertainty and Modeling Issues

3. Stochastic demands.

(a) As in Question 2, the first modeling question is the timing of the decisions.
Capacity decisions are made in the long run and are first-stage decisions. Sales occur
when price is known and are second-stage. The decisions on the quantities to be
produced may be first- or second-stage.

(a.1) Production is first-stage.

If production is first-stage, lost sales occur when demand exceeds production. What
happens when production exceeds demand is problem dependent. In some situa-
tions, excess production may be held in inventory. This would be the case when
the randomness represents day-to-day variations in demand. Then excess produc-
tion is used later to compensate for possible lost sales. Randomness only results in
inventory costs. On the other hand, for products such as perishable goods, produc-
tion is lost (C1 and C2 could be flour and eggs, A and B could be bread and
pastry, e.g.) and lost sales cannot be compensated. The same is true when the ran-
domness describes a set of scenarios of which only one is realized. The scenarios
could represent the uncertainty about the success of a new product. If a product is
not successful, extra production is lost. If it is very successful, sales are lost to com-
petitors if the production level is insufficient. Or, alternative actions are needed such
as subcontracting or overtime.

We now present a formulation (M5) corresponding to a scenario situation (excess
production is lost, lost sales are not compensated). The decision variables are the
same as in (M3).

(M5) z = max−150x1 −180x2 −12x3 −10x4

+ Eξ(50y1 + 60y2)
s. t. 6x3 + 10x4 ≤ 60x1,

8x3 + 5x4 ≤ 90x2,
x1 + x2 ≤ 120,

y1 ≤ x3 , y2 ≤ x4,
40 ≤ x1 , 20 ≤ x2 , 0 ≤ x3 , 0 ≤ x4 ,
0 ≤ y1 ≤ d1 , 0 ≤ y2 ≤ d2,

where ξT = (d1,d2) = ηT correspond to the demand level.
The first-stage optimal capacity decisions are (x1,x2) = (56.667,41.111) . The

second-stage optimal production and sale decisions (x3,x4) are
(400,100) in the three possible scenarios. The optimal objective value is z = 4300 .
Observe that the production is set to meet the lowest possible demand.

2.8 Modeling Exercise 81

(a.2) Production is second-stage.

If production is second-stage, lost sales occur when the available production capac-
ities are insufficient to cover the demand. Excess production does not occur as the
level of production can be adjusted to the downside. The decision variables are the
same as in (M4). Formulation (M6) reads as follows:

(M6) z = max−150x1 −180x2 + Eξ(38y1 + 50y2)
s. t. x1 + x2 ≤ 120,

6y1 + 10y2 ≤ 60x1,
8y1 + 5y2 ≤ 90x2,
40 ≤ x1 , 20 ≤ x2 , 0 ≤ y1 ≤ d1 , 0 ≤ y2 ≤ d2,

where ξT = (d1,d2) = ηT corresponds to the demand level.
The first-stage optimal capacity decisions are (x1,x2) = (67.083,41.111) . The

second-stage optimal production and sale decisions (x3,x4) are
(400,100) , (337.5,200) and (337.5,200) for the three possible scenarios. The
optimal objective value is z = 4575 . Observe that the capacity limit of 120 batches
is not fully used.

(b) We consider a variant of formulation (M5) where the only constraints on x1 and
x2 are the components usage:

(M7) z = max−150x1 −180x2 −12x3 −10x4

+ Eξ(50min{x3,d1}+ 60min{x4,d2})
s. t. 6x3 + 10x4 ≤ 60x1,

8x3 + 5x4 ≤ 90x2,
0 ≤ x1 , 0 ≤ x2 , 0 ≤ x3 , 0 ≤ x4,

where ξT = (d1,d2) = ηT corresponds to the demand level.
Clearly, the two constraints are always tight. Replacing x1 by (6x3 + 10x4)/60

and x2 by (8x3 + 5x4)/90 , the model becomes

z = max{−43x3 −45x4 + Eξ(50min{x3,d1}
+ 60min{x4,d2}) | 0 ≤ x3, 0 ≤ x4} ,

or
(M7’) z = max{−43x3 + 50Eξ1 min{x3,ξ1}−45x4

+ 60Eξ2 min{x4,ξ2} | 0 ≤ x3 , 0 ≤ x4}.
This optimization is separable in x3 and x4 . Both variables will be nonzero. So,

we are searching twice for the unconstrained minimum of an expression of the form
−a x+bQ(x) , with Q(x) = Eξ min{x,ξ} and ξ ∼ N(μ ,σ2) . From Exercise 2.8.2,
we obtain that Q′(x) = 1−F(x) . As Q′′(x) = − f (x) , the second-order conditions
are satisfied. Thus the unconstrained minimum is obtained for Q′(x) = a/b , i.e.
1−F(x) = a/b .

Denote by Fi(·) the cumulative distribution of ξi , i = 1,2 . For x3 , the un-
constrained optimum satisfies 1 − F1(x3) = 43/50 , or F1(x3) = 0.14 . It corre-
sponds to a quantile q = −1.08 and a decision x3 = 500−1.08

√
6000 = 416.34 .

For x4 , we have 1 − F2(x4) = 45/60 , or F2(x4) = 0.25 . It corresponds to a

82 2 Uncertainty and Modeling Issues

quartile q = −0.675 and a decision x4 = 200 − 0.675
√

12000 = 126.06 . For
the sake of comparison, we may compute x1 = (6x3 + 10x4)/60 = 62.644 and
x2 = (8x3 + 5x4)/90 = 44.011 . Also, using the closed form expression of Q(x) ,
(see again Exercise 2.8.2), one can obtain the optimal value of z .

(c) Requesting that the probability that the demand of B is covered must be larger
than 80% is P(x4 ≥ ξ2) ≥ 0.8 or F2(x4) ≥ 0.8 . The 0.8 quantile is 0.84 . Thus,
F2(x4) ≥ 0.8 is equivalent to (x4 − μ2)/σ2 ≥ 0.8 , or x4 ≥ 200 + 0.84

√
12000 , or

x4 ≥ 292.02 .
The model to solve is:

(M8) z = max{−43x3 + 50Eξ1 min{x3,ξ1}−45x4

+ 60Eξ2 min{x4,ξ2} | 0 ≤ x3,
292.02 ≤ x4 , 17x3 + 20x4 ≤ 10800},

where the constraint on the 120 batches has been transformed as in (M2).
By applying the Karush-Kuhn-Tucker conditions (see Review Section 2.11c.),

one can show that (x3,x4) = (291.74,292.02) is the optimal solution.

4. Just as in the previous cases, there are two possible formulations as the produc-
tion decisions may be first- or second-stage. Model (M9) corresponds to first-stage
production while (M10) corresponds to second-stage production.

(M9) z = max−150x1 −180x2 −12x3 −10x4

+ Eξ(q1 y1 + q2 y2)
s. t. 6x3 + 10x4 ≤ 60x1,

8x3 + 5x4 ≤ 90x2,
x1 + x2 ≤ 120,

y1 ≤ x3 , y2 ≤ x4,
40 ≤ x1 , 20 ≤ x2 , 0 ≤ x3 , 0 ≤ x4 ,
0 ≤ y1 ≤ d1 , 0 ≤ y2 ≤ d2,

where ξT = (q1,q2,d1,d2) , with q1 and q2 the selling prices and d1 and d2 the
demands jointly defined in a scenario. Thus ξT=(45,70,700,100),(50,60,500,200)
and (55,50,300,300) with probability 0.3 , 0.4 , and 0.3 respectively. The opti-
mal solution is z = 3600 , (x1,x2)= (46.667,32.222) with corresponding (x3,x4)=
(300,100) . The second-stage decisions are (y1,y2) = (300,100) in all three sce-
narios. As the production cannot be adapted to the demand, the optimal solution is
to plan for the lowest demand and the expected margin is low.

(M10) z = max−150x1 −180x2 + Eξ(q1 y1 + q2 y2)
s. t. x1 + x2 ≤ 120

6y1 + 10y2 ≤ 60x1,
8y1 + 5y2 ≤ 90x2,
40 ≤ x1 , 20 ≤ x2 , 0 ≤ y1 ≤ d1 , 0 ≤ y2 ≤ d2,

where ξT = (q1,q2,d1,d2) with q1 and q2 the selling prices minus the material
costs and d1 and d2 the demands. Thus, ξT = (33,60,700,100) , (38,50,500,200)
and (43,40,300,300) with probability 0.3 , 0.4 , and 0.3 . The optimal solu-
tion is z = 4048.75 , (x1,x2) = (73.333,46.667) . The second-stage decisions are
(y1,y2) = (462.5,100) , (400,200) and (300,260) in the three scenarios. While

2.8 Modeling Exercise 83

obtaining the optimal solution of (M10) with your favorite LP solver, you may ob-
serve that there is a high shadow price for the maximum number of batches.

Exercises

1. Consider Exercise 1 of Section 1.6.

(a) Show that this is a two-stage stochastic program with first-stage integer
decision variables. Observe that, for a random variable with integer real-
izations, the second-stage variables can be assumed continuous because
the optimal second-stage decisions are automatically integer. Assume that
Northam revises its seating policy every year. Is a multistage program
needed?

(b) Assume that the data in Exercise 1 correspond to the demand for seat reser-
vations. Assume that there is a 50% probability that all clients with a reser-
vation effectively show up and that 10 or 20% no-shows occur with equal
probability. Model this situation as a three-stage program, with first-stage
decisions as before, second-stage decisions corresponding to the number of
accepted reservations, and third-stage decisions corresponding to effective
seat occupation. Show that the third stage is a simple recourse program with
a reward for each occupied seat and a penalty for each denied reservation.

(c) Consider now the situation where the number of seats has been fixed to 12 ,
24 , and 140 for the first class, business class, and economy class, respec-
tively. Assume the top management estimates the reward of an occupied
seat to be 4 , 2 , and 1 in the first class, business class, and economy class,
respectively, and the penalty for a denied reservation is 1.5 times the re-
ward. Model the corresponding problem as a recourse program. Find the
optimal acceptance policy with the data of Exercise 1 in Section 1.6 and
no-shows as in (b) of the current exercise. To simplify, assume that passen-
gers with a denied reservation are not seated in a higher class even if a seat
is available there.

2. Let Q(x) = Eξ min{x,ξ} .

(a) Obtain a closed form expression for Q(x) when ξ follows a Poisson dis-
tribution.

(b) Obtain a closed form expression for Q(x) when ξ follows a normal dis-
tribution. (Hint: for a normal distribution, the relation ξ f (ξ) = μ f (ξ)−
σ2 f ′(ξ) holds for any given ξ .)

(c) Assume ξ has a continuous distribution. Show that Q′(x) = 1−F(x) .

3. Consider an airplane with x seats. Assume passengers with reservations show
up with probability 0.90 , independently of each other.

84 2 Uncertainty and Modeling Issues

(a) Let x = 40 . If 42 passengers receive a reservation, what is the probability
that at least one is denied a seat.

(b) Let x = 50 . How many reservations can be accepted under the constraint
that the probability of seating all passengers who arrive for the flight is
greater than 90% ?

4. Consider the design problem in Section 1.4. Suppose the design decision does
not completely specify x in (1.4.1) , but the designer only knows that if a value
x̂ is specified then x ∈ [.99x̂,1.01x̂] . Suppose a uniform distribution for x is
assumed initially on this interval. How would the formulation in Section 1.4 be
modified to account for information as new parts are produced?

5. Consider the example in Section 2.7a.

(a) One may feel uncomfortable with the deterministic linear equivalent yield-
ing a non-integer number of seats. Show how to cope with this.

(b) One may also feel uncomfortable with the demands represented by normal
distributions. Show that deterministic linear equivalents are also obtained if
ξF ∼ P(3) and ξB ∼ P(4) for example.

2.9 Alternative Characterizations and Robust Formulations

While the main focus of this book is on problems that can be represented in the
form in (4.1–4.4) as stochastic linear programs, this formulation can still repre-
sent a wide range of risk preferences. As observed in Section 2.5, an expected von
Neumann-Morgenstern concave utility objective can be represented as a piecewise-
linear function. For example, if the utility function is U(−q(ω)T y(ω)− γ) where
γ is a scaling parameter for fitting the function, then an additional set of variables
y′(ω) j with bounds u j and slopes −q′

j such that 0 ≤ y′(ω) j ≤ u j , −q′
j ≥ −q′

j+1 ,
and for j = 0, . . . ,J can be defined with an additional linear constraint as:

−y′
0 +∑

j=1
y′

j(ω)−q(ω)T y(ω) = γ, (9.1)

and with a new recourse function objective to minimize

−q′
0y0(ω)+

J

∑
j=1

q′
jy(ω). (9.2)

The parameters γ , q′ , and u′ can be chosen to fit the utility function U as closely
as desired while maintaining the same linear optimization form as in (4.1–4.4).

Other risk–measures may be included in the objective and as fixed or probabilis-
tic constraints. A common use of these constraints in financial applications is to
maximize expected return subject to a constraint on value–at–risk (VaR), the great-
est loss in portfolio value that can occur with a given probability α , defined as

2.9 Alternative Characterizations and Robust Formulations 85

VaRα(q(ω)T y(ω)) = min{t|P(q(ω)T y(ω) ≤ t) ≥ α}. (9.3)

A VaR constraint to limit losses to be no greater than t̄ with probability at most α
can then be written as

P (q(ω)T y(ω) ≤ t̄) ≥ α, (9.4)

since this ensures that VaRα(q(ω)T y(ω)) ≤ t̄.
A criticism of VaR as a measure of risk is that it does not have the useful property

of subadditivity such that the VaR of the sum of two random variables is at most the
the sum of the VaR ’s of each individual random variable. The subadditive property
is part of the set of axioms that define coherent risk measures (see Artzner, Delbaen,
Eber, and Heath [1999]), such that R(·) is a coherent risk measure if the following
hold:

Definition 2.1. 1. subadditivity: R(ξ+ζ)≤ R(ξ)+R(ζ) for any random variables
ξ and ζ ;

2. positive homogeneity (of degree one): R(λξ) = λR(ξ) for all λ ≥ 0 ;
3. monotonicity: R(ξ) ≤ R(ζ) whenever ξ � ζ , where � indicates first-order

stochastic dominance,i.e., P(ξ ≤ t) ≥ P(ζ ≤ t),∀t ;
4. translation invariance: R(ξ + t) = R(ξ)+ t for any t ∈ℜ .

A related risk measure to VaR , called the conditional value-at-risk (CVaR), can
be defined to avoid the potential problems of a non-subadditive risk measure by
taking the conditional expectations over losses in excess of VaR . For random loss
ξ with distribution function P , the α -confidence level is then defined as

CVaRα(ξ) = E Pα [ξ], (9.5)

where Pα is the distribution function defined by

Pα(t) =

{
0 if t < VaRα(ξ);
P(t)−α

1−α if t ≥ VaRα(ξ).
(9.6)

As shown by Rockafellar and Uryasev [2000,2002], CVaR satisfies all of the
axioms for a coherent risk measure (Exercise 3) and has a convenient representation
as the solution to the following optimization problem:

CVaRα(ξ) = min
t

t +
1

1−α
E P[(ξ− t)+], (9.7)

which can also be written as the linear program:

min t +
1

1−α
E P[y(ω)] (9.8)

s. t. ξ (ω)− y(ω) ≤ t, a. s. (9.9)

y(ω) ≥ 0, a. s. (9.10)

86 2 Uncertainty and Modeling Issues

With the representation in (9.8), a risk constraint to limit CVaRα to be less than t̄
can be constructed similarly to the probabilistic constraint in (9.4) or the downside
risk constraint in (5.3) with additional linear constraints and variables y′(ω) as
follows:

t +
1

1−α
E [y′(ω)] ≤ t̄ (9.11)

−t + q(ω)T y(ω)− y′(ω) ≤ 0, a.s., (9.12)

y′(ω) ≥ 0,a.s. (9.13)

The use of coherent risk measures has another useful interpretation that R is a
coherent risk measure if and only if there is a class of probability measure P such
that R(ξ) equals the highest expectation of ξ with respect to members of this class
(see Huber [1981]):

R(ξ) = sup
P∈P

E P[ξ]. (9.14)

This representation provides a worst-case view of the risk, which is discussed in
more detail in Chapter 8.

One worst-case version of the approach in (9.14) is to let P correspond to
any distribution with support in a given range or uncertainty set. This worst-case
type of risk-measure is called robust so that optimization models including a robust
risk-measure of this form are robust optimization models. A robust version of the
two–stage stochastic program can then be written as:

min
x

max
ξ∈Ξ

cT x + Q(x,ξ) (9.15)

s. t. Ax = b,

x ≥ 0.

Depending on the properties of Ξ , robust optimization models can be tractable
linear or conic optimization models. A variety of results in the area appear in Bertsi-
mas and Sim [2006], Ben-Tal and Nemirovski [2002] with multi-period extensions
also appearing, for example, in Ben-Tal, Boyd, and Nemirovski [2006] and Bertsi-
mas, Iancu, and Parrilo [2010].

Exercises

1. Give an example of random variables ξ and ζ where VaRα(ξ+ζ)> VaRα(ξ)+
VaRα(ζ) for some 0 < α < 1 .

2. Show that VaR satisfies the axioms of positive homogeneity, monotonicity, and
translation independence.

3. Show that CVaR satisfies all of the axioms for a coherent risk measure.

4. Give a class of probability distribution P such that CVaR solves (9.14).

2.10 Relationship to Other Decision-Making Models 87

5. Find the robust formulation of the two-stage model (9.15) when uncertainty is
only in the right-hand side h ∈ Ξ = [l,u] , a rectangular region.

6. Find the robust formulation of the two-stage model (9.15) when uncertainty is
only in the right-hand side h ∈ Ξ = {h|(h− μ)TV (h− μ) ≤ 1} , an ellipsoidal
region.

2.10 Relationship to Other Decision-Making Models

The stochastic programming models considered in this section illustrate the general
form of a stochastic program. While this form can apply to virtually all decision-
making problems with unknown parameters, certain characteristics typify stochastic
programs and form the major emphasis of this book. In general, stochastic programs
are generalizations of deterministic mathematical programs in which some uncon-
trollable data are not known with certainty. The key features are typically many de-
cision variables with many potential values, discrete time periods for decisions, the
use of expectation functionals for objectives, and known (or partially known) distri-
butions. The relative importance of these features contrasts with similar areas, such
as statistical decision theory, decision analysis, dynamic programming, Markov de-
cision processes, and stochastic control. In the following subsections, we consider
these other areas of study and highlight the different emphases.

a. Statistical decision theory and decision analysis

Wald [1950] developed much of the foundation of optimal statistical decision theory
(see also DeGroot [1970] and Berger [1985]). The basic motivation was to determine
best levels of variables that affect the outcome of an experiment. With variables x
in some set X , random outcomes, ω ∈ Ω , an associated distribution, F(ω) , and
a reward or loss associated with the experiment under outcome ω of r(x,ω) , the
basic problem is to find x ∈ X to

maxEω [r(x,ω)|F] = max
∫
ω

r(x,ω)dF(ω). (10.1)

The problem in (10.1) is also the fundamental form of stochastic programming. The
major differences in emphases between the fields stem from underlying assumptions
about the relative importance of different aspects of the problem.

In stochastic programming, one generally assumes that difficulties in finding the
form of the function r and changes in the distribution F as a function of actions
are small in comparison to finding the expectations with known distributions and
an optimal value x with all other information known. The emphasis is on finding
a solution after a suitable problem statement in the form (10.1) has been found.

88 2 Uncertainty and Modeling Issues

For example, in the simple farming example in Section 1.1, the number of possi-
ble planting configurations (even allowing only whole-acre lots) is enormous. Enu-
merating the possibilities would be hopeless. Stochastic programming avoids such
inefficiencies through an optimization process.

We might suppose that the fields or crop varieties are new and that the farmer
has little direct information about yields. In this case, the yield distribution would
probably start as some prior belief but would be modified as time went on. This mod-
ification and possible effects of varying crop rotations to obtain information are the
emphases from statistical decision theory. If we assumed that only limited variation
in planting size (such as 50-acre blocks) was possible, then the combinatorial nature
of the problem would look less severe. Enumeration might then be possible without
any particular optimization process. If enumeration were not possible, the farmer
might still update the distributions and objectives and use stochastic programming
procedures to determine next year’s crops based on the updated information.

In terms of (10.1)), statistical decision theory places a heavy emphasis on changes
in F to some updated distribution F̂x that depends on a partial choice of x and
some observations of ω . The implied assumption is that this part of the analysis
dominates any solution procedure, as when X is a small finite set that can be enu-
merated easily.

Decision analysis (see, e.g., Raiffa [1968]) can be viewed as a particular part of
optimal statistical decision theory. The key emphases are often on acquiring infor-
mation about possible outcomes, on evaluating the utility associated with various
outcomes, and on defining a limited set of possible actions (usually in the form of a
decision tree). For example, consider the capacity expansion problem in Section 1.3.
We considered a wide number of alternative technology levels and production de-
cisions. In that model, we assumed that demand in each period was independent of
the demand in the previous period. This characteristic gave the block separability
property that can allow efficient solutions for large problems.

A decision analytic model might apply to the situation where an electric utility’s
demand depends greatly on whether a given industry locates in the region. The de-
cision problem might then be broken into separate stochastic programs depending
on whether the new industry demand materializes and whether the utility starts on
new plants before knowing the industry decision. In this framework, the utility first
decides whether to start its own projects. The utility then observes whether the new
industry expands into the region and faces the stochastic program form from Sec-
tion 1.4 with four possible input scenarios about the available capacity when the
industry’s location decision is known (see Figure 3).

The two stochastic programs given each initial decision allow for the evaluation
of expected utility given the two possible outcomes and two possible initial deci-
sions. The actual initial decision taken on current capacity expansion would then be
made by taking expectations over these two outcomes.

Separation into distinct possible outcomes and decisions and the realization of
different distributions depending on the industry decision give this model a decision
analysis framework. In general, a decision analytic approach would probably also
consider multiple attributes of the capacity decisions (for example, social costs for a

2.10 Relationship to Other Decision-Making Models 89

Fig. 3 Decision tree for utility with stochastic programs on leaves.

given location) and would concentrate on the value of risk in the objective. It would
probably also entail consideration of methods for obtaining information about the
industry’s decision and contingent decisions based on the outcomes of these investi-
gations. Of course, these considerations can all be included in a stochastic program,
but they are not typically the major components of a stochastic programming anal-
ysis.

b. Dynamic programming and Markov decision processes

Much of the literature on stochastic optimization considers dynamic programming
and Markov decision processes (see, e.g., Heyman and Sobel [1984], Bellman
[1957], Ross [1983], and Kall and Wallace [1994] for a discussion relating to
stochastic programming). In these models, one searches for optimal actions to take
at generally discrete points in time. The actions are influenced by random outcomes
and carry one from some state at some stage t to another state at stage t + 1 .
The emphasis in these models is typically in identifying finite (or, at least, low-
dimensional) state and action spaces and in assuming some Markovian structure (so
that actions and outcomes only depend on the current state).

With this characterization, the typical approach is to form a backward recursion
resulting in an optimal decision associated with each state at each stage. With large
state spaces, this approach becomes quite computationally cumbersome although it
does form the basis of many stochastic programming computation schemes as given
in Chapter 6. Another approach is to consider an infinite horizon and use discounting

90 2 Uncertainty and Modeling Issues

to establish a stationary policy (see Howard [1960] and Blackwell [1965]) so that
one need only find an optimal decision associated with a state for any stage.

A typical example of this is in investment. Suppose that instead of saving for
a specific time period in the example of Section 1.2, you wish to maximize a dis-
counted expected utility of wealth in all future periods. In this case, the state of the
system is the amount of wealth. The decision or action is to determine what amount
of the wealth to invest in stock and bonds. We could discretize to varying wealth
levels and then form a problem as follows:

max
∞

∑
t=1

ρ tE [qy(t)− rw(t)] (10.2)

s. t. x(1,1)+ x(2,1) = b,
ξ(1,t)x(1,t)+ξ(2,t)x(2,t)−y(t)+w(t) = G,

ξ(1,t)x(1,t)+ξ(2,t)x(2, t) = x(1, t + 1)+ x(2, t + 1),
x(i,t),y(t),w(t) ≥ 0, x ∈ N ,

where N is the space of nonanticipative decisions and ρ is some discount factor.
This approach could lead to finding a stationary solution to

z(b) = max
x(1)+x(2)=b

{E [−q(G−ξ(1)x(1)−ξ(2)x(2))−

−r(G−ξ(1)x(1)−ξ(2)x(2))+ +ρE [z(ξ(1)x(1)+ξ(2)x(2))]}. (10.3)

Again, problem (10.2) fits the general stochastic programming form, but particular
solutions as in (10.3) are more typical of Markov decision processes. These are not
excluded in stochastic programs, but stochastic programs generally do not include
the Markovian assumptions necessary to derive (10.3).

c. Machine learning and online optimization

While Markov decision problems have the general character of stochastic programs
of including a distribution over some set of uncertain parameters, online optimiza-
tion problems involve a changing objective (perhaps chosen adversarially) without
knowledge of the choice and only considering the history of observations. The ob-
jective is then to choose x1,x2, . . . sequentially to minimize

H

∑
t=1

f t (xt), (10.4)

where H may increase without bound and each xt is chosen only with knowledge
of x1, . . . ,xt−1 and f 1(x1), . . . , f t−1(xt−1) . Performance is measured in terms of
regret, which refers to the difference relative to best possible choices taken ex post,

2.10 Relationship to Other Decision-Making Models 91

i.e.,

regretH =
H

∑
t=1

f t (xt)−min
x∈X

H

∑
t=1

f t(x), (10.5)

where X is some feasible region.
The emphasis in this stream of literature is on algorithms with provable regret

bounds. For convex objectives, stochastic search methods (as in Chapter 9) can
obtain bounds on regretH , such as O(H3/4) , O(

√
H) , and O(logH) depend-

ing on properties of f t and observability of the function (see, respectively, Hazan,
Kalai, Kale, and Agarwal [2006], Zinkerich [2003], Flaxman, Kalai, and McMahon
[2004]).

d. Optimal stochastic control

Stochastic control models are often similar to stochastic programming models. The
differences are mainly due to problem dimension (stochastic programs would gen-
erally have higher dimension), emphases on control rules in stochastic control, and
more restrictive constraint assumptions in stochastic control. In many cases, the dis-
tinction is, however, not at all clear.

As an example, suppose a more general formulation of the financial model in
Section 1.2. There, we considered a specific form of the objective function, but we
could also use other forms. For example, suppose the objective was generally stated
as minimizing some cost rt(x(t),u(t)) in each time period t , where u(t) are the
controls u((i, j),t,s) that correspond to actual transactions of exchanging asset i
into asset j in period t under scenario s . In this case, problem (1,2.2) becomes:

minz =∑
s

p(s)(
H

∑
t=1

rt(x(t,s),u(t,s),s))

s. t. x(0,s) = b,

x(t,s)+ ξ (s)T u(t,s) = x(t + 1,s), t = 0, . . . ,H,

x(s),u(s) nonanticipative, (10.6)

where ξ (s) represents returns on investments minus transaction costs. Additional
constraints may be incorporated into the objective of (10.6) through penalty terms.

Problem (10.6) is fairly typical of a discrete time control problem governed by
a linear system. The general emphasis in control approaches to such problems is
for linear, quadratic, Gaussian (LQG) models (see, for example, Kushner [1971],
Fleming and Rishel [1975], and Dempster [1980]), where we have a linear system
as earlier, but where the randomness is Gaussian in each period (for example, ξ
is known but the state equation for x(t + 1,s) includes a Gaussian term), and rt

is quadratic. In these models, one may also have difficulty observing x so that an
additional observation variable y(t) may be present.

92 2 Uncertainty and Modeling Issues

LQG models can also include forms of risk aversion as, for example, in Whittle
[1990]. In this model, instead of an additively time-separable model as generally
used here, the objective to minimize becomes:

2
θ

logE [eθ ∑
H
t=1(xt)T Qt xt+(ut)T Rtut

], (10.7)

where xt+1 = Atxt + Btut + εt . A useful property is that this objective avoids some
of the issues with time-additive utility functions that do not appear consistent with
preferences (as, for example, discussed in Kreps and Porteus [1979], Epstein and
Zinn [1989]). A minimizing solution also has a min-max characterization as in ro-
bust optimization models and the max-min utility function proposed in Gilboa and
Schmeidler [1989] (see Exercise 3 and Hansen and Sargent [1995]).

The LQG problem leads to Kalman filtering solutions (see, for example, Kalman
[1969]). Various extensions of this approach are also possible, but the major empha-
sis remains on developing controls with specific decision rules to link observations
directly into estimations of the state and controls. In stochastic programming mod-
els, general constraints (such as non-negative state variables) are emphasized. In this
case, most simple decision rules forms (such as when u is a linear function of state)
fail to obtain satisfactory solutions (see, for example, Gartska and Wets [1974]).
For this reason, stochastic programming procedures tend to search for more general
solution characteristics.

Stochastic control procedures may, of course, apply but stochastic programming
tends to consider more general forms of interperiod relationships and state space
constraints. Other types of control formulations, such as robust control, may also
be considered specific forms of a stochastic program that are amenable to specific
techniques to find control policies with given characteristics.

Continuous time stochastic models (see, e.g., Harrison [1985]) are also possible
but generally require more simplified models than those considered in stochastic
programming. Again, continuous time formulations are consistent with stochastic
programs but have not been the main emphasis of research or the examples in this
book. In certain examples again, they may be quite relevant (see, for example, Har-
rison and Wein [1990] for an excellent application in manufacturing) in defining
fundamental solution characteristics, such as the optimality of control limit poli-
cies.

In all these control problems, the main emphasis is on characterizing solutions
of some form of the dynamic programming Bellman-Hamilton-Jacobi equation or
application of Pontryagin’s maximum principle. Stochastic programs tend to view
all decisions from beginning to end as part of the procedure. The dependence of
the current decision on future outcomes and the transient nature of solutions are
key elements. Section 3.5 provides some further explanation by describing these
characteristics in terms of general optimality conditions.

2.10 Relationship to Other Decision-Making Models 93

e. Summary

Stochastic programming is simply another name for the study of optimal decision
making under uncertainty. The term stochastic programming emphasizes a link to
mathematical programming and algorithmic optimization procedures. These con-
siderations dominate work in stochastic programming and distinguish stochastic
programming from other fields of study. In this book, we follow this paradigm
of concentrating on representation and characterizations of optimal decisions and
on developing procedures to follow in determining optimal or approximately opti-
mal decisions. This development begins in the next chapter with basic properties of
stochastic program solution sets and optimal values.

Exercises

1. Consider the design problem in Section 1.4. Suppose the design decision does
not completely specify x in (1.4.1), but the designer only knows that if a value
x̂ is specified then x ∈ [.99x̂,1.01x̂] . Suppose a uniform distribution for x is
assumed initially on this interval and that the designer can alter the design once
after manufacturing and testing N axles out of a total predicted demand of
1,000 axles. The designer assumes that her posterior distribution on the actual
mean relative to x̂ would not change if she adjusts the target diameter x̂ af-
ter observing the first N axle diameters. With these assumptions, formulate a
Bayesian model to determine an initial specification x̂1 and N followed by a
second specification x̂2 for the remaining 1000−N axles.

2. From the example in Section 1.2, suppose that a goal in each period is to re-
alize a 16% return in each period with penalties q = 1 and r = 4 as before.
Formulate the problem as in (10.2).

3. Consider the risk-sensitive model in (10.7) given initial state x1 , θ > 0 ,
H = 2 , and ε1 ∼ N(μ ,Σ) , the multivariate normal distribution with mean μ
and variance-covariance matrix, Σ . Show that solving (10.7) is equivalent to
solving the min-max problem:

min
u1

max
ε1

θ [((u1)T R1u1 + x2(x1,u1,ε1)T Q2x2(x1,u1,ε1)T)

+ (ε1 − μ)TΣ−1(ε1 − μ)], (10.8)

i.e., u1 optimal in (10.8) is also optimal in (10.7) and vice versa as long as both
problems have finite optimal values. To do this, first show that

∫
e−Q(x,y)dy =

ke−miny Q(x,y) for some constant k (independent of x) for any positive definite
quadratic function Q(x,y) .

94 2 Uncertainty and Modeling Issues

2.11 Short Reviews

a. Linear programming

Consider a linear program (LP) of the form

max{cT x | Ax = b,x ≥ 0} , (11.1)

where A is an m × n matrix, x and c are n × 1 vectors, and b is an m × 1
vector. If needed, any inequality constraint can be transformed into an equality by
the addition of slack variables:

ai·x ≤ bi becomes ai·x + si = bi ,

where si is the slack variable of row i and ai· is the i th row of matrix A .
A solution to (11.1) is a vector x that satisfies Ax = b . A feasible solution

is a solution x with x ≥ 0 . An optimal solution x∗ is a feasible solution such
that cT x∗ ≥ cT x for all feasible solutions x . A basis is a choice of n linearly
independent columns of A . Associated with a basis is a submatrix B of the cor-
responding columns, so that, after a suitable rearrangement, A can be partitioned
into A = [B,N] . Associated with a basis is a basic solution, xB = B−1b , xN = 0 ,
and z = cT

BB−1b , where [xB,xN] and [cB,cN] are partitions of x and c following
the basic and nonbasic columns. We use B−1 to denote the inverse of B , which is
known to exist because B has linearly independent columns and is square.

In geometric terms, basic solutions correspond to extreme points of the polyhe-
dron, {x | Ax = b,x ≥ 0} . A basis is feasible (optimal) if its associated basic solution
is feasible (optimal). The conditions for feasibility are B−1b ≥ 0 . The conditions
for optimality are that in addition to feasibility, the inequalities, cT

N − cT
BB−1N ≤ 0 ,

hold.
Linear programs are routinely solved by widely distributed, easy-to-use LP

solvers. Access to such a solver would be useful for some exercises in this book.
For a better understanding, some examples and exercises also use manual solutions
of linear programs.

Finding an optimal solution is equivalent to finding an optimal dictionary, a def-
inition of individual variables in terms of the other variables. In the simplex algo-
rithm, starting from a feasible dictionary, the next one is obtained by selecting an
entering variable (any nonbasic variable whose increase leads to an increase in the
objective value), then finding a leaving variable (the first to become negative as the
entering variable increases), then realizing a pivot substituting the entering for the
leaving variable in the dictionary. An optimal solution is reached when no entering
variable can be found.

A linear program is unbounded if an entering variable exists for which no leaving
variable can be found. In some cases, a feasible initial dictionary is not available at
once. Then, phase one of the simplex method consists of finding such an initial
dictionary. A number of artificial variables are introduced to make the dictionary

2.11 Short Reviews 95

feasible. The phase one procedure minimizes the sum of artificials using the simplex
method. If a solution with a sum of artificials equal to zero exists, then the original
problem is feasible and phase two continues with the true objective function. If the
optimal solution of the phase one problem is nonzero, then the original problem is
infeasible.

As an example, consider the following linear program:

max− x1 + 3x2

s. t. 2x1 + x2 ≥ 5 ,

x1 + x2 ≤ 3 ,

x1,x2 ≥ 0 .

Adding slack variables s1 and s2 , the two constraints read

2x1 + x2 − s1 = 5 ,
x1 + x2 + s2 = 3 .

The natural choice for the initial basis is (s1,s2) . This basis is infeasible as s1

would obtain the value −5 . An artificial variable (a1) is added to row one to
form:

2x1 + x2 − s1 + a1 = 5 .

The phase-one problem consists of minimizing a1 , i.e., finding −max−a1 . Let
z = −a1 be the phase one objective, which after substituting for a1 gives the initial
dictionary in phase one:

z = −5 + 2x1 + x2 − s1 ,
a1 = 5 − 2x1 − x2 + s1 ,
s2 = 3 − x1 − x2 ,

corresponding to the initial basis (a1,s2) . Entering candidates are x1 and x2 as
they both increase the objective value. Choosing x1 , the leaving variable is a1 (be-
cause it becomes zero for x1 = 2.5 while s2 becomes zero only for x1 = 3). Sub-
stituting x1 for a1 , the second dictionary becomes:

z = −a1 ,
x1 = 2.5 − 0.5x2 + 0.5s1 − 0.5a1 ,
s2 = 0.5 − 0.5x2 − 0.5s1 + 0.5a1 .

This dictionary is an optimal dictionary for phase one. (No nonbasic variable would
possibly increase x .) This means the original problem is feasible. (In fact, the basis
(x1,s2) is feasible with solution x1 = 2.5 , x2 = 0.0 .)

We now turn to phase two. We replace the phase one objective with the original
objective:

z = −x1 + 3x2 = −2.5 + 3.5x2 −0.5s1 .

96 2 Uncertainty and Modeling Issues

By removing the artificial variable a1 (as it is not needed anymore), we obtain the
following first dictionary in phase two:

z = −2.5 + 3.5x2 − 0.5s1 ,
x1 = 2.5 − 0.5x2 + 0.5s1 ,
s2 = 0.5 − 0.5x2 − 0.5s1 .

The next entering variable is x2 with leaving variable s2 . After substitution, we
obtain the final dictionary:

z = 1 − 4s1 − 7s2 ,
x1 = 2 + s1 + s2 ,
x2 = 1 − s1 − 2s2 ,

which is optimal because no nonbasic variable is a valid entering variable. The op-
timal solution is x∗ = (2,1)T with z∗ = 1 .

b. Duality for linear programs

The dual of the so-called primal problem (11.1) is:

min{πT b | πT A ≥ cT ,π unrestricted} . (11.2)

Variables π are called dual variables. One such variable is associated with each
constraint of the primal. When the primal constraint is an equality, the dual variable
is free (unrestricted in sign). Dual variables are sometimes called shadow prices or
multipliers (as in nonlinear programming). The dual variable πi may sometimes be
interpreted as the marginal value associated with resource bi .

If the dual is unbounded, then the primal is infeasible. Similarly, if the primal is
unbounded, then the dual is infeasible. Both problems can also be simultaneously
infeasible.

If x is primal feasible and π is dual feasible, then cT x ≤ πT b . The primal has
an optimal solution x∗ if and only if the dual has an optimal solution π∗ . In that
case, cT x∗ = (π∗)T b and the primal and dual solutions satisfy the complementary
slackness conditions:

(ai·)x∗ = bi or π∗
i = 0 or both, for any i = 1, . . . ,m ,

(π∗)T a· j = c j or x∗
j = 0 or both, for any j = 1, . . . ,n ,

where a· j is the j -th column of A and, as before, ai· is the i -th row of A .
An alternative presentation is to say that s∗i π∗

i = 0 , where si is the slack variable
of the i th constraint, i.e., either the slack or the dual variable associated with a
constraint is zero, and similarly for the second condition. Thus, the optimal solution
of the dual can be recovered from the optimal solution for the primal, and vice versa.

2.11 Short Reviews 97

The optimality conditions can also be interpreted to say that either there exists
some improving direction, w , from a current feasible solution, x̂ , so that cT w > 0 ,
wj ≥ 0 for all j ∈ N , N = { j | x̂ j = 0} , and ai·w = 0 for all i ∈ I , I = {i |
ai·x̂ = bi} (hence, for Ax = b in the primal system of (11.1), I = {1, . . . ,m}) or
there exists some π such that ∑i∈I πiai j ≥ c j for all j ∈ N , ∑i∈I πiai j = c j for all
j �∈ N , but both cannot occur. This result is equivalent to the Farkas lemma, which
gives alternative systems with or without solutions.

The dual simplex method replicates on the primal solution what the iterations of
the simplex method would be on the dual problem: it first finds the leaving variable
(one that is strictly negative) then the entering variable (the first one that would
become positive in the objective line). The dual simplex is particularly useful when a
solution is already available to the original primal problem and some extra constraint
or bound is added to the problem. The reader is referred to Chvátal [1980, pp. 152–
157] for a detailed presentation.

Other material not covered in this section is meant to be restrictive to a given topic
area. The next section discusses more of the mathematical properties of solutions
and functions.

c. Nonlinear programming and convex analysis

When objectives and constraints may contain nonlinear functions, the optimization
problem becomes a nonlinear program. The nonlinear program analogous to (11.1)
has the form

min{ f (x) | g(x) ≤ 0,h(x) = 0} , (11.3)

where x ∈ℜn , f :ℜn →ℜ , g :ℜn →ℜm , and h :ℜn →ℜl . We may also assume
that the range of f may include ∞ to allow the objective to include constraints
directly through an indicator function:

δ (x | X) =

{
0 if g(x) ≤ 0 , h(x) = 0 ,

+∞ otherwise,

where X is the set of x satisfying the constraints in (11.3), i.e., the feasible region.
In this book, the feasible region is usually a convex set so that X contains any

convex combination,

s

∑
i=1

λ ixi,
s

∑
i=1

λ i = 1,λ i ≥ 0 , i = 1, . . . ,s ,

of points, xi , i = 1, . . . ,s , that are in the feasible region. Extreme points of the
region are points that cannot be expressed as a convex combination of two distinct
points also in the region. The set of all convex combinations of a given set of points
is its convex hull.

98 2 Uncertainty and Modeling Issues

The feasible region is also most generally closed so that it contains all limits of
infinite sequences of points in the region. The region is also generally connected,
so that, for any x1 and x2 in the region, there exists some path of points in the
feasible region connecting x1 to x2 by a function, η : [0,1] → ℜn that is contin-
uous with η(0) = x1 and η(1) = x2 . For certain results, we may also assume the
region is bounded so that a ball of radius M , {x | ‖x‖ ≤ M} , contains the entire set
of feasible points. Otherwise, the region is unbounded. Note that a region may be
unbounded while the optimal value in (11.1) or (11.3) is still bounded. In this case,
the region often contains a cone, i.e., a set S such that if x ∈ S , then λx ∈ S for all
λ ≥ 0 . When the region is both closed and bounded, then it is compact.

The set of equality constraints, h(x) = 0 , is often affine, i.e., they can be ex-
pressed as linear combinations of the components of x and some constant. In this
case, each constraint, hi(x) = 0 , is a hyperplane, ai·x − bi = 0 , as in the linear
program constraints. In this case, h(x) = 0 , defines an affine space, a translation
of the parallel subspace, Ax = 0 . The affine space dimension is the same as its
parallel subspace, i.e., the maximum number of linearly independent vectors in the
subspace.

With nonlinear constraints and inequalities, the region may not be an affine space,
but we often consider the lowest-dimension affine space containing them, i.e., the
affine hull of the region. The affine hull is useful in optimality conditions because it
distinguishes interior points that can be the center of a ball entirely within the region
from the relative interior (ri), which can be the center of a ball whose intersection
with the affine hull is entirely within the region. When a point is not in a feasible
region, we often take its projection into the region using an operator, Π . If the
region is X , then the projection of x onto X is Π(x) = argmin{‖w−x‖ | w ∈ X} .

In this book, we generally assume that the objective function f is a convex func-
tion, i.e., such that

f (λx1 +(1−λ)x2) ≤ λ f (x1)+ (1−λ) f (x2),

0 ≤ λ ≤ 1 . If f also is never −∞ and is not +∞ everywhere, then f is a proper
convex function. The region where f is finite is called the effective domain of f
(dom f). We can also define convex functions in terms of the epigraph of f ,
epi(f) = {(x,β) | β ≥ f (x)} . In this case, f is convex if and only if its epigraph is
convex. If − f is convex, then f is concave.

Often, we assume that f has directional derivatives, f ′(x;w) , that are defined
as:

f ′(x;w) = lim
λ↓0

f (x +λw)− f (x)
λ

.

When these limits exist and do not vary in all directions, then f is differentiable,
i.e., there exists a gradient, ∇ f , such that

∇ f T w = f ′(x;w)

2.11 Short Reviews 99

for all directions w ∈ ℜn . We sometimes distinguish this standard form of differ-
entiability from stricter forms as Gâteaux or G-differentiability. The stricter forms
impose more conditions on the directional derivative such as uniform convergence
over compact sets (Hadamard derivatives).

We also consider Lipschitz continuous or Lipschitzian functions such that | f (x)−
f (w)| ≤ M‖x−w‖ for any x and w and some M < ∞ . If this property holds for
all x and w in a set X , then f is Lipschitzian relative to X . When this property
only holds locally, i.e., for ‖w−x‖≤ ε for some ε > 0 , then f is locally Lipschitz
at x .

Among differentiable functions, we often use quadratic functions that have a
Hessian matrix of second derivatives, D , and can be written as

f (x) = cT x +
1
2

xT Dx .

Many functions are not, however, differentiable. In this case, we express optimality
in terms of subgradients at a point x , or vectors, η , such that

f (w) ≥ f (x)+ηT (w− x)

for all w . In this case, {(x,β) | β = f (x)+ηT (w− x)} is a supporting hyperplane
of f at x . The set of subgradients at a point x is the subdifferential of f at x ,
written ∂ f (x) .

Other useful properties include that f is piecewise linear, i.e., such that f (x)
is linear over regions defined by linear inequalities. When f is separable so that
f (x) = ∑n

i=1 fi(xi) , then other advantages are possible in computation.
Given f convex and a convex feasible region in (11.3), we can define conditions

that an optimal solution x∗ and associated multipliers (π∗,ρ∗) must satisfy. In
general, these conditions require some form of regularity condition. A common
form is that there exists some x̂ such that g(x̂)< 0 and h is affine. This is generally
called the Slater condition.

Given a regularity condition of this type, if the constraints in (11.3) define a
feasible region, then x∗ is optimal if and only if the Karush-Kuhn-Tucker conditions
hold so that x∗ ∈ X and there exists π∗ ≥ 0,ρ∗ such that

∇ f (x∗)+ (π∗)T∇g(x∗)+ (ρ∗)T∇h(x∗) = 0,∇g(x∗)Tπ∗ = 0 . (11.4)

Optimality can also be expressed in terms of the Lagrangian:

l(x,π ,ρ) = f (x)+πT g(x)+ρT h(x) ,

so that sequentially minimizing over x and maximizing over π (in both orders)
produces the result in (11.4). This occurs through a Lagrangian dual problem to
(11.3) as

max
π≥0,ρ

inf
x

f (x)+πT g(x)+ρT h(x) , (11.5)

100 2 Uncertainty and Modeling Issues

which is always a lower bound on the objective in (11.3) (weak duality), and, under
the regularity conditions, yields equal optimal values in (11.3) and (11.4) (strong
duality). In many cases, the Lagrangian can also be interpreted with the conjugate
function of f , defined as

f ∗(π) = sup
x

{πT x− f (x)} ,

which is also a convex function if f is convex.
Our algorithms often apply to the Lagrangian to obtain convergence, i.e., a se-

quence of solutions, xν → x∗ . In some cases, we also approximate the function so
that f ν → f in some way. If this convergence is pointwise, then f ν (x) → f (x) for
each x individually. If the convergence is uniform on a set X , then, for any ε > 0 ,
there exists N(ε) such that for all ν ≥ N(ε) and all x ∈ X , | f ν (x)− f (x)| < ε .

Part II
Basic Properties

Chapter 3
Basic Properties and Theory

This chapter considers the basic properties and theory of stochastic programming.
As throughout this book, the emphasis is on results that have direct application in the
solution of stochastic programs. Proofs are included for those results we consider
most central to the overall development.

The main properties we consider are formulations of deterministic equivalent
programs to a stochastic program, the forms of the feasible region and objec-
tive function, and conditions for optimality and solution stability. Our focus is on
stochastic programs with recourse, and, in particular, for stochastic linear programs.
The first section describes two-stage versions of these problems in detail. It assumes
some knowledge of convex sets and functions.

Sections 3.2 to 3.5 add extensions to the results in Section 3.1 by allowing addi-
tional forms of constraints, objectives, and decision variables. Section 3.2 considers
problems with probabilistic or chance constraints that occur with some fixed prob-
ability. Section 3.4 examines multiple-stage problems, while Section 3.3 considers
problems with integer variables. Section 3.5 then extends results to include nonlin-
ear functions.

3.1 Two-Stage Stochastic Linear Programs with Fixed Recourse

a. Formulation

As in Chapter 2, we first form the basic two-stage stochastic linear program with
fixed recourse. It is repeated here for clarity.

minz = cT x + Eξ[minq(ω)T y(ω)]
s. t. Ax = b ,

T (ω)x +Wy(ω) = h(ω) ,

x ≥ 0 , y(ω) ≥ 0 ,

(1.1)

J.R. Birge and F. Louveaux, Introduction to Stochastic Programming, Springer Series 103
in Operations Research and Financial Engineering, DOI 10.1007/978-1-4614-0237-4 3,
c© Springer Science+Business Media, LLC 2011

104 3 Basic Properties and Theory

where c is a known vector in ℜn1 , b a known vector in ℜm1 , A and W are
known matrices of size m1 × n1 and m2 × n2 , respectively, and W is called the
recourse matrix, which we assume here is fixed. This allows us to characterize the
feasibility region in a convenient manner for computation. If W is not fixed, we
may have difficulties, as shown next.

For each ω , T (ω) is m2 × n1 , q(ω) ∈ ℜn2 and h(ω) ∈ ℜm2 . Piecing to-
gether the stochastic components of the problem, we obtain a vector ξ T (ω) =
(q(ω)T ,h(ω)T ,T1·(ω), . . . ,Tm2·(ω)) with N = n2 + m2 + (m2 × n1) components,
where Ti·(ω) is the i -th row of the technology matrix T (ω) . As before, Eξ rep-
resents the mathematical expectation with respect to ξ . Let also Ξ ⊆ ℜN be the
support of ξ , i.e., the smallest closed subset in ℜN such that P{ξ ∈ Ξ} = 1 . As
said in Section 2.4, the constraints are assumed to hold almost surely.

Problem (1.1) is equivalent to the so-called deterministic equivalent program
(DEP):

minz = cT x +Q(x)
s. t. Ax = b ,

x ≥ 0 ,

(1.2)

where
Q(x) = EξQ(x,ξ (ω)) (1.3)

and
Q(x,ξ (ω)) = min

y
{q(ω)T y | Wy = h(ω)−T(ω)x , y ≥ 0} . (1.4)

Examples of formulations (1.1) and (1.2)–(1.4) have been given in Chapter 1. In the
farmer’s problem, x represents the surfaces devoted to each crop, ξ represents the
yields so that only the technology matrix T (ω) is stochastic (because prices q and
requirements h are fixed), and y represents the sales and purchases of the various
crops. Formulations (1.1) and (1.2)–(1.4) apply for both discrete and continuous
random variables. Examples with continuous random yields have also been given
for the farmer’s problem.

This representation clearly illustrates the sequence of events in the recourse prob-
lem. First-stage decisions x are taken in the presence of uncertainty about future
realizations of ξ . In the second stage, the actual value of ξ becomes known and
some corrective actions or recourse decisions y can be taken. First-stage decisions
are, however, chosen by taking their future effects into account. These future effects
are measured by the value function or recourse function, Q(x) , which computes
the expected value of taking decision x .

When T is nonstochastic, the original formulation (1.2)–(1.4) can be replaced
by

minz = cT x +Ψ(χ)

3.1 Two-Stage Stochastic Linear Programs with Fixed Recourse 105

s. t. Ax = b ,

Tx− χ = 0 ,

x ≥ 0 ,

(1.5)

where Ψ(χ) = Eξψ(χ ,ξ (ω)) and ψ(χ ,ξ (ω)) = min{q(ω)T y | Wy = h(ω) −
χ , y ≥ 0} . This formulation stresses the fact that choosing x corresponds to gen-
erating an m2 -dimensional tender χ = Tx to be bid against the outcomes h(ω) of
the random events.

The difficulty inherent in stochastic programming clearly lies in the computa-
tional burden of computing Q(x) for all x in (1.2)–(1.4), or Ψ(χ) for all χ in
(1.5). It is no surprise therefore that the properties of the deterministic equivalent
program in general and of the functions Q(x) or Ψ(χ) have been extensively
studied. The next sections present some of the known properties.

b. Discrete random variables

We now present some basic properties when ξ is a discrete random variable. This
is an important class of random variables. It is widely used in applications, either
directly or through sampling of a continuous distribution. The properties presented
in this section are used in Section 5.1 for the algorithmic solution of (1.2)–(1.4).

Let K1 = {x | Ax = b , x ≥ 0} be the set determined by the fixed constraints,
namely those that do not depend on the particular realization of the random vector.
For any given ξ , we may define a so-called “elementary feasibility set” as

K2(ξ) = {x | y ≥ 0 exists s. t. W (ω)y = h(ω)−T(ω)x}.

Example 1

Consider the following second-stage program

min 2y1 + y2

s. t. y1 + 2y2 ≥ ξ1 − x1 ,

y1 + y2 ≥ ξ2 − x1 − x2 ,

0 ≤ y1 ≤ 1 , 0 ≤ y2 ≤ 1 .

Using the upper bounds on y , the first constraint implies ξ1 − x1 ≤ 3 and the
second one implies ξ2 − x1 − x2 ≤ 2 . Thus, K2(ξ) = {x | x1 ≥ ξ1 − 3 , x1 + x2 ≥
ξ2 −2} .

As ξ is discrete, we may easily define the second-stage feasibility set

106 3 Basic Properties and Theory

K2 =
⋂
ξ∈Ξ

K2(ξ) .

In Example 1, if ξ1 takes the value 2 , 3 , 4 and ξ2 the values 1 , 4 , 7 with
some nonspecified probabilities, independently of each other or not, K2 = {x | x1 ≥
1 , x1 + x2 ≥ 5} . In fact, it suffices here to know the componentwise maximum of
ξ to obtain K2 . This set is a polyhedron.

Define posW = {t |Wy = t , y ≥ 0} . It is called the positive hull of W . It repre-
sents the set of right-hand sides that can be obtained by a non-negative combination
of the columns of W . The positive hull is easily seen to be a convex cone .

Theorem 1.
a. For a given ξ , the elementary feasibility set K2(ξ) is a convex polyhedron.
b. When ξ is a finite discrete random variable, K2 is a convex polyhedron.

Proof:
a. Consider some x and ξ such that no y ≥ 0 exists such that W (ω)y =
h(ω) − T (ω)x . Using the notation posW , it is the same to say that we con-
sider some x and ξ such that h(ω)−T (ω)x /∈ posW (ω) . Thus, we have a point,
h(ω)− T (ω)x , which does not belong to a convex set, posW (ω) . Then, there
must exist some hyperplane, say {x | σT x = 0} , that separates h(ω)−T (ω)x from
posW (ω) . This hyperplane satisfies σT t < 0 for t ∈ posW (ω) and σT (h(ω)−
T (ω)x) > 0 . For one particular ξ , W (ω) is fixed and there can be only finitely
many different such hyperplanes which completes the proof.

b. The intersection of finitely many convex polyhedra is a convex polyhedron.

Efficient ways to obtain the separating hyperplanes (and more generally to obtain
K2) are presented in Chapter 5.

For fixed value of x and ξ , the value Q(x,ξ) of the second-stage program is
given by

Q(x,ξ) = min
y

{q(ω)T y | W (ω)y = h(ω)−T (ω)x , y ≥ 0} . (1.6)

Difficulties may arise when the mathematical program (1.6) is unbounded below
or infeasible. Unboundedness typically results of an ill-defined model and can easily
be avoided by adding upper bounds on y . Infeasibility is avoided if we only consider
x ∈ K2 . Thus, for x ∈ K2 , Q(x,ξ) is finite for all ξ and we may define

Q(x) = EξQ(x,ξ) =
K

∑
k=1

pkQ(x,ξk)

where k = 1, . . . ,K represents the K realizations of ξ . If wanted, the deterministic
equivalent program can be rewritten as

min z(x) = cT x +Q(x)

3.1 Two-Stage Stochastic Linear Programs with Fixed Recourse 107

s. t. x ∈ K1 ∩K2 .

We now study the properties of the second-stage value function.

Theorem 2. For a given ξ , the value function Q(x,ξ) is

(a) a piecewise linear convex function in (h,T) ;
(b) a piecewise linear concave function in q ;
(c) a piecewise linear convex function in x for all x ∈ K2 .

When ξ is a finite discrete random variable, Q(x) is piecewise linear and convex
on K2 .

Proof: To prove convexity in (a) and (c), we just need to prove that f (b) =
min{qT y | Wy = b} is a convex function in b . We consider two different vectors,
say b1 and b2 , and some convex combination bλ = λb1 +(1−λ)b2 , λ ∈ (0,1) .

Let y∗
1 and y∗

2 be some optimal solution of min{qT y |Wy = b} for b = b1 and
b = b2 , respectively. Then, λy∗

1 + (1 − λ)y∗
2 is a feasible solution of min{qT y |

Wy = bλ} . Now, let y∗
λ be an optimal solution of this last problem. We thus have

f (bλ) = qT y∗
λ ≤ qT (λy∗

1 +(1−λ)y∗
2)

= λqT y∗
1 +(1−λ)qTy∗

2 = λ f (b1)+ (1−λ) f (b2) ,

which proves the required proposition. A similar proof can be given to show con-
cavity in q . To prove piecewise linearity, observe that solving (1.6) for given x
and ξ amounts to finding some square submatrix B(ω) of W (ω) , called a basis
(see Section 2.11), such that yB = B(ω)−1(h(ω)− T (ω)x , yN = 0 , where yB is
the subvector associated with the columns of B and yN includes the remaining
components of y . A basis is feasible if yB ≥ 0 and a feasible basis is optimal if
aB(ω)T B(ω)−1 W (ω) ≤ q(ω)T . As long as these conditions hold, we have

Q(x,ξ) = qB(ω)T B(ω)−1(h(ω)−T(ω)x) ,

which is linear in q , h , T and x on a domain defined by the feasibility and op-
timality conditions. Piecewise linearity follows from the existence of finitely many
different optimal bases for the second-stage program. An alternative proof of piece-
wise linearity of the value function of a linear program can be obtained through the
method of projections (see Martin [1999, Corollary 2.49]).

Property (c) is important in practice. It is used in Section 5.1 for the algorithmic
solution of (1.2)–(1.4).

Example 2

Consider the following second-stage program:

108 3 Basic Properties and Theory

min 2y1 + y2

s. t. y1 + y2 ≥ 1− x1 ,

y1 ≥ ξ − x1 − x2 ,

y1,y2 ≥ 0 .

To reduce the calculations, assume 0 ≤ x1 ≤ 1 , 0 ≤ x2 ≤ 1 . The optimal second-
stage solutions are as follows:

i. if ξ ≤ x1 + x2 ⇒ y1 = 0 , y2 = 1− x1 ;
ii. if ξ > x1 + x2 ⇒ y1 = ξ − x1 − x2 and y2 = (1 − ξ + x2)+ where a+ =

max(a,0) .

This results in three situations (as 1−ξ+x2 may be positive or negative). Setting
the second-stage decisions into the second-stage objective, one obtains the following
three pieces for Q(x,ξ) :

Q(x,ξ) =

⎧⎪⎨
⎪⎩

1− x1 for 0 ≤ ξ < x1 + x2 ,

ξ + 1−2x1 − x2 for x1 + x2 ≤ ξ ≤ 1 + x2 ,

2(ξ − x1 − x2) for 1 + x2 ≤ ξ .

Thus Q(x,ξ) is clearly piecewise linear in x . The proof of the convexity of
this particular Q(x,ξ) is left as part of Exercise 4. In this example, h(ξ) = ξ and
Q(x,ξ) is one-dimensional in ξ . Convexity in ξ can be established in any classical
way.

Another property is evident from parametric solutions of linear programs when
q and T are fixed. Notice that

Q(x, [q,λ (h′)+ Tx,T]) = λQ(x, [q,h′ + Tx,T]) (1.7)

for any λ ≥ 0 because a dual optimal solution for h = h′ +T x is also dual feasible
for h = λ (h′) + T x and complementary with y∗ optimal for h = h′ + T x . Be-
cause λy∗ is also feasible for h = λ (h′)+T x , λy∗ is optimal for h = λ (h′)+T x ,
demonstrating (1.7). This says that Q(x, [q,h′ +Tx,T]) is a positively homogeneous
function of h′ . From the convexity of Q(x, [q,h′+T x,T]) in h = h′+T x , this func-
tion is also sublinear (see Theorem 4.7 of Rockafellar [1969]) in h′ . This property
is central to some bounding procedures described in Chapter 8.

Complete descriptions of Q(x,ξ) are also often useful. Finding the distribu-
tion induced on Q(x,ξ) is often the goal of these descriptions. This information
can then be used to find Q or to address other risk criteria that may not be given
by the expectation functional (e.g., the probability of losing some percentage of
one’s wealth). The description of the distribution of Q(x,ξ) is called the distribu-
tion problem. Its solution is quite difficult although some methods exist (see Wets
[1980b] and Bereanu [1980]). Approximations are generally required as in Demp-
ster and Papagaki-Papoulias [1980]; because these results are not central to our so-
lution development, we will not go into further detail.

We now present some of the results when ξ is not a discrete random variable.

3.1 Two-Stage Stochastic Linear Programs with Fixed Recourse 109

c. General cases

For fixed value of x and ξ , the value of the second-stage program is, as before,
given by (1.6)

Q(x,ξ) = min
y

{q(ω)T y | W (ω)y = h(ω)−T (ω)x , y ≥ 0} .

When the mathematical program (1.6) is unbounded below or infeasible, the value of
the second-stage program is defined to be −∞ or +∞ , respectively. The expected
second-stage value is, as given in (1.3)

Q(x) = EξQ(x,ξ).

Typically, the definition is made complete by adopting the convention +∞+
(−∞) = +∞ . This corresponds to a conservative attitude, rejecting any first-stage
decision that could lead to an undefined recourse action for some realization even if
some other realization would induce an infinitely low-cost. It also reflects the fact
that second-stage programs can easily be bounded by bounding y , while infeasibil-
ities may be inherent to the problem.

For any given ξ , we may define a so-called “elementary feasibility set” as

K2(ξ) = {x | Q(x,ξ) < ∞}

or, as before,

K2(ξ) = {x | y ≥ 0 exists s. t. W (ω)y = h(ω)−T(ω)x}.

Both definitions are equivalent for a given ξ and enjoy the properties of Theo-
rem 1. When ξ is not a discrete random variable, we may now define K2 in two
different ways:

K2 = {x | Q(x) < ∞}
or

KP
2 =

⋂
ξ∈Ξ

K2(ξ) .

The set KP
2 is said to define the possibility interpretation of the second-stage

feasibility set. A first-stage decision x belongs to KP
2 if, for “all possible” values

of the random vector ξ , a feasible second-stage decision can be taken. We now
illustrate that the two sets, K2 and KP

2 , can indeed be different when the random
variable is a continuous random variable.

Consider an example where the second stage is defined by

Q(x,ξ) = min
y

{y | ξ y = 1− x , y ≥ 0}

110 3 Basic Properties and Theory

where ξ has a triangular distribution on [0,1] , namely, P(ξ ≤ u) = u2 . Note that
here W reduces to a 1×1 matrix and is the only random element.

For all ξ in (0,1] , the optimal y is 1−x
ξ , so that

K2(ξ) = {x | x ≤ 1}

and

Q(x,ξ) =
1− x
ξ

, for x ≤ 1 .

When ξ = 0 , no y exists such that 0 · y = 1− x , unless x = 1 , so that

K2(0) = {x | x = 1} .

Now, for x �= 1 , Q(x,0) should normally be +∞ . However, because the probabil-
ity that ξ = 0 is zero, the convention is to take Q(x,0) = 0 . This corresponds to
defining 0 ·∞= 0 .

Hence,
KP

2 = {x | x = 1}∩{x | x ≤ 1} = {x | x = 1}
while

Q(x) =
∫ 1

0

1− x
ξ

·2ξdξ = 2(1− x) for all x ≤ 1,

so that K2 = {x | x ≤ 1} and KP
2 is strictly contained in K2 . The difference between

the two sets relates to the fact that a point is not in KP
2 as soon as it is infeasible

for some ξ value, regardless of the distribution of ξ , while K2 does not consider
infeasibilities occurring with zero probability.

Fortunately, this kind of difficulty rarely occurs for programs with a fixed W
matrix. It never occurs when the random vector satisfies some conditions.

Another difficulty that could arise and would cause the sets KP
2 and K2 to be

different, would be to have Q(x,ξ) bounded above with probability one and yet to
have Q(x) , the expectation of Q(x,ξ) , unbounded.

Proposition 3. If ξ has finite second moments, then

P (ω | Q(x,ξ) < ∞) = 1 implies Q(x) < ∞.

To illustrate why this might be true, consider particular x and ξ values. The
second-stage program is the linear program

Q(x,ξ) = min{q(ω)T y | Wy = h(ω)−T(ω)x,y ≥ 0} .

As discussed in the proof of Theorem 2, solving this linear program for given x and
ξ amounts to finding some optimal basis B for which we have

Q(x,ξ) = qB(ω)T B−1(h(ω)−T(ω)x) .

3.1 Two-Stage Stochastic Linear Programs with Fixed Recourse 111

Now, assume Q(x,ξ) is bounded above with probability one and imagine for a
while that the same basis B would be optimal for all x and all ξ . Then, ξ having
finite second moments is a sufficient condition for Q(x) to be bounded because it
implies Eξ(qT

BB−1h) and Eξ(qT
BB−1T x) are both bounded above. In general the

optimal basis B is different for different x and ξ values so that a more general
proof taking care of different submatrices of W is needed. This is done in detail in
Walkup and Wets [1967].

Theorem 4. For a stochastic program with fixed recourse where ξ has finite second
moments, the sets K2 and KP

2 coincide.

Proof: (Note: This proof uses some concepts from measure theory.) First consider
x ∈ KP

2 . This implies Q(x,ξ) < ∞ with probability one, so that, by Proposition 3,
Q(x) is bounded above and x ∈ K2 .

Now, consider x ∈ K2 . It follows that {ξ | Q(x,ξ) < ∞} is a set of measure
one. Observe that Q(x,ξ) < ∞ is equivalent to h(ω)− T (ω)x ∈ posW and that
h(ω)− T (ω)x is a linear function of ξ , and {ξ ∈ ∑ | Q(x,ξ) < ∞} is a closed
subset of ∑ of measure one, for any set ∑ of measure one. In particular, {ξ ∈ Ξ |
Q(x,ξ) <∞} is a closed subset of Ξ having measure one. By definition of Ξ , this
set can only be Ξ itself, so that {ξ | Q(x,ξ) <∞} ⊆ Ξ and therefore x ∈ KP

2 .

Note however that W being fixed and ξ having finite moments are just sufficient
conditions for K2 and KP

2 to coincide. Other, more general, sufficient conditions
can be found in Walkup and Wets [1967].

Note also that a third definition of the second-stage feasibility set could be given
as {x | Q(x,ξ) < ∞ with probability one} . For problems with fixed recourse where
ξ has finite second moments, this set also coincides with K2 and KP

2 . In the fol-
lowing, we simply speak of K2 , the second-stage feasibility set.

Theorem 5. When W is fixed and ξ has finite second moments:

(a) K2 is closed and convex.

(b) If T is fixed, K2 is polyhedral.

(c) Let ΞT be the support of the distribution of T . If h(ξ) and T (ξ) are inde-
pendent and ΞT is polyhedral, then K2 is polyhedral.

Proof: The proof of (a) is elementary under the possibility representation of K2 .
If T is fixed, x ∈ K2 if and only if h(ξ)−Tx ∈ posW for all ξ ∈ Ξh , where Ξh

is the support of the distribution of h(ξ) .
Consider some x and ξ s.t. h(ξ)− Tx �∈ posW . Then there must exist some

hyperplane, say {x | σT x = 0} that separates h(ξ)− T x from posW . This hy-
perplane must satisfy σT t ≤ 0 for t ∈ posW and σT (h(ξ)− T x) > 0 . Because
W is fixed, there need only be finitely many different such hyperplanes, so that

112 3 Basic Properties and Theory

h(ξ)− Tx ∈ posW is equivalent to W ∗(h(ξ) − T x) ≤ 0 for some matrix W ∗ .
This matrix, called the polar matrix of W , is obtained by choosing some min-
imal set of separating hyperplanes. The set is minimal if removing any hyper-
plane would no longer guarantee the equivalence between h(ξ)−Tx ∈ posW and
W ∗(h(ξ)− Tx) ≤ 0 for all x and ξ in Ξh . It follows that x ∈ K2 if and only if
W ∗(h(ξ)− Tx) ≤ 0 for all ξ in Ξ . This can still be an infinite system of linear
inequalities due to h(ξ) . We may, however, replace this system by

(W ∗T)i·x ≥ u∗
i = sup

h(ξ)∈Ξh

W ∗
i· h(ξ) , i = 1, . . . , l , (1.8)

where W ∗
i· is the i -th row of W ∗ and l is the finite number of rows of W ∗ .

If for some i , u∗
i is unbounded, then the problem is infeasible and the result in

(b) is trivially satisfied. If, for all i , u∗
i < ∞ , then the system (1.8) constitutes a

finite system of linear inequalities defining the polyhedron K2 = {x | W ∗Tx ≥ u∗}
where u∗ is the vector whose i th component is u∗

i . This proves (b). When T is
stochastic, a relation similar to (1.8) holds, which, unless ΞT is finite, defines an
infinite system of inequalities. Whenever ΞT is polyhedral, (c) can be proved by
working on the extremal elements of ΞT . This is done in Wets [1974, Corollary
4.13].

We now turn to the properties of Q(x,ξ) , assuming it is not −∞ . First, observe
that Q(x,ξ) enjoys all the properties of Theorem 2.

Theorem 6. For a stochastic program with fixed recourse where ξ has finite second
moments,

(a) Q(x) is a Lipschitzian convex function and is finite on K2 .
(b) If F(ξ) is an absolutely continuous distribution, Q(x) is differentiable on

riK2 .

Proof: Convexity and finiteness in (a) are immediate. A proof of the Lipschitz
condition can be found in Wets [1972] or Kall [1976], who also give conditions for
Q(x) to be differentiable.

Although many of the proofs of these results become intricate in general, the out-
comes are relatively easy to apply.

When the random variables are appropriately described by a finite distribution,
the constraint set K2 is best defined by the possibility interpretation and is easily
seen to be polyhedral. The second-stage recourse function Q(x) is piecewise linear
and convex on K2 . The decomposition techniques of Chapter 5 then apply. This is
a category of programs for which computational methods can be made efficient, as
we shall see.

When the random variables cannot be described by a finite distribution, they can
usually be associated with some probability density. Many common probability den-
sities are absolutely continuous and have finite second moments; so, the constraints
set definitions K2 and KP

2 coincide and the second-stage value function Q(x) is

3.1 Two-Stage Stochastic Linear Programs with Fixed Recourse 113

differentiable and convex. Classical nonlinear programming techniques could then
be applied. A typical example was given in the farmer’s problem in Chapter 1. There,
a convex differentiable function Q(x) was constructed analytically. It is easily un-
derstood that analytical expressions can reasonably be found only for small second-
stage problems or problems with a very specific structure such as separability.

In general, one can only compute Q(x) by numerical integration of Q(x,ξ) ,
for a given value of x . Most nonlinear techniques would also require the gradients
of Q(x) , which in turn require numerical integration. An introduction to numerical
integration appears in Chapter 8. From there, we come to the conclusion that nu-
merical integration, as of today, produces an effective computational method only
when the random vector is of small dimensionality. As a consequence, the practical
solution of stochastic programs having continuous random variables is, in general, a
difficult problem. One line of approach is to approximate the random variable by a
discrete one and let the discretization be finer and finer, hoping that the solutions of
the successive problems with discrete random variables will converge to the optimal
solution of the problem with a continuous random variable. This is also discussed
in Chapter 8. It is sufficient at this point to observe that approximation is a second
reason for constructing efficient methods for stochastic programs with finite random
variables.

d. Special cases: relatively complete, complete, and simple recourse

The previous sections presented properties for general problems. In particular in-
stances, the feasible regions and objective values have special properties that are
particularly useful in computation. One advantage can be obtained if every solution
x that satisfies the first-period constraints, Ax = b , also has a feasible completion
in the second stage. In other words, K1 ⊂ K2 . In this case, we say that the stochastic
program has relatively complete recourse. If, for the example with stochastic W in
Section 3.1b., we had the first-period constraints x ≤ 1 , then this problem would
have relatively complete recourse.

Although relatively complete recourse is very useful in practice and in many of
the theoretical results that follow, it may be difficult to identify because it requires
some knowledge of the sets K1 and K2 . A special type of relatively complete
recourse may, however, often be identified from the structure of W . This form,
called complete recourse, holds when there exists y ≥ 0 such that Wy = t for all
t ∈ℜm2 .

Complete recourse is also represented by posW = ℜm2 (the positive cone
spanned by the columns of W includes ℜm2), and says that W contains a pos-
itive linear basis of ℜm2 . Complete recourse is often added to a model to ensure
that no outcome can produce infeasible results. With most practical problems, this
should be the case. In some instances, complete recourse may not be apparent. An
algorithm in Wets and Witzgall [1967] can be used in this situation to determine
whether W contains a positive linear basis.

114 3 Basic Properties and Theory

A special type of complete recourse offers additional computational advantages
to stochastic programming solutions. This case is the generalization of the news
vendor problem introduced in Section 3.1. It is called simple recourse. For a sim-
ple recourse problem, W = [I,−I] , y is divided correspondingly as (y+,y−) , and
q = (q+,q−) . Note that, in this case, the optimal values of y+

i (ω),y−
i (ω) are de-

termined purely by the sign of hi(ω)− Ti·(ω)x provided that q+
i + q−

i ≥ 0 with
probability one. This finiteness result is in the following theorem.

Theorem 7. Suppose the two-stage stochastic program in (1.1) is feasible and has
simple recourse and that ξ has finite second moments. Then Q(x) is finite if and
only if q+

i + q−
i ≥ 0 with probability one.

Proof: If q+
i (ω) + q−

i (ω) < 0 for ω ∈ Ω1 where P(Ω1) > 0 , then, for any
feasible x in (1.1), for all ω ∈ Ω1 where hi(ω) − Ti·(ω)x > 0 , let y+

i (ω) =
hi(ω)− Ti·(ω)x + u , y−

i (ω) = u . By letting u → ∞ , Q(x,ω) → −∞ . A similar
argument applies if hi(ω)−Ti·(ω)x ≤ 0 , so Q(x) is not finite.

If q+
i + q−

i ≥ 0 with probability one, then Q(x,ω) = ∑m2
i=1(q

+
i (ω)(hi(ω) −

Ti·(ω)x)+ +q−
i (ω)(−hi(ω)+Ti·(ω)x)+) , which is finite for all ω . Using Proposi-

tion 2, we obtain the result.

We, therefore, assume that q+
i + q−

i ≥ 0 with probability one and can write
Q(x) as ∑m2

i=1 Qi(x) , where Qi(x) = Eω [Qi(x,ξ (ω))] , and

Qi(x,ξ (ω)) = q+
i (ω)(hi(ω)−Ti·(ω)x)+ + q−

i (ω)(−hi(ω)+ Ti·(ω)x)+.

When q and T are fixed, this characterization of Q allows its expression as a
separable function in the remaining random components hi . Often, in this case,
Ti·x is substituted with χi and Ψ is substituted for Q so that Q(x) =Ψ(χ) . We
then obtain Ψ(χ) = ∑m2

i=1Ψi(χi) where Ψi(χ) = E hi [ψi(χi,hi)] and ψi(χi,hi) =
q+

i (hi − χi)+ + q−
i (−hi + χi)+ . We, however, continue to use Q(x) to maintain

consistency with our previous results.
We can define the objective function even further. In this case, let hi have an

associated distribution function Fi , mean value h̄i , and let qi = q+
i + q−

i . We can
then write Qi(x) as

Qi(x) = q+
i h̄i − (q+

i −qiFi(Ti·x))Ti·x−qi

∫
hi≤Ti·x

hidFi(hi). (1.9)

Of particular importance in optimization is the subdifferential of this function,
which has the following simple form:

∂Qi(x) = {π(Ti·)T | −q+
i + qiF

−
i (Ti·x) ≤ π ≤ −q+

i + qiF
+
i (Ti·x)} , (1.10)

where F−
i (h) = limt↑h Fi(t) and F+

i (h) = limt↓h Fi(t) = Fi(h) . These results can
be used to obtain specific optimality conditions. These general conditions are the
subject of the next part of this section.

3.1 Two-Stage Stochastic Linear Programs with Fixed Recourse 115

e. Optimality conditions and duality

In this subsection, we consider optimality conditions for stochastic programs. Our
goal in describing these conditions is to show the special conditions that can apply
to stochastic programs and to show how stochastic programs may differ from other
mathematical programs. In particular, we give the additional assumptions that guar-
antee necessary and sufficient conditions for two-stage stochastic linear programs.
The following sections contain generalizations.

The deterministic equivalent problem in (1.2) provides the framework for opti-
mality conditions, but several questions arise.

1. When is a solution to (1.2) attainable?
2. What form do the optimality conditions take and how can they be simplified?
3. What types of dual problems can be formulated to accompany (1.2) and do they

obtain bounds on optimal values?
4. How stable is an optimal solution to (1.2) to changes in the parameters and

distributions?

This subsection briefly describes answers to these questions. Further details are con-
tained in Kall [1976], Wets [1974, 1990], and Dempster [1980]. Our aim is to give
only the basic results that may be useful in formulating, solving, and analyzing
practical stochastic programs.

From the previous section, supposing that ξ has finite second moments, we
know that Q is Lipschitzian. We can then apply a direct subgradient result. A ques-
tion is, however, whether the solution of (1.2) can indeed be obtained, i.e., whether
the optimal objective value is finite and attained by some value of x .

To see that this question is indeed relevant, consider the following example. Find

inf{Eξ[y+(ξ)] | y+(ξ),y−(ξ) ≥ 0,x + y+(ξ)− y−(ξ) = ξ, a.s.}, (1.11)

where ξ is, for example, negative exponentially distributed on [0,∞) . For any finite
value of x , (1.11) has a positive value, but the infimum over x is zero.

The following theorem gives some sufficient conditions to guarantee that a so-
lution to (1.2) exists. In the following, we use rc to denote the recession cone,
{v | u +λv ∈ S , for all λ ≥ 0 and u ∈ S} when applied to a set, S , and the reces-
sion value, supx∈dom f (f (x + v)− f (x)) when applied to a proper convex function,
f .

Theorem 8. Suppose that the random elements ξ have finite second moments and
one of the following:

(a) the feasible region K is bounded; or
(b) the recourse function Q is eventually linear in all recession directions of K ,

i.e., Q(x+λv) = Q(x+ λ̄v)+(λ − λ̄)rcQ(v) for some λ̄ ≥ 0 (dependent on
x), all λ ≥ λ̄ , and some constant recession value, rcQ(v) , for all v such that
x +λv ∈ K for all x ∈ K and λ ≥ 0 .

116 3 Basic Properties and Theory

Then, if problem (1.2) has a finite optimal value, it is attained for some x ∈ℜn .

Proof: The proof given (a) follows immediately by noting that the objective is
convex and finite on K , which is compact by assumption. The only possibility
for not attaining an optimum is, therefore, when the optimal value is only attained
asymptotically. By (b), along any recession direction v , we must have rcQ(v) ≥ 0
for a finite value of Q(x +λv) . Hence, the optimal value must be attained.

As shown in Wets [1974], if T is fixed and Ξ is compact, the condition in (b)
is obtained. In the exercises, we will show that (b) may not hold if either of these
conditions is relaxed.

We now assume that an optimal solution can be attained as we would expect
in most practical situations. For optimization, we would like to describe the char-
acteristics of such points. The general deterministic equivalent form gives us the
following result in terms of Karush-Kuhn-Tucker conditions.

Theorem 9. Suppose (1.2) has a finite optimal value. A solution x∗ ∈ K1 , is optimal
in (1.2) if and only if there exists some λ ∗ ∈ℜm1 , μ∗ ∈ℜn1

+ , μ∗T x∗ = 0 , such that,

−c + ATλ ∗ + μ∗ ∈ ∂Q(x∗). (1.12)

Proof: From the optimization of a convex function over a convex region (see, for
example, Bazaraa and Shetty [1979, Theorem 3.4.3]), we have that cT x+Q(x) has
a subgradient η at x∗ such that ηT (x− x∗) ≥ 0 for all x ∈ K1 if and only if x∗
minimizes cT x +Q(x) over K1 . We can write the set, {η | ηT (x− x∗) ≥ 0 for all
x ∈ K1} , as {η | η = ATλ + μ , for some μ ≥ 0 , μT x∗ = 0} . Hence, the general
optimality condition states that a nonempty intersection of {η | η = ATλ + μ , for
some μ ≥ 0 , μT x∗ = 0} and ∂ (cT x∗ + Q(x∗)) = c + ∂Q(x∗) is necessary and
sufficient for the optimality of x∗ .

This result can be combined with our previous results on simple recourse func-
tions to obtain specific conditions for that problem as follows.

Corollary 10. Suppose (1.1) has simple recourse and a finite optimal value. Then
x∗ ∈ K1 is optimal in (1.2) corresponding to this problem if and only if there exists
some λ ∗ ∈ ℜm1 , μ∗ ∈ ℜn1

+ , μ∗T x∗ = 0 , π∗
i such that −(q+

i − qiF
−
i (Ti·x∗)) ≤

π∗
i ≤ −(q+

i −qiF
+
i (Ti·x∗)) and

−c + ATλ ∗ + μ∗ − (π∗)T T = 0 . (1.13)

Proof: This is a direct application of (1.10) and Theorem 9.

Inclusion (1.12) suggests that a subgradient method or other nondifferentiable
optimization procedure may be used to solve (1.2). While this is true, we note that
finite realizations of the random vector lead to equivalent linear programs (although
of large scale), while absolutely continuous distributions lead to a differentiable
recourse function Q .

3.1 Two-Stage Stochastic Linear Programs with Fixed Recourse 117

Obviously if Q is differentiable, we can replace ∂Q(x∗) with ∇Q(x∗) to ob-
tain:

c +∇Q(x∗) = ATλ ∗ + μ∗ (1.14)

in place of (1.12). Possible algorithms based on convex minimization subject to
linear constraints are then admissible.

The main practical possibilities for solutions of (1.2) then appear as examples
of either large-scale linear programming or smooth nonlinear optimization. The
chief difficulty is, however, in characterizing ∂Q because even evaluating this
function is difficult. This evaluation is, however, decomposable into subgradients
of the recourse function for each realization of ξ , which form the subdifferential
set ∂Q(x,ξ (ω)) , where we interpret the subgradient elements as being defined with
respect to the decision variables x .

Theorem 11. If x ∈ K , then

∂Q(x) = Eω∂Q(x,ξ (ω))+ N(K2,x) , (1.15)

where N(K2,x) = {v | vT y ≤ 0,∀ y such that x + y ∈ K2} , the normal cone to K2

at x .

Proof: From the theory of subdifferentials of random convex functions with finite
expectations (see, for example, Wets [1990, Proposition 2.11]),

∂Q(x) = Eω∂Q(x,ξ (ω))+ rc [∂Q(x)] , (1.16)

where again rc denotes the recession cone , {v | u +λv ∈ ∂Q(x), for all λ ≥ 0
and u ∈ ∂Q(x)} . This set is equivalently {v | yT (u +λv)+Q(x) ≤ Q(x + y) for
all λ ≥ 0 and y} . Hence, v ∈ rc[∂Q(x)] if and only if yT v ≤ 0 for all y such that
Q(x + y) < ∞ . Because K2 = {x | Q(x) < ∞} , the result follows.

This theorem indeed provides the basis for the results on the differentiability of
Q . In the exercises, we illustrate more of the characteristics of optimal solutions.
Also note that if the problem has relatively complete recourse, then, for any y such
that x + y ∈ K1 , we must also have x + y ∈ K2 . Hence, N(K2,x) ⊂ N(K1,x) = {v |
v = ATλ + μ , μT x = 0 , μ ≥ 0} . This yields the following corollary to Theorems
9 and 11.

Corollary 12. If (1.2) has relatively complete recourse, a solution x∗ is optimal in
(1.2) if and only if there exists some λ ∗ ∈ℜm1 , μ∗ ∈ℜn1

+ , μ∗T x∗ = 0 , such that

−c + ATλ ∗ + μ∗ ∈ Eω∂Q(x,ξ (ω)) . (1.17)

Corollary 12 provides the basis for a dual formulation as well. The first step is to
identify ∂Q(x,ξ (ω)) (Exercise 10) as follows:

Eω∂Q(x,ξ (ω)) = {−E [πT]|πTW ≤ qT ,

118 3 Basic Properties and Theory

πT (h−Tx) ≥ (π
′
)T (h−Tx),∀(π

′
)TW ≤ qT a.s.}. (1.18)

Given this form of the subgradient, an equivalent dual program to (1.2) under the
relatively complete recourse assumption can be obtained (Exercise 11) by solving
the following maximization problem:

maxv = bTλ + Eω [h(ω)Tπ(ω)]

s. t. ATλ + Eω [T (ω)Tπ(ω)] ≤ c ,

W Tπ(ω) ≤ q(ω) ,a.s.

(1.19)

f. Stability and nonanticipativity

Another practical concern is whether the optimal solution set is also stable, i.e.,
whether it changes continuously in some sense when parameters of the problem
change continuously. Although this may be of concern when considering changing
problem conditions, we do not develop this theory in detail. The main results are
that stability is achieved (i.e., some optimal solution of an original problem is close
to some optimal solution of a perturbed problem) if problem (1.2) has complete
recourse and the set of recourse problem dual solutions, {π | πTW ≤ q(ω)T} , is
nonempty with probability one. For further details, we refer to Robinson and Wets
[1987] and Römisch and Schultz [1991b].

Another approach to optimality conditions is to consider problem (1.2), in which
y(ω) again becomes an explicit part of the problem and the nonanticipativity con-
straints also become explicit. The advantage in this representation is that we may
obtain information on the value of future information. It also leads naturally to al-
gorithms based on relaxing nonanticipativity.

We discuss the main results in this characterization briefly. The following devel-
opment assumes some knowledge of measure theory and can be skipped by those
unfamiliar with these concepts.

In general, for this approach, we wish to have a different x,y pair for every real-
ization of the random outcomes. We then wish to restrict the x decisions to be the
same for almost all outcomes. This says that the decision, (x(ω),y(ω)) , is a func-
tion (with suitable properties) on Ω . We restrict this to some space, X , of measur-
able functions on Ω , for example, the p -integrable functions, Lp(Ω ,B,μ ;ℜn) ,
for some 1 ≤ p ≤∞ . (For background on these concepts, see, for example, Royden
[1968].) The general version of (1.2) (with certain restrictions) then becomes:

inf
(x(ω),y(ω))∈X

∫
Ω

(cT x(ω)+ q(ω)T y(ω))μ(dω)

3.1 Two-Stage Stochastic Linear Programs with Fixed Recourse 119

s. t. Ax(ω) = b, a.s.,

EΩ (x(ω))− x(ω) = 0, a.s.,

T (ω)x(ω)+Wy(ω) = h(ω), a.s.,

x(ω),y(ω) ≥ 0, a.s.

(1.20)

Problem (1.20) is equivalent to (1.2) if, for example, X is the space of essentially
bounded functions on Ω and K is bounded for (1.2). The two formulations are not
necessarily the same, however, as in the problem given in Exercise 12.

The condition that the x decision is taken before realizing the random outcomes
is reflected in the second set of constraints in (1.20). These constraints are again the
nonanticipativity constraints, which imply that almost all x(ω) values are the same.

The only difference in optimality conditions of (1.20) from those of (1.12) is that
we include explicit multipliers for the nonanticipativity constraints. For continuous
distributions, these multipliers may, however, have a difficult representation unless
(1.20) has relatively complete recourse. The difficulty is that we cannot guarantee
boundedness of the multipliers and may not be able to obtain an integrable function
to represent them. This difficulty is caused when future constraints restrict the set of
feasible solutions at the first stage.

For finite distributions, (1.20) is, however, an implementable problem structure
that is used in several algorithms discussed here. In this case, with K possible real-
izations of ξ with probabilities pk , k = 1, . . . ,K , the problem becomes:

inf
(xk ,yk),k=1,...,K

K

∑
k=1

pk(cT xk +(qk)T yk)

s. t. Axk = b, k = 1, . . . ,K ,

∑
j �=k

p jx j +(pk −1)xk = 0, k = 1, . . . ,K ,

T kxk +Wyk = hk, k = 1, . . . ,K ,

xk,yk ≥ 0, k = 1, . . . ,K .

(1.21)

Notice that (1.21) almost completely decomposes into K separate problems for
the K realizations. The only links are in the second set of constraints that impose
nonanticipativity. An aim of computation is to take advantage of this structure.

Consider the optimality conditions for (1.19). We wish to illustrate the difficulties
that may occur when continuous distributions are allowed. A solution (xk∗,yk∗) ,
k = 1, . . . ,K , is optimal for (1.21) if and only if there exist (λ k∗,ρk∗,πk∗) such that

pk(c j −λ k∗T a· j −∑
l �=k

plρ l∗
j − (−1 + pk)ρk∗

j −π∗T T k
· j) ≥ 0 ,

k = 1, . . . ,K , j = 1, . . . ,n1 , (1.22)

120 3 Basic Properties and Theory

(c j −λ k∗T a· j −∑
l �=k

plρ l∗
j − (−1 + pk)ρk∗

j −π∗T T k
· j)x

k∗
j = 0 ,

k = 1, . . . ,K , j = 1, . . . ,n1 , (1.23)

pk(qk
j −π∗TW· j) ≥ 0 , k = 1, . . . ,K , j = 1, . . . ,n2 , (1.24)

pk(qk
j −π∗TW· j)yk∗

j = 0 , k = 1, . . . ,K , j = 1, . . . ,n2 , (1.25)

where we have effectively multiplied the constraints in (1.19) by pk to obtain the
form in (1.22)–(1.25). We may also add the condition,

∑
k=1,...,K

pkρk∗ = 0 , (1.26)

without changing the feasibility of (1.22)–(1.25). This is true because, if
∑k=1,...,K pkρk∗ = κ for some κ �= 0 is part of a feasible solution to (1.22)–(1.25),

then so is ρk′
= ρk∗ −κ . A problem arises if more realizations are included in the

formulation (i.e., K increases) and ρk′
becomes unbounded.

To see how the multipliers may become unbounded, consider the following ex-
ample (see also Rockafellar and Wets [1976a]). We wish to find minx{x | x ≥ 0,x−
y = ξ,a.s.,y ≥ 0} , where ξ is uniformly distributed on k/K for k = 0, . . . ,K −1
and K ≥ 2 . In this case, the optimal solution is x∗ = K−1

K and yk∗ = K−1−k
K for

k = 0, . . . ,K . The multipliers satisfying (1.22)–(1.26) are ρk∗ = 1 , πk∗ = 0 for
k = 0, . . . ,K − 2 , and ρK−1∗ = −(K − 1) and πK−1∗ = −K + 2 . Note that as K
increases, ρ∗ approaches a distribution with a singular value at one. The difficulty
is that ρK−1∗ is unbounded so that bounded convergence cannot apply. If relatively
complete recourse is assumed, however, then all elements of ρ∗ are bounded (see
Exercise 13). No singular values are necessary.

In this example, the continuous distribution would tend toward a singular multi-
plier for some value of ω (i.e., a multiplier with mass one at a single point). If this
is the case, we must have that the solution to the dual of the recourse problem is un-
bounded, or the recourse problem is infeasible for x∗ feasible in the first stage. This
possibility is eliminated by imposing the relatively complete recourse assumption.

With relatively complete recourse, we can state the following optimality condi-
tions for a solution (x∗(ω),y∗(ω)) to (1.19). The theorem appears in other ways in
Hiriart-Urruty [1978], Rockafellar and Wets [1976a, 1976b], Birge and Qi [1993],
and elsewhere. We only note that regularity conditions (other than relatively com-
plete recourse) follow from the linearity of the constraints.

Theorem 13. Assuming that (1.20) with X = L∞(Ω ,B,μ ;ℜn1+n2) is feasible,
has a bounded optimal value, and satisfies relatively complete recourse, a solution
(x∗(ω),y∗(ω)) is optimal in (1.20) if and only if there exist integrable functions on
Ω , (λ ∗(ω),ρ∗(ω),π∗(ω)) , such that

3.1 Two-Stage Stochastic Linear Programs with Fixed Recourse 121

c j −λ ∗(ω)A· j −ρ∗(ω)−π∗T (ω)T· j(ω) ≥ 0 , a.s., j = 1, . . . ,n1 , (1.27)

(c j −λ ∗(ω)A· j −ρ∗(ω)−π∗T (ω)T· j(ω))x∗
j(ω) = 0 ,

a.s., j = 1, . . . ,n1 , (1.28)

q j(ω)−π∗T (ω)W· j ≥ 0 , a.s., j = 1, . . . ,n2 , (1.29)

(q j(ω)−π∗T (ω)W· j)y∗
j(ω) = 0, a.s., j = 1, . . . ,n2 , (1.30)

and

Eω [ρ∗(ω)] = 0 . (1.31)

Proof: We first show the sufficiency of these conditions directly. If (1.27)–(1.31)
are satisfied, then for any (x(ω),y(ω)) (with expected value (x,y)) such that
(x∗(ω)+ x(ω),y∗(ω)+ y(ω)) is feasible in (1.20), then integrating over ω , sum-
ming over j in (1.28), and using (1.29), we obtain that cT x−Eω [π∗T (ω)T (ω)]x ≥
0 . We also have that q(ω)T y(ω) ≥ π∗T (ω)Wy(ω) = −π∗T (ω)T (ω)x . Hence,
cT x + Eω [q(ω)T y(ω)] ≥ 0 , giving the optimality of (x∗(ω),y∗(ω)) .

For necessity, we use the equivalence of (1.20) and (1.2), and Corollary 12.
In this case, let λ ∗ from (1.12) replace λ ∗(ω) in (1.27). Let π∗(ω) be the
optimal dual value in the recourse problem in (1.4). Thus, Eω [∂Q(x∗,ξ (ω))] =
Eω [−π∗T (ω)T (ω)] . Now, if we let ρ∗(ω) =
Eω [−π∗T (ω)T] − π∗T (ω)T (ω) , we obtain all the conditions in
(1.27)–(1.31).

The results in this section give conditions that can be useful in algorithms and in
checking the optimality of stochastic programming solutions. Dual problems similar
to (1.18) can also be formulated based on these conditions either to obtain bounds
on optimal solutions by finding corresponding feasible dual solutions or to give an
alternative solution procedure that can be used directly or in some combined primal-
dual approach (see, for example, Bazaraa and Shetty [1979]). The dual problem di-
rectly obtained from (1.27)–(1.31) is to find (λ (ω),ρ(ω),π(ω)) on the dual space
to X to maximize

Eω [bTλ (ω)+ h(ω)Tπ(ω)] subject to (1.32)

ATλ (ω)+ρ(ω)+ T(ω)Tπ(ω) ≤ c , a.s., (1.33)

W Tπ(ω) ≤ q(ω) , a.s., (1.34)

and

Eω [ρ(ω)] = 0 . (1.35)

122 3 Basic Properties and Theory

This fits the general duality framework used by Klein Haneveld [1985] where fur-
ther details on the properties of these dual problems may be found. Rockafellar and
Wets [1976a, 1976b] also discuss this alternative viewpoint with an analysis based
on perturbations of both primal and dual forms. Discussion of alternative dual spaces
appears in Eisner and Olsen [1975]. In general, Problem (1.20) attains its minimum
with a bounded region, and the supremum in (1.32)–(1.35) gives the same value.
Relatively complete recourse, or a similar requirement, is necessary to obtain that
the dual optimum is also attained. With unbounded regions or without relatively
complete recourse, as we have seen, we may have that an optimal solution is not
attained for either (1.21) or (1.32)–(1.35). In this case, it is possible that the corre-
sponding dual problem does not have the same optimal value and the two problems
exhibit a duality gap. The exercises explore this possibility further.

Exercises

1. Consider Example 1 with a second-stage program defined as

min 2y1 + y2

s. t. y1 + 2y2 ≥ ξ1 − x1 ,

y1 + y2 ≥ ξ2 − x1 − x2 ,

0 ≤ y1 ≤ 1 , 0 ≤ y2 ≤ 1 .

We have seen that K2(ξ) = {x | x1 ≥ ξ1 − 3 , x1 + x2 ≥ ξ2 − 2} . Let ξ1 and
ξ2 be two independent continuous random variables. Assume they both have
uniform density over [2,4] .

(a) What is KP
2 ?

(b) What is K2 ?
(c) Let u∗

i be defined as in (1.7). What are u∗
1 and u∗

2 in this example?

2. Let the second stage of a stochastic program be

min 2y1 + y2

s. t. y1 − y2 ≤ 2−ξx1 ,

y2 ≤ x2 ,

0 ≤ y1,y2 .

Find K2(ξ) and K2 for:

(a) ξ ∼ U [0,1] .
(b) ξ ∼ Poisson(λ) , λ > 0 .

What properties do you expect for K2 ?

3.1 Two-Stage Stochastic Linear Programs with Fixed Recourse 123

3. Consider the following second-stage program:

Q(x,ξ) = min{y | y ≥ ξ ,y ≥ x} .

For simplicity, assume x ≥ 0 .
Let ξ have density

f (ξ) =
2
ξ 3 ,ξ ≥ 1 .

Show that KP
2 = K2 . Compare this with the statement of Theorem 3.

4. Consider Example 2 where the second-stage program is defined as

min 2y1 + y2

s. t. y1 + y2 ≥ 1− x1 ,

y1 ≥ ξ− x1 − x2 ,

y1,y2 ≥ 0 ,

where Ξ ⊂ℜ+ .

(a) Show that this program has complete recourse if ξ has finite expectation.
(b) Show that Q(x,ξ) is convex in x and convex in ξ .
(c) Assume ξ ∼ U [0,2] . After a tedious integration that probably only the au-

thors of this book will go through, one obtains Q(x) = 1
4(x2

1 +2x2
2 +2x1x2−

8x1 − 6x2 + 9) . Check that the relevant properties of Theorem 6 are satis-
fied.

5. Let a second-stage program be defined as

min ξ y1 + y2

s. t. y1 + y2 ≥ 1− x1 ,

y1 ≥ 1− x1 − x2 ,

y1,y2 ≥ 0 .

Assume 0 ≤ x1,x2 ≤ 1 . Obtain Q(x,ξ) and observe that it is concave in ξ .

6. Prove the positive homogeneity property in (1.8).

7. Derive the simple recourse results in (1.9) and (1.10).

8. Show that the news vendor problem is a special case of a simple recourse prob-
lem.

9. Consider the following example:

min −x+ E (t(ω),h(ω))[y
+(ω)+ y−(ω)]

s. t. t(ω)x + y+(ω)− y−(ω) = h(ω) , a.s.,

x,y+(ω),y−(ω) ≥ 0 , a.s.,

124 3 Basic Properties and Theory

where h, t are uniformly distributed on the unit circle, h2 + t2 ≤ 1 . Find Q(x)
and show that it is not eventually linear for x → ∞ (Wets [1974]).

10. Show that Eω∂Q(x,ξ (ω)) is given by (1.18).

11. Show that an optimal solution (λ ∗,π∗(ω)) to the dual program in (1.19) pro-
vides a solution to the optimality conditions in (1.17) using (1.18) and that the
optimal objective value v∗ is the same as the optimal value z∗ in (1.2).

12. Suppose you wish to solve (1.11) in the form of (1.20) over (x(ω),y(ω))
∈ L∞(Ω ,B,μ :ℜn1+n2) . What is the optimal value? How does this differ from
using (1.2)?

13. This exercise uses approximation results to give an alternative proof of The-
orem 13. As shown in Chapter 8, if a discrete distribution approaches a con-
tinuous distribution (in distribution) and problem (1.2) has a bounded optimal
solution and the bounded second moment property, then a limiting optimal so-
lution for the discrete distributions is an optimal solution using the continuous
distribution. This also implies that recourse solutions, y∗ , converge and that the
optimality conditions in (1.27)–(1.31) are obtained as long as the ρk∗ in the
discrete approximations are uniformly bounded. Show that relatively complete
recourse implies uniform boundedness of some ρk∗ for any discrete approxi-
mation approaching a continuous distribution in (1.18). (Hint: Construct a sys-
tem of equations that must be violated for some iteration ν of the discretization
and for any bound M on the largest value of ρk∗ if the ρk∗ are not uniformly
bounded. Then show that the complementary system implies no relatively com-
plete recourse.)

3.2 Probabilistic or Chance Constraints

a. General case

As mentioned in Chapter 2, in some models, constraints need not hold almost surely
as we have assumed to this point. They can instead hold with some probability or
reliability level. These probabilistic, or chance, constraints take the form:

P{Ai(ω)x ≥ hi(ω)} ≥ α i , (2.1)

where 0 < α i < 1 and i = 1, . . . , I is an index of the constraints that must hold
jointly. We can, of course, model these constraints in a general expectational form
Eω (f i(ω ,x(ω))) ≥ α i where f i is an indicator of {ω | Ai(ω)x ≥ hi(ω)} but we
would then have to deal with a discontinuous function.

In chance-constrained programming (see, e.g., Charnes and
Cooper [1963]), the objective is often an expectational functional as we used ear-
lier (the E-model), or it may be the variance of some result (the V-model) or the
probability of some occurrence (such as satisfying the constraints) (the P-model).

3.2 Probabilistic or Chance Constraints 125

Another variation includes an objective that is a quantile of a random function (see,
e.g., Kibzun and Kurbakovskiy [1991] and Kibzun and Kan [1996]).

The main results with probabilistic constraints refer to forms of deterministic
equivalents for constraints of the form in (2.1). Provided the deterministic equiva-
lents of these constraints and objectives have the desired convexity properties, these
functions can be added to the recourse problems given earlier (or used as objectives).
In this way, all our previous results apply to chance-constrained programming with
suitable function characteristics.

The main goal in problems with probabilistic constraints is, therefore, to deter-
mine deterministic equivalents and their properties. To maintain consistency with
the recourse problem results, we let

Ki
1(α

i) = {x | P(Ai(ω)x ≥ hi(ω)) ≥ α i} , (2.2)

where 0 < α i ≤ 1 and
⋂

i Ki
1(1) = K1 as in Section 3.1. Unfortunately, Ki

1(α
i)

need not be convex or even connected. Suppose, for example that Ω = {ω1,ω2} ,
P[ω1] = P[ω2] = 1

2 ,

Ai(ω1) = Ai(ω2) =
(

1
−1

)

hi(ω1) =
(

0
−1

)

hi(ω2) =
(

2
−3

)
(2.3)

for 0 < α i ≤ 1
2 , Ki

1(α
i) = [0,1]∪ [2,3] .

When each i corresponds to a distinct linear constraint and Ai is a fixed row
vector, then obtaining a deterministic equivalent of (2.2) is fairly straightforward.
In this case, P(Aix ≥ hi(ω)) = Fi(Aix) , where Fi is the distribution function of
hi . Hence, Ki

1(α
i) = {x | Fi(Aix) ≥ α i} , which immediately yields a deterministic

equivalent form. In general, however, the constraints must hold jointly so that the set
I is a singleton. This situation corresponds to requiring an α -confidence interval
that x is feasible. We assume this in the remainder of this section and drop the
superscript i indicating the set of joint constraints.

The results to determine the deterministic equivalent often involve manipulations
of probability distributions that use measure theory. The remainder of this section is
intended for readers familiar with this area. One of the main results in probabilistic
constraints is that, in the joint constraint case, a large class of probability measures
on h(ω) (for A fixed) leads to convex and closed K1(α) . A probability measure
P is in this class of quasi-concave measures if for any convex measurable sets U
and V and any 0 ≤ λ ≤ 1 ,

P((1−λ)U +λV) ≥ min{P(U),P(V)} . (2.4)

126 3 Basic Properties and Theory

The use of this and a special form, called logarithmically concave measures, be-
gan with Prékopa [1971, 1973]. General discussions also appear in Prékopa [1980,
1995], Kallberg and Ziemba [1983] concerning related utility functions, and the
surveys of Wets [1983b, 1990] which include the following theorem.

Theorem 14. Suppose A is fixed and h has an associated quasi-concave proba-
bility measure P . Then K1(α) is a closed convex set for 0 ≤ α ≤ 1 .

Proof: Let H (x) = {h | Ax ≥ h} . Suppose x(λ) = λx1 + (1 − λ)x2 where
x1,x2 ∈ K1(α) . Suppose h1 ∈ H (x1) and h2 ∈ H (x2) . Then λh1 +(1−λ)h2 ≤
Ax(λ) , so H (x(λ)) ⊃ λH (x1) + (1 − λ)H (x2) . Hence, P({Ax(λ) ≥ h}) =
P(H (x(λ)) ≥ P (λH (x1)+ (1−λ)H (x2)) ≥ α . Thus, K1(α) is convex.

For closure, suppose that xν → x̄ , where xν ∈ K1(α) . Consider H (xν) . If h ≤
Axνi for some subsequence {νi} of {ν} , then h ≤ Ax̄ . Hence limsupν H (xν) ⊂
H (x̄) , so P (H (x̄)) ≥ P (limsupν H (xν)) ≥ limsupν P (H (xν)) ≥ α.

The relevance of this result stems from the large class of probability measures which
fit these conditions. Some extent of this class is given in the following result of
Borell [1975], which we state without proof.

Theorem 15. If f is the density of a continuous probability distribution in ℜm

and f −(1
m) is convex on ℜm , then the probability measure

P(B) =
∫

B
f (x) dx ,

defined for all Borel sets B in ℜm is quasi-concave.

In particular, this result states that any density of the form f (x) = e−l(x) for some
convex function l yields a quasi-concave probability measure. These measures in-
clude the multivariate normal, beta, and Dirichlet distributions and are logarithmi-
cally concave (because, for 0 ≤ λ ≤ 1 , P ((1−λ)U +λV) ≥ P(U)λP (V)1−λ for
all Borel sets U and V) as studied by Prékopa. These distributions lead to com-
putable deterministic equivalents as, for example, in the following theorem.

Theorem 16. Suppose A is fixed and the components hi, i = 1, . . . ,m1 , of h are
stochastically independent random variables with logarithmically concave proba-
bility measures, Pi , and distribution functions, Fi , then K1(α) =
{x | ∑m1

i=1 ln(Fi(Ai·x)) ≥ lnα} and is convex.

Proof: From the independence assumption, P[Ax ≥ h] = Πm1
i=1Pi[Ai·x ≥ hi] =

Πm1
i=1Fi(Ai·x) . So, K1(α) = {x | Πm1

i=1Fi(Ai·x) ≥ α} . Taking logarithms (which is
a monotonically increasing function), we obtain K1(α) = {x | ∑m1

i=1 ln(Fi(Ai·x)) ≥
lnα} . Because

Fi(Ai·(λx1 +(1−λ)x2)) = Pi(hi ≤ Ai·(λx1 +(1−λ)x2))

≥ Pi(λ{hi ≤ Ai·x1}+(1−λ){hi ≤ Ai·x2)})

3.2 Probabilistic or Chance Constraints 127

≥ Pi({hi ≤ Ai·x1})λPi({hi ≤ Ai·x2})1−λ

= Fi(Ai·x1)λFi(Ai·x2)1−λ ,

the logarithm of Fi(Ai·x) is a concave function, and K1(α) is convex.

Logarithmically concave distribution functions include the increasing failure rate
functions (see Miller and Wagner [1965] and Parikh [1968]) that are common in
reliability studies. Other types of quasi-concave measures include the multivariate
t and F distributions. Because these distributions include those most commonly
used in multivariate analysis, it appears that, with continuous distributions and fixed
A , the convexity of the solution set is generally assured.

When A is also random, the convexity of the solution set is, however, not as
clear. The following theorem from Prékopa [1974], given without proof, shows this
result for normal distributions with fixed covariance structure across columns of A
and h .

Theorem 17. If A1·, . . . ,An1·,h have a joint normal distribution with a common
covariance structure, a matrix C , such that E [(Ai· − E(Ai·))(A j·
−E(A j·))T] = ri jC for i, j in 1, . . . ,n1 , and

E [(Ai· −E(Ai·))(h−E(h))] = siC

for i = 1, . . . ,n1 , where ri j and si are constants for all i and j , then K1(α) is
convex for α ≥ 1

2 .

Stronger results than Theorem 17 are difficult to obtain. In general, one must
rely on approximations to the deterministic equivalent that maintain convexity al-
though the original solution set may not be convex. We will consider some of these
approximations in Chapter 8.

Some other specific examples where A may be random include single constraints
(see Exercise 5). In the case of h ≡ 0 and normally distributed A , the deterministic
equivalent is again readily obtainable as in the following from Parikh [1968].

Theorem 18. Suppose that m1 = 1 , h1 = 0 , and A1· has mean Ā1· and covari-
ance matrix C1 , then K1(α) = {x | Ā1·x−Φ−1(α)

√
xTC1x ≥ 0} , where Φ is the

standard normal distribution function.

Proof: Observe that A1·x is normally distributed with mean, Ā1·x , and variance,
xTC1x . If xTC1x = 0 , then the result is immediate. If not, then A1·x−Ā1·x√

xT C1x
is a stan-

dard normal random variable with cumulative Φ , and

P(A1·x ≥ 0) = P(
A1·x− Ā1·x√

xTC1x
≥ −Ā1·x√

xTC1x
)

= P(
A1·x− Ā1·x√

xTC1x
≤ Ā1·x√

xTC1x
)

128 3 Basic Properties and Theory

=Φ(
Ā1·x√
xTC1x

) .

Substitution in the definition of K1(α) yields the result.

Finally in this chapter, we would like to show some of the similarities between
models with probabilistic constraints and problems with recourse. As stated in
Chapter 2, models with probabilistic constraints and models with recourse can of-
ten lead to the same optimal solutions. Some other aspects of the modeling process
may favor one over the other (see, e.g., Hogan, Morris, and Thompson [1981, 1984],
Charnes and Cooper [1983]), but, these differences generally just represent decision
makers’ different attitudes toward risk.

We use an example from Parikh [1968] to relate simple recourse and chance-
constrained problems. Consider the following problem with probabilistic constraints:

min cT x

s. t. Ax = b ,

Pi[Ti·x ≥ hi] ≥ αi , i = 1, . . . ,m2 ,

x ≥ 0 ,

(2.5)

where Pi is the probability measure of hi and Fi is the distribution function for
hi . For the deterministic equivalent to (2.5), we just let Fi(h∗

i) = αi , to obtain:

min cT x

s. t. Ax = b ,

Ti·x ≥ h∗
i , i = 1, . . . ,m2 ,

x ≥ 0 .

(2.6)

Suppose we solve (2.6) and obtain an optimal x∗ and optimal dual solution
{λ ∗,π∗} , where cT x∗ = bTλ ∗ + h∗Tπ∗ . If π∗

i = 0 , let q+
i = 0 and, if π∗

i > 0 ,

let q+
i = π∗

i
1−αi

. An equivalent stochastic program with simple recourse to (2.5) is
then:

min cT x + Eh[q+y+]
s. t. Ax = b ,

Ti·x + y+
i −y−

i = hi , i = 1, . . . ,m2 ,

x,y+,y− ≥ 0 .

(2.7)

For problems (2.5) and (2.7) to be equivalent, we mean that any x∗ optimal in (2.5)
corresponds to some (x∗,y∗+) optimal in (2.7) for a suitable definition of q+ and
that any (x∗,y∗+) optimal in (2.7) corresponds to x∗ optimal in (2.5) for a suitable
definition of αi . We show the first part of this equivalence in the following theorem.

3.2 Probabilistic or Chance Constraints 129

Theorem 19. For the q+
i defined as a function of some optimal π∗ for the dual

to (2.5), if x∗ is optimal in (2.5), there exists y∗+ ≥ 0 a.s. such that (x∗,y∗+) is
optimal in (2.7).

Proof: First, let x∗ be optimal in (2.5). It must also be optimal in (2.6) with dual
variables, {λ ∗,π∗} . We must have π∗ ≥ 0 ,

cT −λ ∗T A−π∗TT ≥ 0 ,

T x∗ −h∗ ≥ 0 ,

(cT −λ ∗T A−π∗TT)x∗ = 0 ,

and

π∗T (T x∗ −h∗) = 0 . (2.8)

Now, for x∗ to be optimal in (2.7), consider the optimality conditions (1.13) from
Corollary 10. These conditions state that if there exists λ ∗ such that

cT −λ ∗T A−
m2

∑
i=1

Ti·(q+
i −qiFi(Ti·x∗)) ≥ 0 ,

(cT −λ ∗T A−
m2

∑
i=1

Ti·(q+
i −qiFi(Ti·x∗)))x∗ = 0 . (2.9)

Substituting for π∗
i = q+

i (1 −αi) in (2.8) and noting from the complementarity
condition that αi = Fi(h∗

i) = Fi(Ti·x∗) if π∗
i > 0 , we obtain

cT −λ ∗T A−π∗T T = cT −λ ∗T A−
m2

∑
i=1

Ti·(q+
i (1−Fi(Ti·x∗)))

= cT −λ ∗T A−
m2

∑
i=1

Ti·(q+
i −qiFi(Ti·x∗)) (2.10)

from the definitions and noting that π∗
i > 0 if and only if q+

i > 0 . From (2.10), we
can verify the conditions in (2.9) and obtain the optimality of x∗ in (2.7).

If we assume x∗ is optimal in (2.7), we can reverse the argument to show that
x∗ is also optimal in (2.5) for some value of αi . This result (from Symonds [1968])
is Exercise 7. Further equivalences are discussed in Gartska [1980]. We note that all
of these equivalences are somewhat weak because they require a priori knowledge
of the optimal solution to one of the problems (see also the discussion in Gartska
and Wets [1974]).

130 3 Basic Properties and Theory

Exercises

1. Suppose a single probabilistic constraint with fixed A and that h has an expo-
nential distribution with mean λ . What is the resulting deterministic equivalent
constraint for K1(α) ?

2. For the example in (2.3), what happens for 1
2 < α i ≤ 1 ?

3. Can you construct an example with continuous random variables where K1(α)
is not connected? (Hint: Try a multimodal distribution such as a random choice
of one of two bivariate normal random variables.)

4. Extend Theorem 14 to allow any set of convex constraints, gi(x,ξ (ω)) ≤ 0 ,
i = 1, . . . ,m .

5. Suppose a single linear constraint in K1(α) where the components of A and h
have a joint normal distribution. Show that K1(α) is also convex in this case for
α ≥ 1

2 . (Hint: The random variable, A1·x−h1 , is also normally distributed.)

6. Show that
√

xTC1x is a convex function of x .

7. Prove the converse of Theorem 19 by finding an appropriate αi so that the x∗
that is optimal in (2.7) is also optimal in (2.5).

8. Let K̄(α) = {x|P{A(ω)x ≥ h} ≤ α} , where A(ω) has a joint normal distribu-
tion as in Theorem 17 (and h is fixed). Show that, in contrast to the result of
Theorem 17, K̄(α) need not be convex for any 0 < α < 1 .1

b. Probabilistic constraints with discrete random variables

If ξ (ω) is a discrete random variable, there exists a finite number of scenarios
which correspond to the realizations of ξ . They are represented as ξ1,ξ2, . . . ,ξK .

Scenario k has a probability pk with
K
∑

k=1
pk = 1 .

Scenarios can be obtained through experts’ opinions. Another typical way to get
scenarios is when the information over the random variables comes from historical
data. The distribution of the random vector is then known as the empirical distribu-
tion.

Assume we have a constraint of the form

P{g(x,y(ω),ξ(ω)) ≤ 0} ≥ α . (2.11)

It is a joint probabilistic constraint as g(·) ≤ 0 may contain several constraints
under a vector representation. This includes classical cases such as g(x,y(ω),
ξ(ω)) = h(ω)−Ax . This also includes cases where the probabilistic constraint de-
pends on the recourse actions. Then g(x,y(ω),ξ(ω))=h(ω)−T (ω)x−W (ω)y(ω) .

1 This exercise was suggested by Yue Rong, University of California at Riverside.

3.2 Probabilistic or Chance Constraints 131

Using the indicator function η(a) = 0 if a ≤ 0 and 1 if at least one component
of a is strictly positive, the probabilistic constraint is equivalent to

K

∑
k=1

pk η(g(x,yk,ξk)) ≤ 1−α . (2.12)

The left-hand side of (2.12) sums up the probability of the scenarios for which
g(·) ≤ 0 is violated. Assume that for each scenario k , an upper bound vector uk

can be found such that g(x,yk,ξk) ≤ uk for all feasible x , yk . Then, (2.12) can be
transformed into

K

∑
k=1

pk wk ≤ 1−α, (2.13)

g(x,yk,ξk) ≤ uk wk , k = 1 . . . ,K , (2.14)

wk ∈ {0,1} , k = 1, . . . ,K . (2.15)

The binary variable wk plays the role of the indicator function. When
g(x,yk,ξk) ≤ 0 , wk takes the value 0 . When at least one component of g(x,yk,ξk)
is strictly positive, then wk = 1 and scenario k contributes pk to the left-hand side
in (2.13).

The joint probabilistic constraint (2.11) with a discrete random variable is trans-
formed into a mixed integer programming (MIP) formulation. When g(·) is linear,
the stochastic program with probabilistic constraint is transformed into a mixed in-
teger linear program (MILP) and can be solved using your favorite MILP solver. We
now provide two examples of how (2.11) is transformed into (2.13)–(2.15). We then
give an introduction to reformulations of (2.13)–(2.15) that allow efficient solutions
of large problems.

Example 3

Consider the example from Section 2.7a. We are asked to find the numbers x1 and
x2 of seats in first and business class for a plane of 200 seats. As in (2.11), assume
now a joint probabilistic constraint

P(x1 ≥ ξF ,x1 + x2 ≥ ξF +ξB) ≥ 0.95, (2.16)

where ξF and ξB represents the weekdays demands in first and business class.
This corresponds to the classical case where g(x,y(ω),ξ(ω)) = h(ω)− Ax , with
h(ω)T = (ξF ,ξF +ξB) and A =

[
1 0
1 1

]
.

Assume now the random variables (ξF ,ξB) are given by the empirical data of
last year. (These data must correspond to the number of calls and not to the number
of passengers, which may depend on the acceptance policy at that time). This creates

132 3 Basic Properties and Theory

an empirical distribution of 260 pairs (ξF ,ξB) for each weekday of last year. Each
of the 260 pairs is a scenario of probability 1/260 .

In (2.14), we need an upper bound on ξF − x1 and on ξF + ξB − x1 − x2 for
each k . Here, it suffices to take ξF and ξF +ξB , respectively. As an illustration, if
scenario k has demands (14,32) in first and business, then the two corresponding
constraints in (2.14) are

14− x1 ≤ 14wk ,

46− x1 − x2 ≤ 46wk .

Thus, (2.16) is formulated using 260 binary variables wk ’s, one constraint (2.13)
and 520 constraints in (2.14). To put it in more general terms, (2.16) is reformulated
using K extra binary variables and 2K + 1 extra constraints.

Example 4

Consider the farmer in Section 1.1. The example was built assuming a discrete ran-
dom variable with only three scenarios: good, fair, and bad. This number can easily
be extended either in a similar manner or by taking past observations of the yields.
We now assume K scenarios, each consisting of a vector of three yields.

The farmer finds it inappropriate to purchase large quantities of wheat and/or
corn. He considers it excessive to purchase more than a total of 20 T. Owing to
the uncertainty of mother nature, he allows for a 20% probability of excessive pur-
chases. Thus, his probabilistic constraint is

P(y1(ω)+ y2(ω) ≤ 20) ≥ 0.80 (2.17)

where y1(ω) and y2(ω) are the purchases of wheat and corn, respectively.
Here is a case where the probabilistic constraint depends on the recourse actions

under the general form g(x,y(ω),ξ(ω)) = h(ω)−T(ω)x−W (ω) y(ω) .
To obtain (2.14), we start from the representation of the constraint under scenario

k as −20+yk
1 +yk

2 ≤ 0 , where yk
1 and yk

2 represent the purchase of wheat and corn
under scenario k . From Table 1 in Section 1.1, the total requirement of wheat and
corn is 440 . The upper bound to form (2.14) is the value 420 , so that a single
constraint of the form

yk
1 + yk

2 ≤ 20 + 420wk (2.18)

is created. (If yk
1 + yk

2 ≤ 20 , then wk is 0 ; otherwise, wk = 1 and the constraint
imposes no limit on the purchase of wheat and corn as the total cannot exceed 440 .)
The recourse problem with K scenarios and the extra probabilistic constraint (2.17)
is reformulated as an MILP with K extra binary variables and K + 1 extra con-
straints.

3.2 Probabilistic or Chance Constraints 133

Improved formulation of a probabilistic constraint with discrete
random variables

For large values of K , the MILP may become difficult to solve. This is due to the
structure of (2.14). It is indeed a weak constraint on wk . To see this, consider the
example of (2.18).

Suppose that the total purchase under scenario k is 30 . Then (2.18) is equivalent
to 420wk ≥ 10 , or wk ≥ 0.0238 . As (2.18) is the only constraint on wk , integrality
can only be recovered through branching. The MILP solver will have to branch on
all nonzero binaries, and none of them is likely to be spontaneously 1 . Moreover,
after some wk ’s are fixed by branching, additional wk ’s may become fractional and
require extra branching.

It is classical then to search for efficient valid inequalities. A valid inequality is
a linear constraint added to the original formulation, which does not eliminate any
integer solution but eliminates fractional solutions (see Appendix 2 of Chapter 7 for
some examples). A valid inequality provides a reformulation of the problem that
contains fewer fractional solutions but the same integer solutions.

To illustrate valid inequalities, we use the example of constraint (2.17) and its re-
formulation (2.18). As the probabilistic constraint only depends on corn and wheat,
we may restrict our attention for this analysis to the first two components of the
random vector.

We may say that scenario k dominates scenario j if ξ k ≥ ξ j , where the in-
equality must hold componentwise. In the current farmer example, if scenario k
dominates scenario j , the yields of wheat and corn are higher in scenario k . It
follows that the purchases of both products can only be smaller under scenario k .
Hence, wk ≤ wj . A first set of potential valid inequalities is wk ≤ wj for all pairs
of scenarios such that ξ k ≥ ξ j .

Now, we may define Ak = { j | ξ k ≥ ξ j} as the dominance set of scenario k .
This dominance set includes k and all scenarios dominated by k . By the concept
of dominance, if wk = 1 , then wj = 1 , ∀ j ∈ Ak . An immediate consequence is
that wk = 0 if P(Ak) > α , where P(Ak) = ∑ j∈Ak

p j .
More generally, if P(∪k∈CAk) > α , the set C forms a so-called cover for which

the following constraint is a valid inequality:

∑
k∈C

wk ≤ |C|−1,

where |C| denotes the cardinality of C . The terminology cover comes from the
knapsack structure of (2.13), a structure thoroughly studied in integer programming.
However, covers are generated here from the probability of the dominance sets Ak

instead of simply from the coefficients pk .
We now illustrate the valid inequalities in the farmer problem with the extra

probabilistic constraint (2.17). Imagine the farmer is able to collect 25 scenarios,
each having probability 0.04 . (He may obtain them in a cooperative fashion with
some fellow farmers or get them from an agricultural research institute.)

134 3 Basic Properties and Theory

Assume that the first 9 scenarios (restricted to wheat’s and corn’s yields) are as
follows: (2.25,2.4) , (2.1,2.6) , (2.4,2.5) , (2.6,2.3) , (2.2,3) , (2,3.4) , (2.5,2.7) ,
(2.3,3.6) , (2.2,3.7) . They are represented in Figure 1. Assume also that, for all
other scenarios, P(Ak) > 0.8 ; hence, wk = 0 .

�

�
�

�

�

�

�

�
�

ξ1

ξ2

1
2 3

4

5

6

7

8
9

Fig. 1 Wheat and corn’s scenarios.

There are several dominance relations: ξ 3 ≥ ξ 1 , ξ 5 ≥ ξ 2 , ξ 7 ≥ ξ 2 , ξ 7 ≥ ξ 3 ,
ξ 8 ≥ ξ 1 , ξ 8 ≥ ξ 5 , ξ 8 ≥ ξ 6 , ξ 9 ≥ ξ 5 , ξ 9 ≥ ξ 6 , implying valid inequalities
w3 ≤ w1 , w5 ≤ w2 , w7 ≤ w2 , w7 ≤ w3 , w8 ≤ w1 , w8 ≤ w5 , w8 ≤ w6 , w9 ≤ w5 ,
w9 ≤ w6 .

Dominance sets Ak can be visualized by drawing an horizontal and a vertical
half-line from k . A5 and A7 are illustrated in Figure 1. A5 = {2,5} with P(A5) =
0.08 and A7 = {1,2,3,7} with P(A7) = 0.16 . Even if P(A5) + P(A7) > 0.2 ,
Scenarios 5 and 7 do not constitute a cover as P (A5 ∪A7) = 0.2 . Scenarios 3 and 9
have similar probabilities and constitute a cover: A3 = {1,3} with P(A3) = 0.08 ,
A9 = {2,5,6,9} with P(A9) = 0.16 and P (A3 ∪A9) = 0.24 . Thus w3 +w9 ≤ 1 is
a valid inequality. This example shows that covers based on the dominance sets Ak

are difficult to find as probabilities do not sum over sets that may intersect.
Only minimal covers are of interest. As an example, {1,3,9} is a cover but it is

not minimal as removing {1} still forms a cover. There are several other minimal
covers in this example: {1,4,9} , {3,4,5,6} , {3,8} , {4,5,7} , {4,6,7} , {4,8} ,
{7,8} {7,9} , {8,9} . In general, the MILP only adds minimal covers if they are vi-
olated by the current fractional point. The problem of efficient techniques for finding
a violated minimal cover based on dominance sets is studied in Ruszczyński [2002].
This paper also provides a more general treatment on the cases that create what we
have called here dominance.

3.3 Stochastic Integer Programs 135

Exercises

9. Consider Example 2 in Section 3.2b. Instead of putting a limit on the total pur-
chase of wheat and corn, the farmer does not want either purchase to be over
10 T. Thus, (2.17) is replaced by P(y1(ω) ≤ 10,y2(ω) ≤ 10) ≥ 0.80 . Show
how to reformulate the recourse problem with K scenarios and this extra prob-
abilistic constraint as a MILP with K extra binary variables and 2K + 1 extra
constraints.

10. Consider Section 3.2b. Restart from the original farming problem of Section 1.1
without a probabilistic constraint on the total purchase of wheat and corn. The
farmer now concentrates on sugar beet production. He finds it inappropriate to
sell less than 5400 T of sugar beets at the favorable price or more than 300 T
of sugar beets at the lower price. If either of these events happen, he considers
the sugar beet production planning as unsuccessful. Assume he wants a produc-
tion planning which maximizes its expected profit, with the constraint that the
probability of an unsuccessful sugar beet production planning is no more than
20%.

(a) Show how to reformulate the recourse problem with K scenarios and the
extra probabilistic constraint on sugar beet production planning as a MILP
with K extra binary variables and 2K + 1 extra constraints.

(b) Is it still possible to get a dominance result based on the yield of sugar beet
production?

3.3 Stochastic Integer Programs

a. Recourse problems

The general formulation of a two-stage integer program resembles that of the gen-
eral linear case presented in Section 1.1. It simply requires that some variables, in
either the first stage or the second stage, are integer. As we have seen in the exam-
ples in Chapter 1, in many practical situations the restrictions are, in fact, that the
variables must be binary, i.e., they can only take the value zero or one. Formally, we
may write

min
x∈X

z = cT x + Eξ min{q(ω)T y(ω) | Wy(ω) = h(ω)−T(ω)x,y(ω) ∈ Y a. s. }
s. t. Ax = b ,

where the definitions of c , b , ξ , A , W , T , and h are as before. However, X
and/or Y contains some integrality or binary restrictions on x and/or y . With this
definition, we may again define a deterministic equivalent program of the form

136 3 Basic Properties and Theory

min
x∈X

z = cT x +Q(x)

s. t. Ax = b

with Q(x) the expected value of the second stage defined as in Section 3.1.
In this section, we are interested in the properties of Q(x) and K2 = {x | Q(x) <

∞} . Clearly, if the only integrality restrictions are in X , the properties of Q(x) and
K2 are the same as in the continuous case. The main interesting cases are those in
which some integrality restrictions are present in the second stage. The properties of
Q(x,ξ) for given ξ are those of the value function of an integer program in terms
of its right-hand side. This problem has received much attention in the field of in-
teger programming (see, e.g., Blair and Jeroslow [1982] or Nemhauser and Wolsey
[1988]). In addition to being subadditive, the value function of an integer program
can be obtained by starting from a linear function and finitely often repeating the
operations of sums, maxima, and non-negative multiples of functions already ob-
tained and rounding up to the nearest integer. Functions so obtained are known as
Gomory functions (see again Blair and Jeroslow [1982] or Nemhauser and Wolsey
[1988]). Clearly, the maximum and rounding up operations imply undesirable prop-
erties for Q(x,ξ) , Q(x) , and K2 , as we now illustrate. General proofs can be
found in Louveaux and Schultz [2003].

Proposition 20. The expected recourse function Q(x) of an integer program is in
general, lower semicontinuous, nonconvex and discontinuous.

Example 5

We illustrate the proposition in the following simple example where the first stage
contains a single decision variable x ≥ 0 and the second-stage recourse function is
defined as:

Q(x,ξ) = min{2y1 + y2 | y1 ≥ x− ξ , y2 ≥ ξ − x , y ≥ 0 , integer}. (3.1)

Assume ξ can take on the values one and two with equal probability 1/2 . Let �a�
denote the smallest integer greater than or equal to a (the rounding up operation)
and �a� the truncation or rounding down operation (�a� = −�−a�). Consider ξ =
1 . For x ≤ 1 , the optimal second-stage solution is y1 = 0 , y2 = �1−x� . For x ≥ 1 ,
it is y1 = �x− 1� , y2 = 0 . Hence, Q(x,1) = max{2(�x− 1�),�1 − x�} , a typical
Gomory function. It is discontinuous at x = 1 . Nonconvexity can be illustrated
by Q(0.5,1) > 0.5Q(0,1)+0.5Q(1,1) . Similarly, Q(x,2) = max{2(�x−2�),�2−
x�} . The three functions, Q(x,1) , Q(x,2) , and Q(x) are represented in Figure 2.

The recourse function, Q(x) , is clearly discontinuous in all positive integers.
Nonconvexity can be illustrated by Q(1.5) = 1.5 > 0.5Q(1)+ 0.5Q(2) = 0.75 .
Thus Q(x) has none of the properties that one may wish for to design an algorithmic

3.3 Stochastic Integer Programs 137

procedure. Note, however, that a convexity-related property exists in the case of sim-
ple integer recourse (Proposition 8.4) and that it applies to this example.

Fig. 2 Example of discontinuity.

Continuity of the recourse function can be regained when the random variable is
absolutely continuous (Stougie [1987]).

Proposition 21. The expected recourse function Q(x) of an integer program with
an absolutely continuous random variable is continuous.

Note, however, that despite Proposition 21, the recourse function Q(x) remains,
in general, nonconvex.

138 3 Basic Properties and Theory

Example 6

Consider Example 5 but with the (continuous) random variable defined by its cu-
mulative distribution,

F(t) = P(ξ ≤ t) = 2−2/t,1 ≤ t ≤ 2 .

Consider 1 < x < 2 . For 1 ≤ ξ < x , we have 0 < x − ξ < 1 ; hence, y1 = 1 ,
y2 = 0 , while for x < ξ ≤ 2 , we have 0 < ξ − x ≤ 1 ; hence, y1 = 0 , y2 = 1 .

It follows that

Q(x) =
∫ x

1
2dF(t)+

∫ 2

x
1dF(t) = 2F(x)+ 1−F(x)

= F(x)+ 1 = 3−2/x ,

which is easily seen to be nonconvex.
Properties are just as poor in terms of feasibility sets. As in the continuous case,

we may define the second-stage feasibility set for a fixed value of ξ as K2(ξ (ω)) =
{x | there exists y s.t. Wy = h(ω)−T (ω)x,y ∈ Y} where ξ (ω) is formed by the
stochastic components of h(ω) and T (ω) .

Proposition 22. The second-stage feasibility set K2(ξ) is in general
nonconvex.

Proof: Because K2(ξ) = {x | Q(x,ξ) < ∞} , nonconvexity of K2(ξ) immediately
follows from nonconvexity of Q(x,ξ) .

A simple example suffices to illustrate this possibility.

Example 7

Let the second stage of a stochastic program be defined as

−y1 + y2 ≤ ξ− x1 , (3.2)

y1 + y2 ≤ 2− x2 , (3.3)

y1,y2 ≥ 0 and integer. (3.4)

Assume ξ takes on the values 1 and 2 with equal probability 1/2 . We then
construct K2(1) .

By (3.3), x2 ≤ 2 is a necessary condition for second-stage feasibility. For 1 <
x2 ≤ 2 , the only feasible integer satisfying (3.3) is y1 = y2 = 0 . This point is also
feasible for (3.2) if ξ − x1 ≥ 0 , i.e., if x1 ≤ 1 .

For 0 < x2 ≤ 1 , the integer points y satisfying (3.3) are (0,0) , (0,1) , (1,0) .
The one yielding the smallest left-hand side (and thus the most likely to yield points

3.3 Stochastic Integer Programs 139

Fig. 3 Feasibility set for Example 7.

in K2(1)) is (1,0) . It requires ξ − x1 ≥ −1 , i.e., x1 ≤ 2 . Hence K2(1) is as in
Figure 3 and is clearly nonconvex. It may be represented as K2(1) = {x | min{x1 −
1,x2 −1} ≤ 0,0 ≤ x1 ≤ 2,0 ≤ x2 ≤ 2} and is again a typical Gomory function due
to the minimum operation.

We may then define the second-stage feasibility set K2 as the intersection of
K2(ξ) over all possible ξ values. This definition poses no difficulty when ξ has a
discrete distribution. In Example 7, K2 = K2(1) and is thus also nonconvex.

Computationally, it might be very useful to have the constraint matrix of the
extensive form totally unimodular. (Recall that a matrix is totally unimodular if
the determinants of all square submatrices are 0 , 1 , or −1 .) This would imply
that any solution of the associated stochastic continuous program would be integer
when right-hand sides of all constraints are also integer. A widely used sufficient
condition for total unimodularity is as follows: all coefficients are 0 , 1 , or −1 ;
every variable has at most two nonzero coefficients and constraints can be separated
in two groups such that, if a variable has two nonzero coefficients and if they are
of the same sign, the two associated rows belong to different sets and if they are of
opposite signs they belong to the same set.

To help understand the sufficiency condition, consider the following
matrix ⎛

⎝ 1 0 1 −1
0 1 1 0
−1 1 0 1

⎞
⎠

as an example. For this matrix, one set consists of Rows 1 and 3, and the second
set contains just Row 2. The constraint matrix of the extensive form of a nontrivial
stochastic program cannot satisfy this sufficient condition. For simplicity, consider
the case of a fixed T matrix. Assume that any variable that has a nonzero coefficient
in T also has a nonzero coefficient in A . Then, if |Ξ | ≥ 2 , the constraint matrix
of the extensive form contains a submatrix

140 3 Basic Properties and Theory

⎛
⎝A

T
T

⎞
⎠

that has at least three nonzero coefficients. Thus, only very special cases (a random
T matrix with every column having a nonzero element in only one realization, for
example) could lead to totally unimodular matrices.

Last but not least, it should be clear that just finding Q(x) for a given x becomes
an extremely difficult task for a general integer second stage. This is especially
true because there is no hope to use sensitivity analysis or some sort of bunching
procedure (see Section 5.4) to find Q(x,ξ) for neighboring values of ξ . Cases
where Q(x) can be computed or even approximated in a reasonable amount of
time should thus be considered exceptions. One such exception is provided in the
next section.

b. Simple integer recourse

Let ξ be a random vector with support Ξ in ℜm , expectation μ , and cumulative
distribution F with F(t) = P{ξ ≤ t} , t ∈ Rm . A two-stage stochastic program
with simple integer recourse is as follows:

SIR minz = cT x + Eξ{min(q+)T y+ +(q−)T y− |
y+ ≥ ξ−Tx, y− ≥ T x−ξ ,

y+ ∈ Zm
+, y− ∈ Zm

+ a. s. }
s. t. Ax = b , x ∈ X , (3.5)

where X typically defines either non-negative continuous or non-negative integer
decision variables and where we use ξ = h because both T and q are known and
fixed. As in the continuous case, we may replace the second-stage value function
Q(x) by a separable sum over the various coordinates. Let χ = Tx be a tender to
be bid against future outcomes. Then Q(x) is separable in the components χi .

Q(x) =
m

∑
i=1

ψi(χi) , (3.6)

with
ψi(χi) = Eξiψi(χi,ξi) (3.7)

and

ψi(χi,ξi) = min{q+
i y+

i + q−
i y−

i | y+
i ≥ ξi − χi ,

y−
i ≥ χi −ξi , y+

i ,y−
i ∈ Z+} . (3.8)

3.3 Stochastic Integer Programs 141

As in the continuous case, any error made in bidding χi versus ξi must be com-
pensated for in the second stage, but this compensation must now be an integer.

Now define the expected shortage as

ui(χi) = E�ξi − χi�+

and the expected surplus as

vi(χi) = E�χi −ξi�+ ,

where �x�+ = max{�x�,0} . It follows that ψi(χi) is simply

ψi(χi) = q+
i ui(χi)+ q−

i vi(χi).

As is reasonable from the definition of SIR, we assume q+
i ≥ 0,q−

i ≥ 0 .
Studying SIR is thus simply studying the expected shortage and surplus. Unless

necessary, we drop the indices in the sequel. Let ξ be some random variable and
x ∈ℜ . The expected shortage is

u(x) = E�ξ− x�+ (3.9)

and the expected surplus is
v(x) = E�x−ξ�+ . (3.10)

For easy reference, we also define their continuous counterparts. Let the continuous
expected shortage be

û(x) = E(ξ− x)+ (3.11)

and the continuous expected surplus be

v̂(x) = E(x−ξ)+ . (3.12)

First observe that Example 5 (and 6) is a case of a stochastic program with simple
recourse, from which we know that u(x)+ v(x) is in general nonconvex and dis-
continuous unless ξ has an absolutely continuous probability distribution function.
We thus limit our ambitions to study finiteness and computational tractability for
u(·) and v(·) . The following results appear in Louveaux and van der Vlerk [1993].

Proposition 23. The expected shortage function is a non-negative non-decreasing
extended real-valued function. It is finite for all x ∈ ℜ if and only if μ+ =
E max{ξ,0} is finite.

Proof: We only give the proof for finiteness because the other results are immedi-
ate. First, observe that for all t in ℜ ,

(t − x)+ ≤ �t − x�+ ≤ (t − x + 1)+ ≤ (t − x)+ + 1 .

Taking expectation yields

142 3 Basic Properties and Theory

û(x) ≤ u(x) ≤ û(x−1) ≤ û(x)+ 1 . (3.13)

The result follows as û(x) is finite if and only if μ+ is finite.

We now provide a computational formula for u(x) .

Theorem 24. Let ξ be a random variable with cumulative distribution function
F . Then

u(x) =
∞

∑
k=0

(1−F(x + k)) . (3.14)

Proof: Following the previous definitions, we have:

∞

∑
k=0

(1−F(x + k)) =
∞

∑
k=0

P{ξ− x > k}

=
∞

∑
k=0

∞

∑
j=k+1

P{�ξ− x�+ = j}

=
∞

∑
j=1

j−1

∑
k=0

P{�ξ− x�+ = j}

=
∞

∑
j=1

jP{�ξ− x�+ = j} = E�ξ− x�+ = u(x) ,

which completes the proof.

Similar results hold for v(x) .

Theorem 25. Let ξ be a random variable with F̂(t) = P{ξ < t} and μ− = Eξ− .
Then v is a non-negative nondecreasing extended real-valued function, which is
finite for all x ∈ℜ if and only if μ− is finite. Moreover,

v(x) =
∞

∑
k=0

F̂(x− k) . (3.15)

Theorems 24 and 25 provide workable formulas for a number of cases.

Case a. Clearly, if ξ has a finite range, then (3.14) and (3.15) reduce to a finite
computation.

Example 8

Let ξ have a uniform density on [0,a] for a > 0 . Consider 0 ≤ x ≤ a . Then

3.3 Stochastic Integer Programs 143

u(x) =
∞

∑
k=0

(1−F(x + k)) =
�a−x�+−1

∑
k=0

(1−F(x + k))

=
�a−x�+−1

∑
k=0

(
1− x + k

a

)

= �a− x�+
(

1− x
a

)
− �a− x�+(�a− x�+ −1)

2a
.

Observe that �a − x�+ is piecewise constant. Hence, u(x) is piecewise linear and
convex.

Similarly, one computes

v(x) =
x(�x�+ 1)

a
− �x�(�x�+ 1)

2a
.

Again, v(x) is piecewise linear and convex. It follows that a simple integer recourse
program with uniform densities is a piecewise linear convex program whose second-
stage recourse function is easily computable.

Case b. For some continuous random variables, we may obtain analytical expres-
sions for u(x) and v(x) .

Example 9

Let ξ follow an exponential distribution with parameter λ > 0 . Then, for x ≥ 0 ,

u(x) =
∞

∑
k=0

(1−F(x + k)) =
∞

∑
k=0

e−λ (x+k) =
e−λ x

1− e−λ ,

while

v(x) =
∞

∑
k=0

F(x− k) = �x�+ 1− e−λ (x−�x�) ·
�x�
∑
k=0

e−λ k

= �x�+ 1−
(

e−λ (x−�x�) − e−λ (x+1)

1− e−λ

)
.

Observe that v(x) is nonconvex (as it would be u(x) for x ≤ 0).

Case c. Finite computation can also be obtained when Ξ ∈ Z . From Theorems
24 and 25, we derive the following corollary.

Corollary 26. For all n ∈ Z+ , we have

144 3 Basic Properties and Theory

u(x + n) = u(x)−
n−1

∑
k=0

(1−F(x + k)) (3.16)

and

v(x + n) = v(x)+
n

∑
k=1

F̂(x + k)) . (3.17)

Corollary 27. Let ξ be a discrete random variable with support Ξ ∈ Z . Then

u(x) =

{
μ+ −�x�−∑−1

k=�x�F(k) if x < 0 ,

μ+ −�x�+∑�x�−1
k=0 F(k) if x ≥ 0 .

Proof: Because Ξ ∈ Z , F(t) = F(�t�) , for all t ∈ℜ . Hence, u(x) = u(�x�) for
all x ∈ R . Now, u(0) = μ+ . Then apply (3.16) to obtain the result.

Corollary 28. Let ξ be a discrete random variable with support Ξ ∈ Z . Then

v(x) =

{
μ− −∑−1

k=�x� F(k) if x < 0 ,

μ− +∑�x�−1
k=0 F(k) if x ≥ 0 .

Thus, here the finite computation comes from the finiteness of �x� .

Case d. Finally, we may have a random variable that does not fall in any of the
given categories. We may then resort to approximations.

Theorem 29. Let ξ be a random variable with cumulative distribution function,
F . Then

û(x) ≤ u(x) ≤ û(x)+ 1−F(x) . (3.18)

Proof: The first inequality was given in (3.13). Because 1−F(t) is nonincreasing,
we have for any x ∈ℜ and any k ∈ {1,2, . . .} that

1−F(x + k) ≤ 1−F(t) , t ∈ [x + k−1,x + k) .

Hence,
∞

∑
k=1

(1−F(x + k)) ≤
∫ ∞

x
(1−F(t)) dt .

Adding 1−F(x) to both sides gives the desired result.

Theorem 30. Let ξ be a random variable with cumulative distribution function
F . Let n be some integer, n ≥ 1 . Define

3.3 Stochastic Integer Programs 145

un(x) =
n−1

∑
k=0

(1−F(x + k))+ û(x + n) . (3.19)

Then
un(x) ≤ u(x) ≤ un(x)+ 1−F(x + n) . (3.20)

Proof: The proof follows directly from Theorem 29 and Formula (3.16).

To approximate u(x) within an accuracy ε , we have to compute the first n
terms in u(x) , where n is chosen so that F(x + n) ≥ 1 − ε and û(x + n) , which
involves computing one integral.

Example 10

Let ξ follow a normal distribution with mean μ and variance σ2 , i.e., N(μ ,σ2) ,
with cumulative distribution function F and probability density function f . Inte-
grating by parts, one obtains:

un(x) =
n−1

∑
k=0

(1−F(x + k))+
∫ ∞

x+n
(1−F(t)) dt

=
n−1

∑
k=0

(1−F(x + k))− (x + n)(1−F(x + n))+
∫ ∞

x+n
t f (t) dt .

Using t f (t) = μ f (t)−σ2 f ′(t) , it follows that

un(x) =
n−1

∑
k=0

(1−F(x + k))+ (μ− x−n)(1−F(x + n))+σ2 f (x + n) .

Similar results apply for v(x) .

Theorem 31. Let ξ be a random variable with cumulative distribution function
F̂(t) = P {ξ < t} . Then

v̂(x) ≤ v(x) ≤ v̂(x)+ F̂(x) . (3.21)

Let n be some integer, n ≥ 1 . Define

vn(x) =
n−1

∑
k=0

F̂(x− k)+ v̂(x−n) . (3.22)

Then
vn(x) ≤ v(x) ≤ vn(x)+ F̂(x−n) . (3.23)

146 3 Basic Properties and Theory

Example 10 (continued)

Let ξ follow an N(μ ,σ2) distribution, with cumulative distribution function F
and probability density function f . Then

vn(x) =
n−1

∑
k=0

F(x− k)+ (x−n− μ)F(x−n)+σ2 f (x−n) .

As a conclusion, expected shortage, expected surplus, and thus simple integer re-
course functions can be computed in finitely many steps either in an exact manner or
within a prespecified tolerance ε . Deeper studies of continuity and differentiability
properties of the recourse function can be found in Stougie [1987], Louveaux and
van der Vlerk [1993], and Schultz [1993].

c. Probabilistic constraints

Probabilistic constraints involving integer decision variables may generally be treated
in exactly the same manner as if they involved continuous decision variables. One
need only take the intersection of their deterministic equivalents with the integrality
requirements. The question is then how to obtain a polyhedral representation of this
intersection. This problem sometimes has quite nice solutions.

Example 11: Covering

Consider an example where one can invest in any one of n projects in order to
obtain at least b units of a good. Projects could be mines needed to extract at least
b tons of ore per year, or buildings to let in order to obtain at least b thousands of
rent per year

Let xi be the binary variable representing the decision to invest (xi = 1) or not
(xi = 0) in project i . In a deterministic setting, the yield of a project is the quantity
ai and the requirement of b units is described by the deterministic constraint

n

∑
i=1

aixi ≥ b . (3.24)

Now, assume the yields are in fact random. This may come from operational diffi-
culties in a mine or on some floors of the buildings remaining vacant for a period of
time. Then, a typical probabilistic constraint would be

P

(
n

∑
i=1

ξi xi ≥ b

)
≥ α, (3.25)

3.3 Stochastic Integer Programs 147

where ξi is the random yield of project i .
Due to the binary nature of the decision variables xi , this constraint is equivalent

to

P

(
∑
i∈S

ξi ≥ b

)
≥ α (3.26)

where S is some subset of {1, . . . ,n} representing the selected projects.
Now, if the random variables ξi follow a Poisson distribution with parameter ai ,

then ξS = ∑i∈S ξi follow a Poisson distribution with parameter ∑i∈S ai and (3.26)
is equivalent to

P (ξS ≥ b) ≥ α . (3.27)

As b and α are given and ξS is known to follow a Poisson distribution, this cor-
responds to finding in the table of the cumulative Poisson distribution the smallest
parameter value for which (3.27) holds. Let B be this value. Then (3.27) is equiva-
lent to

∑
i∈S

ai ≥ B

or
S

∑
i=1

ai xi ≥ B . (3.28)

Thus, the probabilistic constraint (3.25) has the linear equivalent (3.28). This
linear equivalent has exactly the same form as (3.24) with b replaced by a larger
quantity B .

Example 12

Assume one has five projects with expected yields 2 , 2.5 , 4 , 4.5 , and 7 . The
level b = 9 is requested. The deterministic constraint based on expected yields is

2 x1 + 2.5 x2 + 4 x3 + 4.5 x4 + 7 x5 ≥ 9 .

The constraint can be satisfied with Project 5 and any other, or by Projects 1, 2 and
4, for instance.

If yields are random and follow a Poisson distribution and if the level of 9 must
be obtained with probability 90%, then a value of B = 13 is found in the Poisson
table and (3.28) gives the linear equivalent:

2 x1 + 2.5 x2 + 4 x3 + 4.5 x4 + 7 x5 ≥ 13 .

148 3 Basic Properties and Theory

Example 13: Routing

Let V = {v1,v2, . . . ,vn} be a set of vertices, typically representing customers. Let
v0 represent the depot and let V0 = V ∪{v0} . A route is an ordered sequence L =
{i0 = 0, i1, i2, . . . , ik, ik+1 = 0} , with k ≤ n , starting and ending at the depot and
visiting each customer at most once. Clearly, if k < n , more than one vehicle is
needed to visit all customers. Assume a vehicle of given capacity C follows each
route, collecting customers’ demands di . If demands di are random, it may turn
out that at some point of a given route, the vehicle cannot load a customer’s demand.
This is clearly an undesirable feature, which is usually referred to as a failure of the
route. A probabilistic constraint for the capacitated routing requires that only routes
with a small probability of failure are considered feasible:

P (failure on any route) ≤ α , (3.29)

where we note that here and elsewhere we use α as an upper bound on a probability
(instead of a lower bound as in (2.1)) in following typical usage in the context.
We now show, as in Laporte, Louveaux, and Mercure [1989], that any route that
violates (3.29) can be eliminated by a linear inequality. For any route L , let S =
{i1, i2, . . . , ik} be the index set of visited customers. Violation of (3.29) occurs if

P (∑
i∈S

di > C) > α . (3.30)

Let Vα(S) denote the smallest number of vehicles required to serve S so that the
probability of failure in S does not exceed α , i.e., Vα(S) is the smallest integer
such that

P (∑
i∈S

di > C ·Vα(S)) ≤ α . (3.31)

Now, let S̄ denote the complement of S versus V0 , i.e., S̄ =V0\S . Then the follow-
ing subtour elimination constraint imposes, in a linear fashion, that at least Vα(S)
vehicles are needed to cover demand in S :

∑
i∈S, j∈S̄ or i∈S̄, j∈S

xi j ≥ 2Vα(S) , (3.32)

where, as usual, xi j = 1 when arc i j is traveled in the solution and xi j = 0 other-
wise. It follows that routes that violate (3.29) can be eliminated when needed by the
linear constraint (3.32). Observe that this result is obtained without any assumption
on the random variables. Also observe that (3.32) is not the deterministic equivalent
of (3.29). This should be clear from the fact that an analytical expression for (3.29)
is difficult to write. Finally, observe that in practice, as for many random variables,
the probability distribution of ∑

i∈S

di is easily obtained. The computation of Vα(S)

in (3.31) poses no difficulty. Additional results appear in the survey on stochastic
vehicle routing by Gendreau, Laporte, and Séguin [1996].

3.4 Multistage Stochastic Programs with Recourse 149

Exercises

1. Consider the following second-stage integer program:

Q(x,ξ) = max{4y1 + y2 | y1 + y2 ≤ ξ x,0 ≤ y1 ≤ 2,0 ≤ y2 ≤ 1,y integer} .

(a) Obtain y∗
1 , y∗

2 , and Q(x,ξ) as Gomory functions.
(b) Consider ξ = 1 . Observe that Q(x,1) is piecewise constant on four pieces

(x < 1 , 1 ≤ x < 2 , 2 ≤ x < 3 , 3 ≤ x).
(c) Now assume ξ is uniformly distributed over [0,2] . Obtain Q(x) on four

pieces (x < 0.5 , 0.5 ≤ x < 1 , 1 ≤ x < 1.5 , 1.5 ≤ x). Check the noncon-
cavity of Q(x) . Observe that Q(x) is concave on each piece separately,
but that Q(x) is not (compare, e.g., Q(1) to 1/2Q(3/4)+1/2Q(5/4)).

2. Consider ξ uniformly distributed over [0,1] and 0 ≤ x ≤ 1 . Show that u(x)+
v(x) = 1 .

3. Consider ξ uniformly distributed over [0,2] .

(a) Compute u(x) directly from Definition (3.9) and check with the result in
Example 8. Observe that u(x) is piecewise linear, convex, and continuous.

(b) Compute û(x) .
(c) Show that u(x)− û(x) is decreasing in x .

4. Consider ξ that is Poisson distributed with parameter three. Compute u(3) .

5. (a) Let ξ be normally distributed with mean zero and variance one. What is
the accuracy level of u3(0) versus u(0) ?

(b) Let ξ be normally distributed with mean μ and variance σ2 . Show that
u(μ) is independent of μ . Is the accuracy of un(μ) , n given, increasing
or decreasing with σ2 ?

6. Consider Example 11. In this example, a probabilistic constraint has a determin-
istic linear equivalent.

(a) Does this also hold if xi are integer variables, instead of binary variables?
(b) Does this also hold if the random variables ξi are normally distributed with

mean ai and variance σ2
i ?

3.4 Multistage Stochastic Programs with Recourse

The previous sections in this chapter concerned stochastic programs with two stages.
Most practical decision problems, however, involve a sequence of decisions that re-
act to outcomes that evolve over time. In this section, we will consider the stochastic
programming approach to these multistage problems. We present the same basic re-
sults as in previous sections. We describe the basic structure of feasible solutions,

150 3 Basic Properties and Theory

objective values, and conditions for optimality. We begin again with the linear, fixed
recourse, finite horizon framework because this model has been the most widely
implemented. We then continue with more general approaches.

We start with implicit nonanticipativity constraints as in the previous sections.
The multistage stochastic linear program with fixed recourse then takes the follow-
ing form (where we note that transposes are suppressed when they are clear from
context to avoid excessive notation):

minz = c1x1 + Eξ 2 [minc2(ω)x2(ω2)+ · · ·+ EξH [mincH(ω)xH(ωH)] . . .]

s. t. W 1x1 = h1 ,

T 1(ω2)x1 +W2x2(ω2) = h2(ω) ,

· · · ...

T H−1(ωH)xH−1(ωH−1)+WHxH(ωH) = hH(ω) ,

x1 ≥ 0 ; xt(ωt) ≥ 0 , t = 2, . . . ,H ;

(4.1)

where c1 is a known vector in ℜn1 , h1 is a known vector in ℜm1 , ξ t(ω)T =
(ct(ω)T ,ht(ω)T ,Tt−1

1· (ω), . . . ,Tt−1
mt ·) is a random Nt -vector defined on (Ω ,Σ t ,P)

(where Σ t ⊂ Σ t+1) for all t = 2, . . . ,H , and each Wt is a known mt ×nt matrix.
The decisions x depend on the history up to time t , which we indicate by ωt . We
also suppose that Ξ t is the support of ξt .

For the financial planning problem in Section 1.2, these parameters are:

ct(ω) = 0,t = 1, . . . ,H −1;

cH(ω) = (q,−r);
Wt = eT

I ,t = 1, . . . ,H −1;

W H = [1−1],t = 1, . . . ,H −1;

Tt = −ξ (ωt)T , t = 1, . . . ,H;

h1 = b;

ht = 0,t = 1, . . . ,H −1;

hH = −G.

We first describe the deterministic equivalent form of this problem in terms of a
dynamic program. If the stages are 1 to H , we can define states as xt(ωt) . Noting
that the only interaction between periods is through this realization, we can define a
dynamic programming type of recursion. For terminal conditions, we have:

QH(xH−1,ξH(ω)) = mincH(ω)xH(ω)

s. t. W HxH(ω) = hH(ω)−TH−1(ω)xH−1 ,

xH(ω) ≥ 0 .

(4.2)

3.4 Multistage Stochastic Programs with Recourse 151

For the financial planning problem in Section1.2, given xH−1 and ξH(ω) , (4.2)
has an optimal solution given by

xH(ω) = (y(ω),w(ω)) = ((G− ξH(ω)T xH−1(ω))+,(ξH(ω)T xH−1(ω)−G)+).

Solutions for other stages can be obtained with a backward recursion, let-
ting Qt+1(xt) = Eξt+1 [Qt+1(xt ,ξ t+1(ω))] for all t to obtain the recursion for
t = 2, . . . ,H −1 ,

Qt(xt−1,ξ t(ω)) = minct(ω)xt(ω)+Qt+1(xt)

s. t. Wtxt(ω) = ht(ω)−Tt−1(ω)xt−1 ,

xt(ω) ≥ 0 ,

(4.3)

where xt indicates the state of the system. Other state information in terms of the
realizations of the random parameters up to time t should be included if the dis-
tribution of ξt is not independent of the past outcomes. In the financial planning
case, the value function, Qt+1(xt) , represents the expected utility of choosing the
asset allocations given by xt in the t th period and choosing optimal allocations in
all subsequent periods.

The value we seek is:

minz = c1x1 +Q(x1)

s. t. W 1x1 = h1 ,

x1 ≥ 0 ,

(4.4)

which has the same form as the two-stage deterministic equivalent program. The
examples of this formulation in Chapter 1 for financial planning and capacity expan-
sion could then be re-cast as two-stage problems if the second-stage value function
Q(x1) can be found.

We would again like to obtain properties of the problems in (4.2)–(4.4) that allow
uses of mathematical programming procedures such as decomposition. We concen-
trate first on the form of the feasible regions for problems (4.3). Let these be

Kt = {xt | Qt+1(xt) < ∞} .

We have the following result which helps in the development of several algorithms
for multistage stochastic programs.

Theorem 32. The sets Kt and functions Qt+1(xt) are convex for t = 1, . . . ,H −1
and, if Ξ t is finite for t = 1, . . . ,H , then Kt and Qt+1(xt) are polyhedral.

Proof: Proceed by induction. Because QH(xH−1,ξH(ω)) is convex for all ξH(ω) ,
so too is QH(xH−1) . We can then carry this back to each t < T −1 . The same ap-
plies for the polyhedrality property because finite numbers of realizations lead to
each Qt+1(xt) ’s being the sum of a finite number of polyhedral functions, which is
then polyhedral.

152 3 Basic Properties and Theory

We note that we may also describe the feasibility sets Kt in terms of intersections
of feasibility sets for each outcome if we have finite second moments for ξt in each
period. This result is also true when we have a finite number of possible realizations
of the future outcomes. In this case, the set of possible future sequences of outcomes
are called scenarios.

The description of scenarios is often made on a tree such as that in Figure 4.
Here, there are seven scenarios that are evident in the last stage (H = 4). In previous
stages (t < 4), we have a more limited number of possible realizations, which we
call the stage t scenarios. Each of these period t scenarios is said to have a single
ancestor scenario in stage (t −1) and perhaps several descendant scenarios in stage
(t + 1). We note that different scenarios at stage t may correspond to the same ξt

realizations and are only distinguished by differences in their ancestors.

Fig. 4 A tree of seven scenarios over four periods.

The deterministic equivalent program to (4.1) with a finite number of scenar-
ios is still a linear program. It has the structural form indicated in Figure5, where
subscripts indicate different scenario realizations for the Tt matrices. This is often
called arborescent form and can be exploited in large-scale optimization approaches
as in Kallio and Porteus [1977]. A difficulty is still, however, that these problems
become extremely large as the number of stages increases, even if only a few real-
izations are allowed in each stage.

In some problems, however, we can avoid much of this difficulty if the interac-
tions between consecutive stages are sufficiently weak. This is the case in the ca-
pacity expansion problem described in Section 1.3. Here, capacity carried over from

3.4 Multistage Stochastic Programs with Recourse 153

W 1

T 1
1

T 1
2

W 2

T 2
1

T 2
2

W 2

T 2
3

T 2
4

W 3

T 3
1

T 3
2

W 3

T 3
3

W 3

T 3
4

W 3

T 3
5

T 3
6

T 3
7

W 4

W 4

W 4

W 4

W 4

W 4

W 4

Fig. 5 The deterministic equivalent matrix for a problem with seven scenarios in four periods.

one stage to the next is not affected by the demand in that stage. Decisions about
the amount of capacity to install can be made at the beginning and then the future
only involves reactions to these outcomes. Problems with this form are called block
separable as mentioned in Section 1.3. Formally, we have the following definition
for block separability (see Louveaux [1986]).

Definition 33. A multistage stochastic linear program (4.1) has block separable
recourse if for all periods t = 1, . . . ,H and all ω , the decision vectors, xt(ω) ,
can be written as xt(ω) = (wt (ω),yt(ω)) where wt represents aggregate level
decisions and yt represents detailed level decisions. The constraints also follow
these partitions:

1. The stage t objective contribution is ctxt(ω) = rtwt(ω)+ qtyt(ω) .
2. The constraint matrix Wt is block diagonal:

Wt =
(

Wt 0
0 Tt

)
. (4.5)

3. The other components of the constraints are random but we assume that for
each realization of ω , T t(ω) and ht(ω) can be written:

Tt(ω) =
(

Rt(ω) 0
St(ω) 0

)
and ht(ω) =

(
bt(ω)
dt(ω)

)
, (4.6)

where the zero components of Tt correspond to the detailed level variables.

To put the capacity expansion problem in Section 1.3 into this framework, we
keep information about the the installed capacity from the current and previous

154 3 Basic Properties and Theory

periods as wt, j = xt− j for j = 0, . . . ,Lmax , where Lmax = maxi Li and xt− j follows
the notation in Section 1.3, and re-label the current available capacity at time t as
wt,Lmax+1 . With these definitions, we define A1 = In(Lmax+2)×n(Lmax+2) , an n(Lmax +
2)×n(Lmax+2) identity matrix and let h1 = [(x−1)T ,(x−2)T , . . . ,(x−Lmax)T ,01×2n]T ,
where 01×2n indicates a 1 × 2n matrix of zeroes, as the initial conditions for the
problem where x− j is interpreted as capacity installed j periods before the ini-
tial period (which then replaces the information in the remaining existing capacity
vector gt used in Section 1.3). We can then define, for t = 1, . . . ,H −1 ,

Rt =
(−InLmax×nLmax 0n×n 0n×n

0nLmax×nLmax 0n×n −In×n

)
; (4.7)

St =
(−∑n

i=1 aiei∑Li
j=Δi

en(j−1)+i 0n×2n

0m×nLmax 0n×2n

)
; (4.8)

and, for t = 2, . . . ,H ,

Wt =
(

0nLmax×n InLmax×nLmax 0nLmax×n

−In×n ∑n
i=1 eieT

(n−1)Li+i In×n

)
; (4.9)

Tt =
(
∑n

i=1 ei∑m
j=1 en(j−1)+i In×n

∑m
j=1 e j ∑n

i=1 en(i−1)+ j 0n×n

)
; (4.10)

bt = 0n(Lmax+1)×1 , and dt(ω) = [dt
1, . . . ,d

t
m,01×n]T , where dt is defined as in Sec-

tion 1.3.
Notice that (3) in the definition implies that detailed level variables, correspond-

ing to the capacity usage in each period in the capacity expansion model, have no
direct effect on future constraints. This is the fundamental advantage of block sepa-
rability.

With block separable recourse, we may rewrite Qt(xt−1,ξ t(ω)) as the sum of
two quantities, Qt

w(wt−1,ξ t(ω))+Qt
y(w

t−1,ξ t(ω)) , where we need not include the
yt−1 terms in xt−1 ,

Qt
w(wt−1,ξ t(ω)) = minrt(ω)wt (ω)+Qt+1(xt)

s. t. Wtwt(ω) = bt(ω)−Rt−1(ω)wt−1 ,

wt(ω) ≥ 0 ,

(4.11)

and

Qt
y(w

t−1,ξ t(ω)) = minqt(ω)yt(ω)

s. t. Ttyt(ω) = dt(ω)−St−1(ω)wt−1 ,

yt(ω) ≥ 0 .

(4.12)

The great advantage of block separability is that we need not consider nesting among
the detailed level decisions. In this way, the w variables can all be pulled together
into a first stage of aggregate level decisions. The second stage is then composed of

3.4 Multistage Stochastic Programs with Recourse 155

the detailed level decisions. Note that if the bt and Rt are known, as they are in the
model in Section 1.3, then the block separable problem is equivalent to a similarly
sized two-stage stochastic linear program.

Separability is indeed a very useful property for stochastic programs. Computa-
tional methods should try to exploit it whenever it is inherent in the problem because
it may reduce work by orders of magnitude. We will also see in Chapter 10 that
separability can be added to a problem (with some error that can be bounded). This
approach opens many possible applications with large numbers of random variables.

Another modeling approach that may have some computational advantage ap-
pears in Grinold [1976]. This approach extends from analyses of stochastic pro-
grams as examples of a Markov decision process. He assumes that ωt belongs to
some finite set 1, . . . ,kt , that the probabilities are determined by pi j = P{ωt+1 =
j | ωt = i} for all t , and that Tt = Tt(ωt ,ωt+1) . In this framework, he can obtain
an approximation that again obtains a form of separability of future decisions from
previous outcomes. We discuss more approximation approaches for multiple stages
in Chapter 10.

Exercises

1. State a set of optimality conditions analogous to those in Theorem 9 for xt∗(ω)
to be an optimal solution in (4.3).

2. Assume that the model in (4.1) has relatively complete recourse. In this case,
find an expression for ∂Qt+1(xt) .

3. Give the full set of optimality conditions that are satisfied for an optimal solution
xt∗(ω) for t = 1, . . . ,H for the financial planning example in Section 1.2 and
verify their satisfaction for the solution corresponding to the data in (1.2.1).

4. Emergency vehicle location: Suppose a multistage version of the model in Sec-
tion 2.6, where a city wishes to determine the allocations of V emergency vehi-
cles to each of n stations at times t = 1, . . . ,H . Each vehicle can serve a single
call in any period, where calls are random and can occur at any of m locations
according with dt

j(ω) corresponding to the random number of calls in location
j in period t . The cost of responding to a call at location j with a vehicle from
station i is qt

i j and any calls in location j that cannot be served by the city’s
vehicles are served by an outside vendor at a cost q̄t

j (regardless of the number

of calls). The initial number of vehicles at each station i is given by h1
i . Ini-

tially and at the end of each period, vehicles may be move from any station i to
any other station j at a cost rt

i j .

(a) Give a multistage stochastic linear programming formulation for this model
(assuming V is sufficiently large that the discrete decision variables may
be adequately approximated with a continuous solution).

156 3 Basic Properties and Theory

(b) Show that this model satisfies the block-separable recourse conditions by
giving the corresponding decision vectors (wt (ω),yt(ω)) and constraint
parameters, At , Bt , Rt(ω) , St(ω) , bt(ω) , and dt(ω) .

3.5 Stochastic Nonlinear Programs with Recourse

In this section, we generalize the results from the previous sections to problems with
nonlinear functions, starting with two-stage problems. The results extend directly
so the treatment here will be brief. The basic types of results we would like to
obtain concern the structure of the feasible region, the optimal value function, and
optimality conditions. As a note of caution, some of the results in this section refer
to concepts from measure theory.

We begin with a definition of the two-stage stochastic nonlinear program with
recourse.This problem has the form:

infz = f 1(x)+Q(x)

s. t. g1
i (x) ≤ 0, i = 1, . . . ,m̄1 ,

g1
i (x) = 0 , i = m̄1 + 1, . . . ,m1 ,

(5.1)

where Q(x) = Eω [Q(x,ω)] and

Q(x,ω) = inf f 2(x,y(ω),ω)

g2
i (x,y(ω),ω) ≤ 0 , i = 1, . . . ,m̄2,

g2
i (x,y(ω),ω) = 0 , i = m̄2 + 1, . . . ,m2 , (5.2)

where all functions f 1 and g1
i for all i are continuous, and f 2(·, ·,ω) and

g2
i (·, ·,ω) are also continuous for any fixed ω and are measurable in ω for any

fixed first argument and for any i . Given this assumption, Q(x,ω) is measurable
(Exercise 1) and hence Q(x) is well-defined.

We make the following definitions consistent with Section 3.1.

K1 ≡ {x | g1
i (x) ≤ 0 , i = 1, . . . ,m̄1 ; g1

i (x) = 0 , i = m̄1 + 1, . . . ,m1} ,

K2(ω) = {x | ∃y(ω) | g2
i (xy(ω),ω) ≤ 0 , i = 1, . . . ,m̄2 ;

g2
i (x,y(ω),ω) = 0 , i = m̄2 + 1, . . . ,m2} ,

and
K2 = {x | Q(x) < ∞} .

We have not forced fixed recourse in Problem 5.1 because the second-period con-
straint functions may depend on ω and on y(ω) . For linear programs, we assumed

3.5 Stochastic Nonlinear Programs with Recourse 157

fixed recourse so we could describe the feasible region in terms of intersections of
feasible regions for each random outcome. We could also follow this approach here
but the conditions for this result depend directly on the form of the objective and
constraint functions. We explore these possibilities in Exercise 1 but we continue
here with the more general case.

We make additional assumptions to allow results along the lines of the previ-
ous section. These conditions ensure regularity for the application of necessary and
sufficient optimality conditions.

1. Convexity. The function f 1 is convex on ℜn1 , g1
i is convex on ℜn1 for i =

1, . . . ,m̄1 , g1
i is affine on ℜn1 for i = m̄1 + 1, . . . ,m1 , f 2(·, ·,ω) is convex

and finite on ℜn1+n2 for all ω ∈ Ω , g2
i (·, ·,ω) is convex on ℜn1+n2 for all

i = 1, . . . ,m̄2 and for all ω ∈ Ω , g2
i (·,ω) is affine on ℜn1+n2 for i = m̄2 +

1, . . . ,m2 and for all ω ∈Ω .
2. Slater condition. If Q(x) < ∞ , for almost all ω ∈ Ω , there exists some y(ω)

such that g2
i (x,y(ω),ω) < 0 for i = 1, . . . ,m̄2 and g2

i (x,y(ω),ω) = 0 for i =
m̄2 + 1, . . . ,m2 .

The main purpose of these assumptions is to ensure that the resulting deterministic
equivalent nonlinear program is also convex. The following theorem gives condi-
tions for convexity of the recourse function. It follows directly from the definitions.

Theorem 34. Under Assumptions 1 and 2, the recourse function Q(x,ω) is a con-
vex function of x for all ω ∈Ω .

Proof: Let y1 solve the optimization problem in (5.2) for x1 and let y2 solve
the corresponding problem for x2 . Consider x = λx1 + (1 − λ)x2 . In this case,
g2

i (λx1 +(1 −λ)x2,λy1 +(1 −λ)y2,ω) ≤ λg2
i (x1,y1,ω)+ (1 −λ)g2

i (x2,y2,ω) ≤
0 for each i = 1, . . . ,m̄2 . We also have that g2

i (λx1 + (1 − λ)x2,λy1 + (1 −
λ)y2,ω) = λλg2

i (x1,y1,ω)+(1−λ)g2
i (x2,y2,ω) = 0 for each i = m̄2 +1, . . . ,m2 .

So, Q(λx1 +(1−λ)x2,ω) ≤ f 2(λx1 +(1−λ)x2,λy1 +(1−λ)y2,ω)
≤ λ f 2(x1,y1,ω)+(1−λ) f 2(x2,y2,ω) = λQ(x1,ω)+(1−λ)Q(x2,ω) , giving the
result.

We can also obtain continuity of the recourse function if we assume the recourse
feasible region is bounded.

Theorem 35. If the recourse feasible region is bounded for any x ∈ℜn1 , then the
function Q(x,ω) is lower semicontinuous in x for all ω ∈ Ω (i.e., Q(x,ω) is a
closed convex function).

Proof: Proving lower semicontinuity is equivalent (see, e.g., Rockafellar [1969])
to showing that

liminf
x→x̄

Q(x,ω) ≥ Q(x̄,ω)

for any x̄ ∈ℜn1 , x → x̄ , and ω ∈Ω . Suppose a sequence xν → x̄ . We can assume
that Q(xν ,ω) < ∞ for all ν because there is either a subsequence of {xν} that is
finite valued in Q or the result holds trivially.

158 3 Basic Properties and Theory

We therefore have g2
i (x

ν ,yν(ω),ω) ≤ 0 for i = 1, . . . ,m̄2 and g2
i (x

ν ,yν(ω),ω)
= 0 for i = m̄2 + 1, . . . ,m2 and for some yν(ω) . Hence, by continuity of each
of these functions and the boundedness assumption, the {yν(ω)} sequence must
have some limit point, e.g., ȳ(ω) . Thus, g2

i (x̄, ȳ(ω),ω) ≤ 0 for i = 1, . . . ,m̄2

and g2
i (x̄, ȳ(ω),ω) = 0 for i = m̄2 + 1, . . . ,m2 . So, x̄ is feasible and Q(x̄,ω) ≤

f 2(x̄, ȳ(ω),ω) = limνk f 2(xνk ,yνk (ω),ω) = limνk Q(xν ,ω) where νk is a sub-
sequence such that yνk (ω) → ȳ(ω) .

Because integration is a linear operation on the convex function Q , we obtain
the following corollaries.

Corollary 36. The expected recourse function Q(x) is a convex function in x .

Corollary 37. The feasibility set K2 = {x | Q(x) < ∞} is closed and convex.

Corollary 38. Under the conditions in Theorem 35, Q is a lower semi-continuous
function on x .

This corollary then leads directly to the following attainability result.

Theorem 39. Suppose the conditions in Theorem 35, K1 is bounded, f 1 contin-
uous, g1

i and g2
i continuous for each i , and K1 ∩K2 �= /0 . Then (5.1) has a finite

optimal solution and the infimum is attained.

Proof: From Corollary 38, Q is continuous on its effective domain. The continuity
of g1

i also implies that K1 is closed so the optimization is for a continuous, convex
function over the nonempty, compact region K1 ∩K2 .

Other results may follow for specific cases from Fenchel’s duality theorem (see
Rockafellar [1969]). In some cases, it may be difficult to decompose the feasibility
set K2 into

⋂
ω K2(ω) . It is possible if f 2 is always dominated by some integrable

function in ω for any y(ω) feasible in the recourse problem for all x . This might
be verifiable if, for example, the feasible recourse region is bounded for all x ∈
K1 . Another possibility is for special functions such as the quadratic function in
Exercise 2.

We can now proceed to state optimality conditions for (5.1) as in Theorem 9.
As a reminder from Section 2.10, in the following, we use ri to indicate relative
interior.

Theorem 40. If there exists x such that x ∈ ri(dom(f 1(x)) and x ∈ ri(dom(Q(x)))
and g1

i (x) < 0 for all i = 1, . . . ,m̄1 and g1
i (x) = 0 for all i = m̄1 +1, . . . ,m1 , then

x∗ is optimal in 5.1 if and only if x∗ ∈ K1 and there exists λ ∗
i ≥ 0 , i = 1, . . . ,m̄1 ,

λ ∗
i , i = m̄1 + 1, . . . ,m1 , such that λ ∗

i g1
i (x

∗) = 0 , i = 1, . . . ,m̄1 , and

0 ∈ ∂ f 1(x∗)+ ∂Q(x∗)+
m1

∑
i=1

λ ∗
i ∂g1

i (x
∗) . (5.3)

3.5 Stochastic Nonlinear Programs with Recourse 159

Proof: This result is a direct extension of the general optimality conditions in non-
linear programming (see, e.g., Rockafellar [1969, Theorem 28.3]).

For most practical purposes, we need to obtain some decomposition of ∂Q(x)
into subgradients of the Q(x,ω) . The same argument as in Theorem 11 applies here
so that

∂Q(x) = Eω [∂Q(x,ω)]+ N(K2,x) (5.4)

for all x ∈ K . Moreover, if we have relatively complete recourse, we can remove
the normal cone term in (5.4).

We can also develop optimality conditions that apply to the problem with ex-
plicit constraints on nonanticipativity as in Section 3.1. In this case, Problem (5.1)
becomes

inf
(x(ω),y(ω))∈X

∫
Ω

(f 1(x(ω))+ f 2(x(ω),y(ω),ω))μ(dω)

s. t. g1
i (x(ω)) ≤ 0 , a.s., i = 1, . . . ,m̄1 ,

g1
i (x(ω)) = 0 , a.s., i = m̄1 + 1, . . . ,m1 ,

EΩ (x(ω))− x(ω) = 0 , a.s.,

g2
i (x(ω),y(ω),ω) ≤ 0 , a.s., i = 1, . . . ,m̄2 ,

g2
i (x(ω),y(ω),ω) = 0 , a.s., i = m̄2 + 1, . . . ,m2 ,

x(ω),y(ω) ≥ 0 , a.s.

(5.5)

The optimality results appear in the following theorem which is proven similarly to
Theorem 13.

Theorem 41. Assume that (5.5) with X = L∞(Ω ,B,μ ;ℜn1+n2) is feasible, has
a bounded optimal value, satisfies relatively complete recourse, and that a feasi-
ble solution (x∗(ω),y∗(ω)) is at a point satisfying the linear independence con-
dition that any vector in ∂ f 2(x∗(ω),y∗(ω),ω) cannot be written as a combina-
tion of some strict subset of representative vectors from ∂g2

i (x
∗(ω),y∗(ω),ω) for

i such that g2
i (x

∗(ω),y∗(ω),ω) = 0 ; then, (x∗(ω),y∗(ω)) is optimal in (5.5)
if and only if there exist integrable functions on Ω , (λ ∗(ω),ρ∗(ω),π∗(ω)) ,
(ηx∗

0 (ω),ηy∗
0 (ω)) ∈ ∂ f 2(x∗(ω),y∗(ω),ω) , and (ηx∗

i ,ηy∗
i) ∈ ∂g2

i (x
∗(ω),y∗(ω),ω)

for i = 1, . . . ,m2 such that, for almost all ω ,

ρ∗(ω) ∈ ∂ f 1(x∗(ω))+ηx∗
0 (ω)

m1

∑
i=1

λ ∗
i (ω)∂g1

i (x
∗(ω))+

m2

∑
i=1

π∗
i (ω)ηx∗

i (ω) , (5.6)

λ ∗
i (ω) ≥ 0 , λ ∗

i (ω)g1
i (x

∗(ω)) = 0 , i = 1, . . . ,m̄1 , (5.7)

0 = ηy∗
0 (ω)+

m2

∑
i=1

π∗
i (ω)ηy∗

i (ω) , (5.8)

160 3 Basic Properties and Theory

π∗
i (ω) ≥ 0 ,π∗

i (ω)g2
i (x

∗(ω),y∗(ω),ω) = 0 , i = 1, . . . ,m̄2 , (5.9)

and
Eω [ρ∗(ω)] = 0 . (5.10)

Again the ρ functions represent the value of information in each of the scenarios
under ω . These results can also be generalized to allow for nonseparability between
the first and second stage but for our computational descriptions, this is generally
not necessary.

For multiple stages, we can define models analogous to the linear version in
Section 5.1. A general representation can be obtained by including the constraint
information except for nonanticipativity into the objective so that the objective
f t takes on an infinite value whenever a constraint is violated. To distinguish in-
formation from period to period, we associate a filtration with the data process
ω as F := {Σ t}∞t=1 , where Σ t := σ(ω̄t) is the σ -field of the history process
ω̄t := {ω0, . . . ,ωt} , and the Σ t satisfy {0,Ω} ⊂ Σ0 ⊂ ·· · ⊂ Σ . Nonanticipativity
of the decision process at time t implies that decisions must only depend on the
data up to time t , i.e., xt must be Σ t –measurable. An alternative characteriza-
tion of this nonanticipative property is that xt = E{xt | Σ t} a.s., t = 0, . . . , where
E{· | Σ t} is conditional expectation with respect to the σ -field Σ t . Using the pro-
jection operator Π t : z →Π t z := E{z | Σ t} , t = 0, . . . , this is equivalent to

(I −Πt)xt = 0 , t = 0, . . . (5.11)

In this framework, the general multistage stochastic programming model is to find

infx∈N E
H

∑
t=0

f t(ω ,xt (ω),xt+1(ω)) , (5.12)

where “ E ” is expectation with respect to Σ . Using our random variable boldface
notation, expression (5.12) then becomes

infx∈N E
H

∑
t=0

ft(xt ,xt+1) , (5.13)

with objective z(x) := E ∑H
t=0 ft(xt ,xt+1) .

We can develop optimality conditions for this model that also allow H →∞ . The
conditions are basically the same as in previous sections (in terms of some assump-
tion about relatively complete recourse and some regularity condition), but we need
some additional assumptions to control multipliers at H = ∞ . Detailed descrip-
tions of these conditions and other issues appear in the papers by Rockafellar and
Wets [1976a,1976b], Dempster [1988], Flåm [1985,1986], and Birge and Dempster
[1992].

These basic results for the general model in (5.13) can be extended to results
with constraints in the same way as necessary conditions in the previous sections

3.5 Stochastic Nonlinear Programs with Recourse 161

(Exercise 5). The only requirement is to describe the subdifferentials of f t in terms
of an objective and constraint functions (Exercise 6). The optimality conditions that
extend Theorem 41 to multiple stages can then be used to decompose the multistage
problem into individual period t problems. In this way, optimization may be applied
at each period provided suitable multipliers are available. This property is the basis
for the Lagrangian and progressive hedging algorithms described in Chapter 5.

Exercises

1. Show that the assumptions made when defining (5.1) and (5.2) imply that
Q(x,ω) is a measurable function of ω for all x . (Hint: Find {ω | Q(x,ω)≤α}
for any α using a countable covering of ℜn2 .)

2. Suppose f 2 is a convex, quadratic function on ℜn2 for each ω ∈ Ω and
the constraints g2

i and h2
j are affine on ℜn2 for all i = 1, . . . ,m̄2 and j =

1, . . . ,m2 − m̄2 . What conditions on ξ (ω) can guarantee that K2 =
⋂
ω K2(ω) ?

3. Construct an example in which the recourse function Q(x,ω) is not lower semi-
continuous. (Hint: Try to make the only feasible recourse action tend to ∞ while
the first-period action tends to some finite value.)

4. Show that conditions in (5.6)–(5.10) are sufficient to obtain optimality in (5.5).

5. State and prove a set of optimality conditions analogous to Theorem 35 for the
multistage model in (5.13).

6. Suppose that constraints are explicitly represented by gt(xt ,xt+1) ≤ 0 in (4.11)
instead of being incorporated into ft . Interpret the optimality conditions from
Exercise 5 above in terms of the gt functions.

Chapter 4
The Value of Information and the Stochastic
Solution

Stochastic programs have the reputation of being computationally difficult to solve.
Many people faced with real-world problems are naturally inclined to solve simpler
versions. Frequently used simpler versions are, for example, to solve the determinis-
tic program obtained by replacing all random variables by their expected values or to
solve several deterministic programs, each corresponding to one particular scenario,
and then to combine these different solutions by some heuristic rule.

A natural question is whether these approaches can sometimes be nearly optimal
or whether they are totally inaccurate. The theoretical answer to this is given by two
concepts: the expected value of perfect information and the value of the stochastic
solution. The object of this chapter is to study these two concepts. Section 4.1 in-
troduces the expected value of perfect information. Section 4.2 gives the value of
the stochastic solution. Some basic inequalities and the relationships between these
quantities are given in Sections 4.3 and 4.4, respectively. Section 4.5 provides some
examples of these quantities. Section 4.6 presents additional bounds.

4.1 The Expected Value of Perfect Information

The expected value of perfect information (EVPI) measures the maximum amount
a decision maker would be ready to pay in return for complete (and accurate) in-
formation about the future. In the farmer’s problem of Chapter 1, we saw that the
farmer would greatly benefit from perfect information about future weather condi-
tions, so that he could allocate his land optimally to the various crops.

The concept of EVPI was first developed in the context of decision analysis and
can be found in a classical reference such as Raiffa and Schlaifer [1961]. In the
stochastic programming setting, we may define it as follows. Suppose uncertainty
can be modeled through a number of scenarios. Let ξ be the random variable whose
realizations correspond to the various scenarios. Define

minz(x,ξ) = cT x + min{qT y | Wy = h−Tx,y ≥ 0}

J.R. Birge and F. Louveaux, Introduction to Stochastic Programming, Springer Series 163
in Operations Research and Financial Engineering, DOI 10.1007/978-1-4614-0237-4 4,
c© Springer Science+Business Media, LLC 2011

164 4 The Value of Information and the Stochastic Solution

s. t. Ax = b,x ≥ 0 , (1.1)

as the optimization problem associated with one particular scenario ξ , where, as
before, ξ (ω)T =(q(ω)T ,h(ω)T ,T1·(ω), . . . ,Tm2·(ω)) . To make the definition com-
plete, we repeat the notation, K1 = {x | Ax = b , x ≥ 0} and K2(ξ) = {x | ∃y ≥
0 s.t. Wy = h−Tx} . We define z(x,ξ) = +∞ if x �∈ K1 ∩K2(ξ) and z(x,ξ) = −∞
if (1.1) is unbounded below. We again use the convention +∞+(−∞) = +∞ .

We may also reasonably assume that for all ξ ∈ Ξ , there exists at least one
x ∈ ℜn1 such that z(x,ξ) < ∞ . (Otherwise, there would exist one scenario for
which no feasible solution exists at all. No reasonable stochastic model could be
constructed in such a situation.) This assumption implies that, for all ξ ∈ Ξ , there
exists at least one feasible solution, which in turn implies the existence of at least
one optimal solution. Let x̄(ξ) denote some optimal solution to (1.1). As in a sce-
nario approach, we might be interested in finding all solutions x̄(ξ) of problem
(1.1) for all scenarios and the related optimal objective values z(x̄(ξ),ξ) .

This search is known as the distribution problem (as we mentioned in Sec-
tion 3.1c.) because it looks for the distribution of x̄(ξ) and of z(x̄(ξ),ξ) in terms of
ξ . The distribution problem can be seen as a generalization of sensitivity analysis
or parametric analysis in linear programming.

Here, we assume we somehow have the ability to find these decisions x̄(ξ) and
their objective values z(x̄(ξ),ξ) so that we are in a position to compute the expected
value of the optimal solution, known in the literature as the wait-and-see solution
(WS, see Madansky [1960]) where

WS = Eξ

[
min

x
z(x,ξ)

]

= Eξz(x̄(ξ),ξ) . (1.2)

We may now compare the wait-and-see solution to the so-called here-and-now so-
lution corresponding to the recourse problem (RP) defined earlier in Chapter 3 as
(1.1), and we may now write that as

RP = min
x

Eξz(x,ξ) , (1.3)

with an optimal solution, x∗ .
The expected value of perfect information is, by definition, the difference be-

tween the wait-and-see and the here-and-now solution, namely,

EVPI = RP−WS . (1.4)

An example was given in Chapter 1 in the farmer’s problem. The wait-and-see solu-
tion value was −$115,406 (when converted to a minimization problem), while the
recourse solution value was −$108,390 . The expected value of perfect information
for the farmer was then $7016.

4.2 The Value of the Stochastic Solution 165

This is how much the farmer would be ready to pay each year to obtain perfect
information on next summer’s weather. A meteorologist could reasonably ask him
to pay part of this amount to support meteorological research.

4.2 The Value of the Stochastic Solution

For practical purposes, many people would believe that finding the wait-and-see
solution or equivalently solving the distribution problem is still too much work (or
impossible if perfect information is just not available at any price). This is especially
difficult because the wait-and-see approach delivers a set of solutions instead of one
solution that would be implementable.

A natural temptation is to solve a much simpler problem: the one obtained by
replacing all random variables by their expected values. This is called the expected
value problem or mean value problem, which is simply

EV = min
x

z(x, ξ̄) , (2.1)

where ξ̄ = E(ξ) denotes the expectation of ξ . Let us denote by x̄(ξ̄) an optimal
solution to (2.1), called the expected value solution. Anyone aware of some stochas-
tic programming or realizing that uncertainty is a fact of life would feel at least a
little insecure about advising to take decision x̄(ξ̄) . Indeed, unless x̄(ξ) is some-
how independent of ξ , there is no reason to believe that x̄(ξ̄) is in any way near
the solution of the recourse problem (1.3).

The value of the stochastic solution (first introduced in Chapter 1) is the concept
that precisely measures how good or, more frequently, how bad a decision x̄(ξ̄) is
in terms of (1.3). We first define the expected result of using the EV solution to be

EEV = Eξ(z(x̄(ξ̄),ξ)) . (2.2)

The quantity, EEV , measures how x̄(ξ̄) performs, allowing second-stage deci-
sions to be chosen optimally as functions of x̄(ξ̄) and ξ . The value of the stochas-
tic solution is then defined as

VSS = EEV −RP . (2.3)

Recall, for example, that in Section 1.1 this value was found using EEV = −
$107,240 and RP = −$108,390 , for VSS = $1150 . This quantity is the cost of
ignoring uncertainty in choosing a decision.

166 4 The Value of Information and the Stochastic Solution

4.3 Basic Inequalities

The following relations between the defined values have been established by Madan-
sky [1960]. Generalizations to nonlinear functions can be found in Mangasarian and
Rosen [1964].

Proposition 1.
W S ≤ RP ≤ EEV . (3.1)

Proof: For every realization, ξ , we have the relation

z(x̄(ξ),ξ) ≤ z(x∗,ξ) ,

where, as said before, x∗ denotes an optimal solution to the recourse problem (1.3).
Taking the expectation of both sides yields the first inequality. x∗ being an optimal
solution to the recourse problem (1.3) while x̄(ξ̄) is just one solution to (1.3) yields
the second inequality.

Proposition 2. For stochastic programs with fixed objective coefficientsand fixed
W ,

EV ≤ WS . (3.2)

Proof: First, note that z(x,ξ = (h,T)) = cT x + Q(x,h,T)+ δ (x|Ax = b,x >= 0) ,
where δ (x|X) is the indicator function of the point x for set X , is jointly convex
in x , h , and T . Now, to show that f (ξ) = minx z(x,ξ) is convex in ξ , consider
ξ1 and ξ2 where z (x1,ξ1) = f (ξ1) and z(x2,ξ2) = f (ξ2) , then

λ f (ξ1)+ (1−λ) f (ξ2) = λ z(x1,ξ1)+ (1−λ)z(x2,ξ2)
≥ z(λ (x1,ξ1)+ (1−λ)(x2,ξ2)
≥ min

x
z(x,λξ1 +(1−λ)ξ2)

= f (λξ1 +(1−λ)ξ2),

establishing convexity of f (ξ) . Now, Jensen’s inequality (Jensen [1906]) states that
for any convex function f (ξ) of ξ , E f (ξ) ≥ f (Eξ) .

Proposition 2 does not hold for general stochastic programs. Indeed, if we con-
sider q only to be stochastic, by Theorem 3.5 the function z(x,ξ) is a concave
function of ξ and Jensen’s inequality does not apply. An example of a program
where EV > WS is given in Exercise 3.

Other bounds can be obtained. We give two more examples of such bounds here.

Proposition 3. Let x∗ represent an optimal solution to the recourse problem (1.3)
and let x̄(ξ̄) be a solution to the expected value problem (1.4). Then

RP ≥ EEV +(x∗ − x̄(ξ̄))Tη , (3.3)

4.4 The Relationship between EVPI and VSS 167

where η ∈ ∂Eξz(x̄(ξ̄),ξ) , the subdifferential set of Eξz(x,ξ) at x̄(ξ̄) .

Proof: By convexity of Eξz(x,ξ) , the subgradient inequality applied at point x1

implies that for any x2 the relation Eξz(x2,ξ) ≥ Eξz(x1,ξ)+ (x2 − x1)Tη holds.
The proposition follows by application of this relation for x1 = x̄(ξ̄) and x2 = x∗ ,
by noting that RP = Eξz(x∗,ξ) and EEV = Eξz(x̄(ξ̄),ξ).

The last bound is obtained by considering a slightly different version of the re-
course problem, defined as follows:

minzu(x,ξ) = cT x + min{qT y | Wy ≥ h(ξ)−Tx,y ≥ 0}
s. t. Ax = b ,

x ≥ 0 .

(3.4)

Problem (3.4) differs from problem (1.1) because in (3.4) only the right-hand side
is stochastic and the second-stage constraints are inequalities. It is not difficult to
observe that all definitions and relations also apply to zu . If we further assume that
h(ξ) is bounded above, then an additional inequality results.

Proposition 4. Consider problem (3.4) and the related definition

RP = min
x

Eξzu(x,ξ) .

Assume further that h(ξ) is bounded above by a fixed quantity hmax . Let xmax be
an optimal solution to zu(x,hmax) . Then

RP ≤ zu(xmax,hmax) . (3.5)

Proof: For any ξ in Ξ and any x ∈ K1 , a feasible solution to Wy ≥ hmax −
Tx,y ≥ 0, is also a feasible solution to Wy ≥ h(ξ)−Tx,y ≥ 0 . Hence zu(x,hmax) ≥
zu(x,h(ξ)) . Thus zu(x,hmax) ≥ Eξzu(x,h(ξ)) , hence zu(x,hmax)
≥ minx Eξzu(x,h(ξ)) = RP .

4.4 The Relationship between EVPI and VSS

The quantities, EVPI and VSS , are often different, as our examples have shown.
This section describes the relationships that exist between the two measures of un-
certainty effects.

From the inequalities in the previous section, the following proposition holds.

Proposition 5.
a. For any stochastic program,

0 ≤ EVPI , (4.1)

168 4 The Value of Information and the Stochastic Solution

0 ≤ VSS . (4.2)

b. For stochastic programs with fixed recourse matrix and fixed objective coeffi-
cients,

EVPI ≤ EEV −EV , (4.3)

VSS ≤ EEV −EV . (4.4)

The proposition indicates that the EVPI and the VSS are (both) nonnegative (any-
one would be surprised if this was not true) and are both bounded above by the same
quantity EEV −EV , which is easily computable. It follows that when EV = EEV ,
both the EVPI and VSS vanish. A sufficient condition for this to happen is to have
x̄(ξ) independent of ξ . This means that optimal solutions are insensitive to the
value of the random elements. In such situations, finding the optimal solution for
one particular ξ (or for ξ̄) would yield the same result, and it is unnecessary to
solve a recourse problem. Such extreme situations rarely occur.

From these observations, three lines of research have been addressed. The first
one studies relationships between EVPI and VSS . It is illustrated in the sequel of
this paragraph by showing an example where EVPI is zero and VSS is not and
an example of the reverse. The second one studies classes of problems for which
one can observe or theorize that the EVPI is low. Examples and counterexamples
are given in Section 4.5. The third one studies refined bounds on EVPI and VSS .
Results about refined upper and lower bounds on EVPI and VSS appear in Sec-
tion 4.6.

We thus end this section by showing examples taken from Birge [1982] that
illustrate cases in which one of the two concepts (EVPI and VSS) is null and the
other is positive.

a. EVPI = 0 and VSS �= 0

Consider the following problem

z(x,ξ) = x1 + 4x2 + min{y1 + 10y+
2 + 10y−

2 |
y1 + y+

2 − y−
2 = ξ + x1 −2x2,y1 ≤ 2,y ≥ 0}

s. t. x1 + x2 = 1 ,

x ≥ 0 ,

(4.5)

where the random variable ξ follows a uniform density over [1,3] . For a given x
and ξ , we may conclude that

4.4 The Relationship between EVPI and VSS 169

y∗(x,ξ) =

⎧⎪⎨
⎪⎩

y1 = ξ + x1 −2x2 , y2 = 0 if 0 ≤ ξ + x1 −2x2 ≤ 2 ,

y1 = 2 , y+
2 = ξ + x1 −2x2 −2 if ξ + x1 −2x2 > 2 ,

y−
2 = 2x2 − ξ − x1 if ξ + x1 −2x2 < 0 ,

so that

z(x,ξ) =

⎧⎪⎨
⎪⎩

2x1 + 2x2 + ξ if 0 ≤ ξ + x1 −2x2 ≤ 2 ,

−18 + 11x1−16x2 + 10ξ if ξ + x1 −2x2 > 2 ,

−9x1 + 24x2 −10ξ if ξ + x1 −2x2 < 0 .

Given the first-stage constraint x1 + x2 = 1 , one has z(x,ξ) = 2 + ξ in the first
of these three regions. Now, using the first-stage constraint and the definition of
the regions, one can easily check that z(x,ξ) ≥ 2 + ξ in the other two regions.
Hence, any x̂ ∈ {(x1,x2) | x1 + x2 = 1 , x ≥ 0} is an optimal solution of (4.5) for
−x1 + 2x2 ≤ ξ ≤ 2− x1 + 2x2 , or equivalently for 2−3x1 ≤ ξ ≤ 4−3x1 .

In particular,
(

1
3 , 2

3

)
is optimal for all ξ , (0,1) is optimal for all ξ ∈ [2,3] ,

and (1,0) is optimal for ξ = {1} .
Taking x̄(ξ) =

(
1
3 , 2

3

)
for all ξ leads to the conclusion that x̄(ξ) is identical

for all ξ , hence WS = RP = 4 , so that EVPI = 0 . On the other hand, solving
z(x, ξ̄ = 2) may yield a different solution, for example, x̄(2)= (0,1) , with EV = 4 .

In that case,

EEV = Eξ≤2(24−10ξ)+ Eξ≥2(2 + ξ) =
27
4

,

so that VSS = 11/4 .
Because linear programs often include multiple optimal solutions, this type of

situation is far from exceptional.

b. VSS = 0 and EVPI �= 0

We consider the same function z(x,ξ) with ξ ∈ {
0, 3

2 ,3
}

, with each event occur-
ring with probability 1/3 .

For ξ = 0 , x̄(0) =
{

x | x1 + x2 = 1, 2
3 ≤ x1 ≤ 1

}
.

For ξ = 3/2 , x̄(3/2) = {x | x1 + x2 = 1,1/6 ≤ x1 ≤ 5/6} .
For ξ = 3 , x̄(3) = {x | x1 + x2 = 1,0 ≤ x1 ≤ 1/3} .
Let us take x̄(3/2) = (2/3,1/3) . Then EV = z(x̄,3/2) = 2 + 3/2 = 7/2 , and

EEV = 2 + 1
3

(
0 + 3

2 + 12
)
= 2 + 13

2 = 13/2 .
No single decision is optimal for the three cases, so we expect EVPI to be

nonzero. In the wait-and-see solution, it is possible for all three cases to take
a different optimal solution, such as x̄(0) = (1,0) , x̄(3/2) = (1/2,1/2) , and
x̄(3) = (0,1) , yielding

170 4 The Value of Information and the Stochastic Solution

WS =
1
3
(1 + 1)+

1
3

(
5
2

+ 1

)
+

1
3
(4 + 1)

=
2
3

+
7
6

+
5
3

=
21
6

=
7
2

.

The recourse solution is obtained by solving the stochastic program
minEξ(z(x,ξ)) , which yields x∗ = (2/3,1/3) with the RP value equal to the EEV
value. Hence,

EV = WS = 7/2 ≤ RP = 13/2 = EEV ,

which means EVPI = 3 while VSS = 0 .

4.5 Examples

There has always been a strong interest in trying to have a better understanding
of when the EVPI and VSS take large values and when they take low values. A
definite answer to this question would greatly simplify the practice of stochastic
programming. Only those programs with large EVPI or VSS would require the
solution of a stochastic program. Interested readers may find detailed examples in
the field of energy policy and exhaustible resources. Manne [1974] provides an ex-
ample where EVPI is low, while H.P. Chao [1981] elaborates general conditions
for EVPI to be low on a resource exhaustion model. By introducing other types of
uncertainty, Louveaux and Smeers [2011] and Birge [1988a] show related examples
where EVPI and/or VSS is large.

In this section, we provide simple examples to show that no general answer is
available. It is usually felt that using stochastic programming is more relevant when
there is more randomness in the problem. To translate this feeling into a more pre-
cise statement, we would, for example, expect that for a given problem, EVPI and
VSS would increase when the variances of the random variables increase. In the
following example, we show that this may or may not be the case.

Example 1

Let ξ be a single random variable taking the two values ξ1 and ξ2 , with probabil-
ity p1 and p2 , respectively, where p2 = 1− p1 . Let ξ̄ = E [ξ] = 1/2 . Let x be a
single decision variable. Consider the recourse problem:

min 6x + 10Eξ|x−ξ|
s. t. x ≥ 0 .

4.6 Bounds on EVPI and VSS 171

(a) Let ξ1 = 1/3 , ξ2 = 2/3 , p1 = p2 = 1/2 serve as the reference setting.
We compute EVPI = 2/3 and VSS = 1 . We also observe that the variance,
Var(ξ) = 1/36 .

(b) Consider the case ξ1 = 0 , ξ2 = 1 again with equal probability 1/2 (and un-
changed expectation). The variance Var(ξ) is now 1/4 , 9 times higher. We
now obtain EVPI = 2 and VSS = 3 , showing an example where both values
clearly increase with the variance of ξ .

(c) Consider the case ξ1 = 0 , ξ2 = 5/8 with probability p1 = 0.2 and p2 =
0.8 , respectively. Again, ξ̄ = 0.5 . Now, Var(ξ) = 1/16 , larger than in (a).
We obtain EVPI = 2 , larger than in (a) but VSS = 0 . Knowing this result in
advance would mean that the solution of the deterministic problem with ξ̄ = Eξ
delivers the optimal solution (although EVPI is three times larger than in (a)).

(d) Consider the case ξ1 = 0.4 , ξ2 = 0.8 with p1 = 0.75 and p2 = 0.25 , always
with ξ̄ = 0.5 . Now, Var(ξ) = 0.03 , slightly larger than in (a). We now observe
EVPI = 0.4 and VSS = 1.1 , namely the opposite behavior from (c), a decrease
in EVPI and an increase in V SS .

(e) It is also felt that a more “difficult” stochastic program would induce higher
EVPI and VSS . One such case would be to have integer decision variables
instead of continuous ones. Exercise 3 of Section 1.1 shows that, with first-
stage integer variables for the farming problem, VSS remains almost unchanged
while EVPI even decreases. On the other hand, Exercise 4 of that section shows
that with second-stage integer variables, both EVPI and VSS strongly increase.
It would probably not be difficult to reach different conclusions by suitably
changing the data.

We may conclude from these simple examples that a general rule is unlikely to be
found. One alternative to such a rule is to consider bounds on the information and
solution value quantities that require less than complete solutions. We discuss these
bounds in the next section.

4.6 Bounds on EVPI and VSS

Bounds on EVPI and VSS rely on constructing intervals for the expected value
of solutions of linear programs representing WS , RP , and EEV . The simplest
bounds stem from the inequalities in Proposition 5. The EVPI bound was suggested
in Avriel and Williams [1970] while the VSS form appears in Birge [1982]. Many
other bounds are possible with different limits on the defining quantities. In the
remainder of this section, we consider refined bounds that particularly address the
value of the stochastic solution. More general approaches to bound expectations of
value functions appear in Chapter 8.

The VSS bounds were developed in Birge [1982]. To find them, we consider
a simplified version of the stochastic program, where only the right-hand side is
stochastic (ξ = h(ω)) and Ξ is finite. Let ξ 1,ξ 2, . . . ,ξK index the possible

172 4 The Value of Information and the Stochastic Solution

realizations of ξ , and pk , k = 1, . . . ,K be their probabilities. It is customary to
refer to each realization ξ k of ξ as a scenario k .

To refine the bounds on VSS , we consider a reference scenario, say ξ r . Two
classical reference scenarios are ξ̄ , the expected value of ξ , or the worst-case sce-
nario (for example, the one with the highest demand level for problems when costs
have to be minimized under the restriction that demand must be satisfied). Note that
in both situations the reference scenario may not correspond to any of the possible
scenarios in Ξ . This is obvious for ξ̄ . The worst-case scenario is, however, a pos-
sible scenario when, for example, ξ is formed by components that are independent
random variables. If the random variables are not independent, then a meaningful
worst-case scenario may be more difficult to construct. Let pr = P (ξ = ξ r) be the
reference scenario’s probability.

The pairs subproblem of ξ r and ξ k is defined as

min zP(x,ξ r,ξ k) = cT x + prqT y(ξ r)+ (1− pr)qT y(ξ k)
s. t. Ax = b ,

Wy(ξ r) = ξ r −Tx ,

Wy(ξ k) = ξ k −Tx ,

x,y ≥ 0 .

Let (x̄k, ȳk,y(ξ k)) denote an optimal solution to the pairs subproblem and zk the
optimal objective value zP(x̄k, ȳk,y(ξ k)) . We may see the pairs subproblem as a
stochastic programming problem with two possible realizations ξ r and ξ k , with
probability pr and 1− pr , respectively.

Two particular cases of the pairs subproblem are of interest. First, observe that
zP(x,ξ r,ξ r) is well-defined and is in fact z(x,ξ r) , the deterministic problem for
which the only scenario is the reference scenario. Next, observe that if the reference
scenario is not a possible scenario, pr = P(ξ = ξ r)= 0 , then zP(x,ξ r,ξ k) becomes
simply z(x,ξ k) .

We now show the relations between the pairs subproblems and the recourse prob-
lem. To do this, we define the sum of pairs expected values, denoted by SPEV , to
be

SPEV =
1

1− pr

K

∑
k=1

pk minzP(x,ξ r,ξ k) .

Again, observe that this definition still makes sense when scenario r is not possible.
In that case, however, it is not really a new concept.

Proposition 6. When the reference scenario is not in Ξ , then SPEV = WS .

Proof: As we observed before, when pr = 0 , the pairs subproblems zP(x,ξ r,ξ k)

coincide with z(x,ξ k) . Hence, SPEV =
K

∑
k=1
k �=r

pk minz(x,ξ k) , which by definition

(1.2) is WS .

4.6 Bounds on EVPI and VSS 173

In general, the SPEV is related to WS and RP as follows.

Proposition 7. WS ≤ SPEV ≤ RP .

Proof: Let us first prove the first inequality. By definition,

SPEV =
K

∑
k=1
k �=r

pk (cT x̄k + prqT ȳk +(1− pr)qT y(ξ k))
1− pr ,

where (x̄k, ȳk,y(ξ k)) is a solution to the pairs subproblem of ξ r and ξ k . By the
constraint definition in the pairs subproblem, the solution (x̄k, ȳk) is feasible for the
problem z(x,ξ r) so that

cT x̄k + qT ȳk ≥ minz(x,ξ r) = z∗r .

Weighting cT xk with a pr and a (1− pr) term, we obtain:

SPEV =
K

∑
k=1
k �=r

pk[pr(cT x̄k + qT ȳk)+ (1− pr)(cT x̄k + qT y(ξ k))]
1− pr ,

which, by the property just given, is bounded by

SPEV ≥ ∑
k �=r

pk · pr · z∗r
1− pr +∑

k �=r

pk(cT x̄k + qT y(ξ k)) .

Now, we simplify the first term and bound cT x̄k + qT y(ξ k) by z∗k in the second
term, because (x̄,y(ξ k)) is feasible for minz(x,ξ k) = z∗k . Thus,

SPEV ≥ prz∗r +∑
k �=r

pkzk∗ = WS .

For the second inequality, let x∗,y∗(ξ k),k = 1, . . . ,K, be an optimal solution to the
recourse problem. For simplicity, we assume here that r ∈ Ξ . By the constraint
definitions, (x∗,y∗(ξ r),y∗(ξ k)) is feasible for the PAIRS subproblem of ξ r and
ξ k . This implies

cT x̄k + prqT ȳk +(1− pr)qT y(ξ k) ≤ cT x∗ + prqT y∗(ξ r)+ (1− pr)qT y∗(ξ k) .

If we take the weighted sums of these inequalities for all k �= r , with pk as the
weight of the k th inequality, the weighted sum of the left-hand side elements is, by
definition, equal to (1 − pr) · SPEV and the weighted sum of the right-hand side
elements is

K

∑
k=1
k �=r

pk(cT x∗ + prqT y∗(ξ r)+ (1− pr)qT y∗(ξ k))

174 4 The Value of Information and the Stochastic Solution

= (1− pr)

[
cT x∗ + prqT y∗(ξ r)+∑

k �=r

pkqT y∗(ξ k)

]

= (1− pr)

[
cT x∗ +

K

∑
k=1

pkqT y∗(ξ k)

]
= (1− pr)RP ,

which proves the desired inequality.

To obtain upper bounds on RP that relate to the pairs subproblem, we general-
ize the VSS definition. Let z(x,ξ r) be the deterministic problem associated with
scenario ξ r (remember ξ r need not necessarily be a possible scenario) and x̄r an
optimal solution to minx z(x,ξ r) . We may then define the expected value of the
reference scenario,

EVRS = Eξz(x̄r,ξ) ,

and the value of a stochastic solution to be

VSS = EVRS−RP .

Note that VSS is still nonnegative, because x̄r is either a feasible solution to the
recourse problem and EVRS ≥ RP or an infeasible solution so that EVRS = +∞ .

Now, as before, let (x̄k, ȳk,y(ξ k)) be optimal solutions to the pairs subproblem
of ξ r and ξ k , k = 1, . . . ,K . Define the expectations of pairs expected value to be

EPEV = min
k=1,...,K∪{r}

Eξz(x̄k,ξ) .

Proposition 8. RP ≤ EPEV ≤ EVRS .

Proof: The three values are the optimal value of the recourse function minx

Eξz(x,ξ) over smaller and smaller feasibility sets: the first one over all feasible
x in K1 ∩K2 , the second one over x ∈ K1 ∩K2 ∩{x̄k , k = 1, . . . ,K ∪{r}} , and the
third one over x̄r ∩K1 ∩K2 .

Putting these two propositions together, one obtains the following theorem.

Theorem 9. 0 ≤ EVRS−EPEV ≤ VSS ≤ EVRS−SPEV ≤ EVRS−WS .

We apply these concepts in the following example.

Example 2

Consider the problem to find:

min 3x1 + 2x2 + Eξ min(−15y1 −12y2)

4.6 Bounds on EVPI and VSS 175

s. t. 3y1 + 2y2 ≤ x1 ,

2y1 + 5y2 ≤ x2 ,

.8ξ1 ≤ y1 ≤ ξ1 ,

.8ξ2 ≤ y2 ≤ ξ2 ,

x,y ≥ 0 ,

where ξ1 = 4 or 6 and ξ2 = 4 or 8 , independently of each other, with probability
1/2 each.

This example can be seen as an investment decision in two resources x1 and x2 ,
which are needed in the second-stage problem to cover at least 80% of the demand.
In this situation, the EEV and WS answers are totally inconclusive.

Table 1 gives the various solutions under the four scenarios, the optimal objective
values under these scenarios and the W S value. It also describes the EV value
under the expected value scenario ξ̄ = (5,6)T . Note that this scenario is not one
of those possible. The optimal solution x̄(ξ̄) = (24.6,34)T is infeasible for the
stochastic problem so that EEV is set to be +∞ .

Table 1 Solutions and optimal values under the four scenarios and the expected value scenario.

Scenario First-Stage Second-Stage Optimal Value
Solution Solution z(x̄(ξ),ξ)

1. (4,4) (18.4, 24) (4, 3.2) 4.8
2. (6,4) (24.4, 28) (6, 3.2) 0.8
3. (4,8) (24.8, 40) (4, 6.4) 17.6
4. (6,8) (30.8, 44) (6, 6.4) 13.6

WS = 9.2

ξ̄ = (5,6) (24.6, 34) (5, 4.8) EV = 9.2
EEV = +∞

It follows from Table 1 that EV = WS = 9.2 ≤ RP ≤ EEV = +∞ . This rela-
tion is of no help: we can only conclude from it that EVPI is somewhere between
0 and +∞ , and so is VSS . These statements could have been made without any
computation.

It is in such situations that the pairs subproblems are of great interest. Because
the problem under consideration is an investment problem with demand satisfaction
constraints, the most logical reference scenario corresponds to the largest demand,
ξ r = (6,8)T , and not to the mean demand ξ̄ .

This will force the first-stage decisions to take demand satisfaction under the
maximal demand into consideration, so that decisions taken under the pairs sub-
problem are feasible for the recourse problem. Due to independence, ξ r is one of
the possible realizations of ξ , with pr = 1/4 .

176 4 The Value of Information and the Stochastic Solution

The pairs subproblems of ξ r and ξ k are

min 3x1 + 2x2 − 1
4
(15yr

1 + 12yr
2)−

3
4
(15y1 + 12y2)

s. t. x1 ≥ 27.2 , 3yr
1 + 2yr

2 ≤ x1 , 3y1 + 2y2 ≤ x1 ,

x2 ≥ 41.6 , 2yr
1 + 5yr

2 ≤ x2 , 2y1 + 5y2 ≤ x2 ,

4.8 ≤ yr
1 ≤ 6 , .8ξ k

1 ≤ y1 ≤ ξ k
1 ,

6.4 ≤ yr
2 ≤ 8 , .8ξ k

2 ≤ y2 ≤ ξ k
2 ,

y ≥ 0 .

The bounds on x1 and x2 are induced by the feasibility for the reference scenarios.
Table 2 gives the solutions of the pairs subproblems for the three scenarios (other

than the reference scenario), the SPEV , the EVRS , and the EPEV values.

Table 2 Pairs subproblems solutions.

Pairs First-Stage Second-Stage Second-Stage Objective
Subproblem Solution under under Value zP

Reference Sc. ξk

1. (4,4), r (27.2, 41.6) (4.8, 6.4) (4,4) 46.6
2. (6,4), r (27.2, 41.6) (4.8, 6.4) (6,4) 24.1
3. (4,8), r (27.2, 41.6) (4.8, 6.4) (4, 6.72) 22.12

SPEV = 30.94
EPEV = mink Eξz(x̄(ξk),ξ) = Eξz(27.2,41.6,ξ)

= 30.94
EVRS = Eξz((30.8,44),ξ) = 40.6

This time, the relations one can derive from this table are strongly
conclusive:

WS = 9.2 ≤ SPEV = 30.94 ≤ RP ≤ EPEV = 30.94 ≤ EVRS = 40.6

implies RP = 30.94 and (27.2,41.6)T is an optimal solution.

Exercises

1. Show that Proposition 1 still holds if some of the x and/or y must be integer.

2. Consider Example 3.5 (with recourse function given in (3.3.1)) with a single
first-stage decision x with first-stage cost c · x and

Q(x,ξ) = min{2y1 + y2 | y1 ≥ x−ξ,y2 ≥ ξ− x,y ≥ 0, integer }

4.6 Bounds on EVPI and VSS 177

with ξ = 1 or 2 with probability of 1/2 each. Show:

(a) If x must be integer, then EV > WS for any value of c ≥ 0 .
(b) If x is continuous, then EV = WS for 0 ≤ c ≤ 1 and EV > WS for c > 1 .

Beware that y is always integer; the discussion here concerns the effect of
x ’s being integer or not.

3. Consider the following stochastic program

min
x≥0

2x + Eξ{ξ · y | y ≥ 1− x, y ≥ 0} ,

and ξ takes on values 1 and 3 with probability 3/4 and 1/4 , respectively.
Show that in this case EV > WS .

4. Consider the following two-stage program:

min 2x1 + x2 + Eξ(−3y1 −4y2 |
y1 + 2y2 ≥ ξ1,y1 ≤ x1,y2 ≤ x2,y2 ≤ ξ2,y ≥ 0)

s. t. x1 + x2 ≤ 7 , x1,x2 ≥ 0 ,

where ξ can take the values

(
3
2

)
,

(
5
3

)
,

(
7
3

)
with probability 1/3 each.

(a) Choose the scenario

(
7
3

)
as the reference scenario. Define the problem

z(x,ξ) for this reference scenario. Its optimal solution gives the optimal
first-stage decision x1 = 4 , x2 = 3 . Compute the EVRS value.

(b) State the pairs subproblem for
(

3
2

)
and the reference scenario.

(c) The solution of the pairs subproblem for
(

3
2

)
and the reference scenario

has first-stage optimal solutions x1 = 5 , x2 = 2 ; the solution of the pairs

subproblem for
(

5
3

)
and the reference scenario has first-stage optimal so-

lutions x1 = 4 , x2 = 3 . Compute the values of the two pairs subproblems.
Compute the SPEV value. What relation holds for the recourse problem
value?

5. Adapt the proofs in Proposition 7 for the case where r �∈ Ξ .

6. Prove that the bounds in this chapter remain valid under general constraints
x ∈ X and y ∈ Y (x) that may, for example, involve integrality restrictions.
(Sandikçi, Kong, and Schaefer [2009]).

7. Fill in the corresponding entries for Tables 1 and 2 with the added restriction
that all decision variables must be integers.

Part III
Solution Methods

Chapter 5
Two-Stage Recourse Problems

Computation in stochastic programs with recourse has focused on two-stage prob-
lems with finite numbers of realizations. This problem was introduced in the farming
example of Chapter 1. As we saw in the capacity expansion model, this problem can
also represent multiple stages of decisions with block separable recourse and it pro-
vides a foundation for multistage methods. The two-stage problem is, therefore, our
primary model for computation.

The general model is to choose some initial decision that minimizes current costs
plus the expected value of future recourse actions. With a finite number of second-
stage realizations and all linear functions, we can always form the full deterministic
equivalent linear program or extensive form. With many realizations, this form of the
problem becomes quite large. Methods that ignore the special structure of stochastic
linear programs become quite inefficient (as some of the results in Section 5.1d.
show). Taking advantage of structure is especially beneficial in stochastic programs
and is the focus of much of the algorithmic work in this area.

The method used most frequently is based on building an outer linearization of
the recourse cost function and a solution of the first-stage problem plus this lin-
earization. This cutting plane technique is called the L -shaped method in stochastic
programming. Section 5.1 describes the basic L -shaped method and describes the
cut construction in some detail. Section 5.1c. gives a formal proof of convergence
of the L -shaped method while the following subsections continue this development
with a discussion of enhancements of the L -shaped method in terms of multicuts
and bunching of realizations. Variants adding nonlinear regularized terms are stud-
ied in Section 5.2 and with quadratic objectives in Section 5.3. Other extensions
of the L-shaped method include its use with bounding techniques, which will be
considered in Chapter 8, and in combination with sampling methods, which will be
studied in Chapter 9.

The remainder of this chapter discusses alternative algorithms. In Section 5.6,
we describe alternative decomposition procedures. The first method is an inner lin-
earization, or Dantzig-Wolfe decomposition approach, that solves the dual of the
L -shaped method problem. The other approach is a primal form of inner lineariza-
tion based on generalized programming. Section 5.5 considers direct approaches

J.R. Birge and F. Louveaux, Introduction to Stochastic Programming, Springer Series 181
in Operations Research and Financial Engineering, DOI 10.1007/978-1-4614-0237-4 5,
c© Springer Science+Business Media, LLC 2011

182 5 Two-Stage Recourse Problems

to the extensive form through efficient extreme point and interior point methods.
We discuss basis factorization and its relationship to decomposition methods. We
also present interior point approaches and the use of a special stochastic program-
ming structure for these algorithms. Methods based on nonlinear optimization of
the Lagrangian appear in Section 5.8. Section 5.9 discusses additional methods and
considerations of computational complexity.

5.1 The L -Shaped Method

Consider the general formulation in (3.1.2) or (3.1.5). The basic idea of the L -
shaped method is to approximate the nonlinear term in the objective of these prob-
lems. A general principle behind this approach is that, because the nonlinear ob-
jective term (the recourse function) involves a solution of all second-stage recourse
linear programs, we want to avoid numerous function evaluations for it. We there-
fore use that term to build a master problem in x , but we only evaluate the recourse
function exactly as a subproblem.

To make this approach possible, we assume that the random vector ξ has fi-
nite support. Let k = 1, . . . ,K index its possible realizations and let pk be their
probabilities. Under this assumption, we may now write the deterministic equiva-
lent program in the extensive form. This form is created by associating one set of
second-stage decisions, say, yk , to each realization ξ , i.e., to each realization of
qk , hk , and Tk . It is a large-scale linear problem that we can define as the extensive
form (EF):

(EF) min cT x +
K

∑
k=1

pkqT
k yk

s. t. Ax = b ,

Tkx +Wyk = hk , k = 1, . . . ,K ;

x ≥ 0 , yk ≥ 0 , k = 1, . . . ,K .

(1.1)

An example of an extensive form has been given for the farmer’s problem in
Chapter 1 (Model (1.1.2)).

The block structure of the extensive form appears in Figure 1. This picture has
given rise to the name, L -shaped method for the following algorithm. Taking the
dual of the extensive form, one obtains a dual block-angular structure, as in Figure 2.
Therefore it seems natural to exploit this dual structure by performing a Dantzig-
Wolfe [1960] decomposition (inner linearization) of the dual or a Benders [1962]
decomposition (outer linearization) of the primal. This method has been extended
in stochastic programming to take care of feasibility questions and is known as Van
Slyke and Wets’s [1969] L -shaped method. It proceeds as follows.

5.1 The L -Shaped Method 183

Fig. 1 Block structure of the two-stage extensive form.

Fig. 2 Block angular structure of the two-stage dual.

L -Shaped Algorithm

Step 0. Set r = s = ν = 0 .

Step 1. Set ν = ν+ 1 . Solve the linear program (1.2)–(1.4)

min z = cT x +θ (1.2)

s. t. Ax = b ,

D�x ≥ d� , � = 1, . . . ,r , (1.3)

E�x +θ ≥ e� , � = 1, . . . ,s , (1.4)

x ≥ 0 , θ ∈ℜ .

Let (xν ,θν) be an optimal solution. If no constraint (1.4) is present, θν is set equal
to −∞ and is not considered in the computation of xν .

Step 2. Check if x ∈ K2 If not, add at least one cut (1.3) and return to Step 1.
Otherwise, go to Step 3.

184 5 Two-Stage Recourse Problems

Step 3. For k = 1, . . . ,K solve the linear program

min w = qT
k y

s. t. Wy = hk −Tkxν ,

y ≥ 0 .

(1.5)

Let πνk be the simplex multipliers associated with the optimal solution of Problem
k of type (1.5). Define

Es+1 =
K

∑
k=1

pk · (πνk)T Tk (1.6)

and

es+1 =
K

∑
k=1

pk · (πνk)T hk . (1.7)

Let wν = es+1 −Es+1xν . If θν ≥ wν , stop; xν is an optimal solution. Otherwise,
set s = s+ 1 , add to the constraint set (1.4), and return to Step 1.

The method consists of solving an approximation of (3.1.2) by using an outer
linearization of Q . This approximation is program (1.2)–(1.4). It is called the mas-
ter program. It consists of finding a proposal x , sent to the second stage. Two
types of constraints are sequentially added: (i) feasibility cuts (1.3) determining
{x | Q(x) < +∞} and (ii) optimality cuts (1.4), which are linear approximations
to Q on its domain of finiteness. We first illustrate the optimality cuts, in an ex-
ample where x ∈ K2 is always satisfied. We then provide details on how to obtain
feasibility cuts.

a. Optimality cuts

Consider the following problem.

Example 1

Let

z = min 100x1 + 150x2 + Eξ(q1y1 + q2y2)
s. t. x1 + x2 ≤ 120 ,

6y1 + 10y2 ≤ 60x1 ,

8y1 + 5y2 ≤ 80x2 ,

y1 ≤ d1 , y2 ≤ d2 ,

x1 ≥ 40 , x2 ≥ 20 , y1,y2 ≥ 0 ,

5.1 The L -Shaped Method 185

where ξT = (d1,d2,q1,q2) takes on the values (500,100,−24,−28) with proba-
bility 0.4 and (300,300,−28,−32) with probability 0.6 .

Observe that, in this example, the second stage is always feasible (y = (0,0)T is
always feasible as x ≥ 0 and d ≥ 0). Thus x ∈ K2 is always true and Step 2 can
simply be omitted.

The example illustrates the optimality cuts in Step 3 and the effect on the master
program. Steps 1 and 3 of the L -shaped method require the solution of a number of
linear programs. They can easily be obtained through your favorite LP-solver. They
can also be checked by constructing the optimal dictionaries (see Exercise 1). You
may also trust the authors of this book.

The sequence of iterations of the L -shaped method is as follows:

Iteration 1:

Step 1. Ignoring θ , the master program is simply z = min{100x1+150x2 | x1 +x2 ≤
120 , x1 ≥ 40 , x2 ≥ 20} with solution x1 = (40,20)T and θ 1 = −∞ .

Step 3.

• For ξ = ξ1 , solve the program

w = min{−24y1 −28y2 | 6y1 + 10y2 ≤ 2400 , 8y1 + 5y2 ≤ 1600 ,

0 ≤ y1 ≤ 500 , 0 ≤ y2 ≤ 100} .

The solution is w1 = −6100 , yT = (137.5,100) , πT
1 = (0,−3,0,−13) .

• For ξ = ξ2 , solve the program

w = min{−28y1 −32y2 | 6y1 + 10y2 ≤ 2400 , 8y1 + 5y2 ≤ 1600 ,

0 ≤ y1 ≤ 300 , 0 ≤ y2 ≤ 300} .

The solution is w2 = −8384 , yT = (80,192) , πT
2 = (−2.32,−1.76,

0,0) .

Using h1 = (0,0,500,100)T and h2 = (0,0,300,300)T in (1.7), one obtains

e1 = 0.4 ·πT
1 ·h1 + 0.6 ·πT

2 ·h2 = 0.4 · (−1300)+ 0.6 · (0)= −520 .

The matrix T is identical in the two scenarios. It consists of two columns
(−60,0,0,0)T and (0,−80,0,0)T . Thus, (1.6) gives

E1 = 0.4 ·πT
1 T + 0.6 ·πT

2 T = 0.4(0,240)+ 0.6(139.2,140.8)
= (83.52,180.48) .

Finally, as x1 = (40,20)T , w1 = −520− (83.52,180.48) · x1 = −7470.4 .
Thus, w1 = −7470.4 > θ 1 = −∞ , add the cut

186 5 Two-Stage Recourse Problems

83.52x1 + 180.48x2 +θ ≥ −520 .

Iteration 2:

Step 1. Solve

z = min{100x1 + 150x2 +θ | x1 + x2 ≤ 120 , x1 ≥ 40 , x2 ≥ 20 ,

83.52x1 + 180.48x2 +θ ≥ −520}

with solution z = −2299.2 , x2 = (40,80)T , θ 2 = −18299.2 .

Step 3.

• For ξ = ξ1 the program

w = min{−24y1 −28y2 | 6y1 + 10y2 ≤ 2400 , 8y1 + 5y2 ≤ 6400 ,

0 ≤ y1 ≤ 500 , 0 ≤ y2 ≤ 100}

has solution w1 = −9600 , yT = (400,0) , πT
1 = (−4,0,0,0)T .

• For ξ = ξ2 the program

w = min{−28y1 −32y2 | 6y1 + 10y2 ≤ 2400 , 8y1 + 5y2 ≤ 6400 ,

0 ≤ y1 ≤ 300 , 0 ≤ y2 ≤ 300}

has solution: w2 = −10320 , yT = (300,60) , πT
2 = (−3.2,0,−8.8,0) .

Apply formulas (1.6) and (1.7) to obtain

e2 = 0.4 · (0)+ 0.6 · (−2640) =−1584 ,

E2 = 0.4 · (240,0)+ 0.6 · (192,0)=(211.2,0) .

As w2 = −1584−211.2 ·40 = −10032 > −18299.2 , add the cut

211.2x1 +θ ≥ −1584 .

Iteration 3:

Step 1. Master program has solution z = −1039.375 , x3 = (66.828,53.172)T ,
θ 3 = −15697.994 .

Step 3. Add the cut
115.2x1 + 96x2 +θ ≥ −2104 .

Iteration 4:

5.1 The L -Shaped Method 187

Step 1. Master program has solution z =−889.5 , x4 = (40,33.75)T , θ 4 =−9952 .

Step 3. The second-stage program for ξ = ξ2 has multiple solutions. Selecting one
of them, we add the cut

133.44x1 + 130.56x2 +θ ≥ 0 .

Iteration 5:

Step 1. Solve first stage program

z = min{100x1 + 150x2 +θ | x1 + x2 ≤ 120 , x1 ≥ 55 , x2 ≥ 25 ,

83.52x1 + 180.48x2 +θ ≥ −520 , 211.2x1 +θ ≥ −1584 ,

115.2x1 + 96x2 +θ ≥ −2104 ,

133.44x1 + 130.56x2 +θ ≥ 0} .

It has solution z = −855.833 , x5 = (46.667,36.25)T , θ 5 = −10960 .

Step 3.

• For ξ = ξ1 the program

w = min{−24y1 −28y2 | 6y1 + 10y2 ≤ 2800 , 8y1 + 5y2 ≤ 2900 ,

0 ≤ y1 ≤ 500 , 0 ≤ y2 ≤ 100}

has the solution w1 = −10000 , yT = (300,100) , πT
1 = (0,−3,

0,−13) .
• For ξ = ξ2 the program

w = min{−28y1 −32y2 | 6y1 + 10y2 ≤ 2800 , 8y1 + 5y2 ≤ 2900,

0 ≤ y1 ≤ 300 , 0 ≤ y2 ≤ 300}

has the solution w2 = −11600 , yT = (300,100) , πT
2 = (−2.32,−1.76,

0,0) .

Apply formulaes (1.6) and (1.7) to obtain

e5 = 0.4 · (−1300)+ 0.6 · (0) =−520 ,

E5 = 0.4 · (0,240)+ 0.6 · (139.2,140.8)=(83.52,180.48) .

As w5 = −520− (83.52,180.48) · x5 = −10960 = θ 5 , stop.
x5 = (46.667,36.25)T is the optimal solution.

Note that, as Example 1 is small, it is easy to write down the extensive form of
Example 1 and solve it with an LP-solver to check whether (46.667,36.25)T is

188 5 Two-Stage Recourse Problems

the optimal solution. Exercise 1 illustrates how optimality cuts are obtained through
dictionaries and presents some simple and useful checks.

As indicated above, the second-stage program for ξ = ξ2 at Iteration 4 has mul-
tiple solutions. An alternative cut is

165.12x1 + 46.08x2 +θ ≥ −1584 .

Using this cut instead of the one used above, the algorithm also terminates at Itera-
tion 5.

Example 2

Let

z = min E ξ (y1 + y2)

s. t. 0 ≤ x ≤ 10 ,

y1 − y2 = ξ − x ,

y1,y2 ≥ 0 ,

where ξ takes the values 1 , 2 and 4 with probability 1/3 each.

Observe that h = ξ , T = [1] and x are all scalars. Also observe that Step 2 can
be omitted. As an exercise, we provide the calculations of Iteration 1. Take x1 = 0
as starting point. Step 3 of Iteration 1 includes the following:

• For ξ = ξ1 , solve the program w = min{y1 +y2 | y1 −y2 = 1 , y1,y2 ≥ 0} . The
solution is w1 = 1 , yT = (1,0) , π1 = (1) .

• For ξ = ξ2 , solve the program w = min{y1 +y2 | y1 −y2 = 2 , y1,y2 ≥ 0} . The
solution is w2 = 2 , yT = (2,0) , π2 = (1) .

• For ξ = ξ3 , solve the program w = min{y1 +y2 | y1 −y2 = 4 , y1,y2 ≥ 0} . The
solution is w3 = 4 , yT = (4,0) , π3 = (1) .

• Using hk = ξk , one obtains e1 = 1/3 ·1 ·(1+2+4)= 7/3 . Formula (1.6) gives
E1 = 1/3 · 1 · (1 + 1 + 1)= 1 . Finally, as x1 = (0) , w1 = 7/3 > −∞ ; add the
cut, θ ≥ 7/3− x .

Repeating these calculations, the iterations of the L -shaped method can be sum-
marized as follows:

Iteration 1:

Step 1. x1 = 0 ,

Step 3. x1 is not optimal; add the cut θ ≥ 7/3− x .

Iteration 2:

5.1 The L -Shaped Method 189

Step 1. x2 = 10 ,

Step 3. x2 is not optimal; add the cut θ ≥ x−7/3 .

Iteration 3:

Step 1. x3 = 7/3 ,

Step 3. x3 is not optimal; add the cut θ ≥ (x + 1)/3 .

Iteration 4:

Step 1. x4 = 1.5 ,

Step 3. x4 is not optimal; add the cut θ ≥ (5− x)/3 .

Iteration 5:

Step 1. x5 = 2 ,

Step 3. x5 is optimal.

We now illustrate in this example that these cuts can be seen as supporting hy-
perplanes of Q(x) .

To see this, recall that Q(x) = EξQ(x,ξ) =
K
∑

k=1
pkQ(x,ξk) , where

Q(x,ξ) = min{y1 + y2 | y1 − y2 = ξ − x , y1,y2 ≥ 0} .

In this very simple example, it is easy to see that if x ≤ ξ , the second-stage optimal
solution is yT = (ξ − x,0) while it is yT = (0,x− ξ) if x ≥ ξ . Thus

Q(x,ξ) =

{
ξ − x if x ≤ ξ ,

x− ξ if x ≥ ξ .

Figure 3 represents the functions Q(x,1) , Q(x,2) , Q(x,4) as well as Q(x) .

Now, consider again Iteration 1. x1 = 0 is the starting point. Step 3 obtains the
cut θ ≥ 7/3 − x . From our construction, we see that, for x = x1 , Q(x,1) = 1 ,
Q(x,2) = 2 , Q(x,4) = 4 and Q(x) = 7/3 . But we can also conclude that “around
x = x1 ,” Q(x,1) = 1− x , Q(x,2) = 2− x , Q(x,4) = 4− x and Q(x) = 7/3− x .
In fact, “around x = x1 ” is simply 0 ≤ x ≤ 1 . This can easily be seen from the
construction of Q(x,1) where Q(x,1) changes when x = 1 . In general, such a
range can be obtained by linear programming sensitivity analysis around the second-
stage optimal solutions.

We conclude that Q(x) = 7/3 − x within 0 ≤ x ≤ 1 . The optimality cut at
the end of Iteration 1 is nothing other than θ ≥ 7/3− x . It coincides with Q(x) =

190 5 Two-Stage Recourse Problems

Fig. 3 Recourse functions for Example 2.

7/3−x within 0 ≤ x ≤ 1 and is a lower bound on Q(x) elsewhere (see Section 5.1
for the proof). We say that the optimality cut is a supporting hyperplane of Q(x) .

The L -Shaped algorithm successively adds four cuts which are supporting hy-
perplanes on the intervals [0,1] , [4,10] , [2,4] and [1,2] , respectively. Thus, at
the beginning of Iteration 5, a full description of Q(x) is available through the
four cuts. Obviously, such a full description is not needed. In fact, the optimum is
found here as soon as the supporting hyperplanes of the intervals [1,2] and [2,4]
are known. If, by chance, these two intervals were to be considered in the first two
iterations, then two cuts (and three iterations) would suffice to find the optimum.
Thus, the efficiency of the L -Shaped algorithm can be influenced by an adequate
choice of the starting point.

Finally, observe that, by linear programming duality, the cuts (1.4) can also be
obtained from the primal second-stage solutions. Indeed, as we have seen in the
proof of Proposition 3 of Chapter 3, solving the second-stage program

5.1 The L -Shaped Method 191

Q(x,ξ) = min
y

{q(ω)y | W (ω)y = h(ω)−T(ω)x , y ≥ 0}

amounts to finding an optimal basis B(ω) (a square submatrix of W) such that
yB = B(ω)−1(h(ω)− T (ω)x) , yN = 0 and qB(ω)T B(ω)−1 . W ≤ q(ω)T , where
yB and yN are the subvectors of y associated to the columns of B(ω) and to the
remaining columns, respectively. It follows that

Q(x,ξ) = qB(ω)T ·B(ω)−1(h(ω)−T(ω)x) .

Sensitivity analysis shows that, for fixed ξ , this relation holds for all x ’s such
that B(ω)−1(h(ω)− T (ω)x) ≥ 0 . Noticing that πT = qB(ω)T ·B(ω)−1 , one can
show that the cut (1.4) is identical to

θ ≥ E ξ {qB(ω)T ·B(ω)−1(h(ω)−T (ω)x)}

and that the right-hand side of the cut coincides with Q(x) within

∩ξ∈Ξ{x | B(ω)−1(h(ω)−T(ω)x ≥ 0} .

The construction of the cuts from the primal second-stage solutions and the influ-
ence of the starting point are further discussed in Exercise 2.

b. Feasibility cuts

Step 2 of the L -shaped method consists of determining whether a first-stage deci-
sion x ∈ K1 is also second stage feasible, i.e. x ∈ K2 . This step can be done as
follows:

Step 2. For k = 1, . . . ,K solve the linear program

min w′ = eT v+ + eT v− (1.8)

s. t. Wy + Iv+ − Iv− = hk −Tkxν ,

y ≥ 0 , v+ ≥ 0 , v− ≥ 0 ,

(1.9)

where eT = (1, . . . ,1) , until, for some k , the optimal value w′ > 0 . In this case,
let σν be the associated simplex multipliers and define

Dr+1 = (σν)T Tk (1.10)

and
dr+1 = (σν)T hk (1.11)

to generate a constraint (called a feasibility cut) of type (1.3). Set r = r +1 , add to
the constraint set (1.3), and return to Step 1. If for all k , w′ = 0 , go to Step 3.

192 5 Two-Stage Recourse Problems

To illustrate the feasibility cuts, consider Example 4.2:

min 3x1 + 2x2 −Eξ(15y1 + 12y2)
s. t. 3y1 + 2y2 ≤ x1 ,

2y1 + 5y2 ≤ x2 ,

.8ξ1 ≤ y1 ≤ ξ1 ,

.8ξ2 ≤ y2 ≤ ξ2 ,

x,y ≥ 0 ,a.s.,

with ξ1 = 4 or 6 and ξ2 = 4 or 8 , independently, with probability 1/2 each and
ξ = (ξ1,ξ2)T .

To keep the discussion short, assume the first considered realization of ξ is
(6,8)T . If not, many cuts would be needed. Starting from an initial solution
x1 = (0,0)T , Program (1.8)–(1.9) reads as follows

w′ = min v+
1 + v−

1 + v+
2 + v−

2 + v+
3 + v−

3

+ v+
4 + v−

4 + v+
5 + v−

5 + v+
6 + v−

6

s. t. v+
1 − v−

1 + 3y1 + 2y2 ≤ 0 ,

v+
2 − v−

2 + 2y1 + 5y2 ≤ 0 ,

v+
3 − v−

3 + y1 ≥ 4.8 ,

v+
4 − v−

4 + y2 ≥ 6.4 ,

v+
5 − v−

5 + y1 ≤ 6 ,

v+
6 − v−

6 + y2 ≤ 8 ,

v+,v−,y ≥ 0

The optimal solution is w′ = 11.2 with non-zero variables v+
3 = 4.8 and

v+
4 = 6.4 . The corresponding dual variables are σ1 = (−3/11,−1/11,1,1,0,0) .

We observe that h = (0,0,4.8,6.4,6,8)T and that T consists of the two columns
(−1,0,0,0,0,0)T and (0,−1,0,0,0,0)T ; thus, D1 = (−0.273,−0.091,1,1,0,0) .
T = (0.273,0.091) , while d1 = (−0.273,−0.091,1,1,0,0) ·h = 11.2 , creating the
feasibility cut 3/11x1 + 1/11x2 ≥ 11.2 or 3x1 + x2 ≥ 123.2 .

The first-stage solution is then x2 = (41.067,0)T . A second feasibility cut is
x2 ≥ 22.4. The first-stage solution becomes x3 = (33.6,22.4)T . A third feasibility
cut x2 ≥ 41.6 is generated. The first-stage solution is:

x4 = (27.2, 41.6)T ,

which yields feasible second-stage decisions.
This example also illustrates that generating feasibility cuts by a mere application

of Step 2 of the L -shaped method may not be efficient. Indeed, a simple look at the
problem reveals that, for feasibility when ξ1 = 6 and ξ2 = 8 , it is at least necessary
to have y1 ≥ 4.8 and y2 ≥ 6.4 , which in turn implies x1 ≥ 27.2 and x2 ≥ 41.6 .

5.1 The L -Shaped Method 193

We may then consider the following program as a reasonable initial problem:

min 3x1 + 2x2 +Q(x)
s. t. x1 ≥ 27.2 ,

x2 ≥ 41.6 ,

which immediately appears to be feasible. Such situations frequently occur in prac-
tice and are now discussed.

In some cases, Step 2 can be simplified. A first case is when the second stage is
always feasible. The stochastic program is then said to have complete recourse. Let,
as in (1.1), the second-stage constraint be:

Wy = h−Tx,y ≥ 0 .

We repeat here the definition given in Section 3.1d. for complete recourse for con-
venience.

Definition. A stochastic program is said to have complete recourse when pos W =
ℜm2 . It is said to have relatively complete recourse when K2 ⊇ K1 , i.e., x ∈ K1

implies h−Tx ∈ pos W for any h,T realization of h,T .

If we consider the farmer’s problem in Section 1.1, program (1.1.2) has complete
recourse. The second stage just serves as a measure of the cost to the farmer of
the decisions taken. Any lack of production can be covered by a purchase. Any
production in excess can be sold. If we consider the power generation model (1.3.6),
it has complete recourse if there exists at least one technology with zero lead time
(Δi = 0) . If the demand in a given period t exceeds what can be delivered by the
available equipment, an investment is made in this (usually expensive) technology
to cover the needed demand.

A second case is when it is possible to derive some constraints that have to be sat-
isfied to guarantee second-stage feasibility. These constraints are sometimes called
induced constraints. They can be obtained from a good understanding of the model.
A simple look at the second-stage program in the example reveals the conditions
for feasibility. Constraints x1 ≥ 27.2 and x2 ≥ 41.6 are examples of induced con-
straints. In the power generation model (1.3.6) of Section 1.3, the total possible

demand in a given stage t is obtained from (1.3.8) as
m

∑
j=1

dt
j . The maximal possi-

ble demand in stage t is thus Dt = max
ξ∈Ξ

m

∑
j=1

dt
j . Stage t feasibility will thus require

enough investments in the various technologies to cover the maximal demand, i.e.,

n

∑
i=1

ai(w
t−Δi
i + gi) ≥ Dt .

Again, with the introduction of these induced constraints, Step 2 of the L -shaped
algorithm can be dropped.

194 5 Two-Stage Recourse Problems

A third case is when Step 2 is not required for all k = 1, . . . ,K , but for one hk .
Assume T is deterministic. Also assume we can transform W so that for all t ≥ 0 ,
t ∈ pos W . This poses no difficulty for inequalities, as it is just a matter of taking
the slack variables with a positive coefficient. In Example 4.2 discussed above, the
following representation of W satisfies the desired requirement:

3y1+2y2 +w1 =x1 ,

2y1+5y2 +w2 =x2 ,

y1 +w3 =d1 ,

−y1 +w4 =−0.8d1 ,

y2 +w5 =d2 ,

− y2 +w6=−0.8d2 .

For any t ≥ 0 , it suffices to take w = t to have a second-stage feasible solution.
Assume first some lower bound,

b(x) ≤ hk −Tkx , k = 1, . . . ,K ,

exists. Then a sufficient condition for x to be feasible is that the linear system:
Wy = b(x) , y ≥ 0 , is feasible. Indeed, if Wy = b(x) , y ≥ 0 is feasible, then Wy =
b′(x) , y ≥ 0 is feasible for any b′(x) ≥ b(x) by construction of W .

Theorem 1. Assume that W is such that t ∈ pos W for all t ≥ 0 . Define ai =
min

k=1,...K
{hik} to be the componentwise minimum of h . Also assume there exists one

realization h�, � ∈ {1, . . . ,K} s.t. a = h� . Then, x ∈ K2 if and only if Wy = a −
Tx,y ≥ 0 is feasible.

Proof: This is easily checked, as the condition was just seen to be sufficient. It is
also necessary because x ∈ K2 only if Wy = a−Tx , y ≥ 0 is feasible.

Again taking the same example of the previous section, we observe that, with
an appropriate choice of W , the vector h = (0,0,ξ1,−0.8ξ1,ξ2,−0.8ξ2)T . The
componentwise minimum is a = (0,0,4,−4.8,4,−6.4)T . Unfortunately, no h co-
incides with a . The system {y | Wy = a−Tx,y ≥ 0} is infeasible.

On the other hand, the system is feasible only if 3y1 + 2y2 ≤ x1 , 2y1 + 5y2 ≤
x2 , y1 ≥ 0.8ξ1,y2 ≥ 0.8ξ2 is feasible (we just drop the upper bounds on y). This
reduced system is feasible if and only if

3y1 + 2y2 ≤ x1 2y1 + 5y2 ≤ x2 , y1 ≥ 4.8 , y2 ≥ 6.4 ,

i.e., if and only if x1 ≥ 27.2 and x2 ≥ 41.6 , which (as already seen intuitively) is
a necessary condition for feasibility. Thus, even if in practice there does not always
exist a realization h� such that a = h� , the condition of Theorem 1 may still be
helpful.

5.1 The L -Shaped Method 195

Exercises

1. Consider Step 3 of Iteration 1 within Example 1.

(a) For ξ = ξ1 and x = x1 , the second-stage program is

w = min{−24y1 −28y2 | 6y1 + 10y2 ≤ 2400 ,

8y1 + 5y2 ≤ 1600 , 0 ≤ y1 ≤ 500 , 0 ≤ y2 ≤ 100}.

You may want to check that the optimal dictionary is

w = −6100 +3s2 +13s4,

s1 = 575 +6/8s2+50/8s4,

y1 = 137.5−1/8s2+5/8s4,

s3 = 362.5+1/8s2−5/8s4,

y2 = 100 −s4,

where s1 and s2 are the slacks of the two constraints and s3 and s4 the
slacks of the upper bound constraints.
Check that this dictionary corresponds to the solution stated in Example 1.
Check that the optimal value w = −6100 is also obtained through the dual
variables.

(b) For ξ = ξ1 , the optimal solution is w1 = −6100 and for ξ = ξ2 , the
optimal solution is w2 = −8384 . Check that w1 = 0.4w1 + 0.6w2 .
Prove by linear programming duality that w = ∑K

k=1 pkwk , where wk de-
notes the solution of the second-stage program for realization k of ξ ,
k = 1, . . . ,K .

(c) The optimal dictionary for ξ = ξ2 is

w = −8384+2.32s1+1.76s2,

y2 = 192 −0.16s1+0.12s2,

y1 = 80 +0.1s1 −0.2s2,

s3 = 220 −0.1s1 +0.2s2,

s4 = 108 +0.16s1−0.12s2.

Obtain the two optimal dictionaries if x1 = (35,25)T instead of (40,20)T .
Show that the cut is unchanged.

(d) Consider again x1 = (40,20)T . From the two dictionaries given in (a) and
(c), construct the range of values of x where the same cut is obtained.

2. Consider the following problem:

min 7x1 + 11x2 + Eξ(q1y1 + q2y2)

196 5 Two-Stage Recourse Problems

s. t. y1 + 2y2 ≥ d1 − x1 ,

y1 ≥ d2 − x2 ,

0 ≤ x1 ≤ 10 , 0 ≤ x2 ≤ 10 , y1,y2 ≥ 0,

where ξT = (q1,q2,d1,d2) takes on the values (26,16,6,12) and
(14,24,10,4) with probability 0.5 each.

(a) In this example, the L -shaped method selects x1 = (0,0)T as starting point
(Step l of Iteration 1). The L -shaped method can however be used with any
other reasonable starting point. Take x = (1,5)T as starting point. Show
that the L -shaped then finds an optimal solution in three iterations (which
means adding only two optimality cuts).

(b) Show that exactly the same steps are taken if the starting point is any point
within the region 4 ≤ x2 ≤ 6 + x1 .

(c) Consider any stochastic program where the only first-stage constraints are
bounds on the variables. Explain why the L -shaped method needs at least
two cuts to terminate, unless at least one variable is at a bound at the opti-
mum.

(d) Prove that the optimality cuts can also be constructed from the primal solu-
tions of the second stage programs.

(e) Show that the first-stage feasibility set K1 = {0 ≤ x1 ≤ 10 , 0 ≤ x2 ≤ 10}
can be partitioned in four regions, each one yielding a different optimality
cut . The regions are R1 = {x ∈ K1 | x1 −6 ≤ x2 ≤ 4} , R2 = {x ∈ K1 | x2 ≤
x1 −6} , R3 = {x ∈ K1 | 4 ≤ x2 ≤ 6 + x1} , R4 = {x ∈ K1 | x1 + 6 ≤ x2} .

3. Consider the problem of Exercise 2. Assume the second-stage includes the re-
quirements: y1 ≤ 15 , y2 ≤ 2 . Obtain the feasibility cuts.

4. Feasibility cuts in Benders decomposition have an equivalent in Dantzig-Wolfe
decomposition. What is it?

c. Proof of convergence

We now constructively prove that constraints of the type (1.4) defined in Step 3 are
supporting hyperplanes of Q(x) and that the algorithm will converge to an optimal
solution, provided the constraints (1.3) adequately define feasible points of K2 . We
then prove that at most finitely many cuts (1.3) are needed to guarantee x ∈ K2 .

First, observe that solving (3.1.3), namely,

min cT x +Q(x)
s. t. x ∈ K1 ∩K2 , (1.12)

is equivalent to solving

5.1 The L -Shaped Method 197

min cT x +θ (1.13)

s. t. Q(x) ≤ θ , (1.14)

x ∈ K1 ∩K2 ,

where, in both problems, Q(x) is defined as in (3.1.3),

Q(x) = EωQ(x,ξ (ω))

and
Q(x,ξ (ω)) = min

y
{q(ω)T y | Wy = h(ω)−T(ω)x,y ≥ 0}

as in (3.1.4).
We are thus looking for a finitely convergent algorithm for solving (1.12) or

(1.13). In Step 3 of the algorithm, problem (1.5) is solved repeatedly for each k =
1, . . . ,K , yielding optimal simplex multipliers πνk , k = 1, . . . ,K . It follows from
duality in linear programming that, for each k ,

Q(xν ,ξk) = (πνk)T (hk −Tkxν) .

Moreover, by convexity of Q(x,ξk) , it follows from the subgradient inequality that

Q(x,ξk) ≥ (πνk)T hk − (πνk)T Tkx .

We may now take the expectation of these two relations to obtain

Q(xν) = E(πν)T (h−Txν) =
K

∑
k=1

pk · (πνk)T (hk −Tkxν)

and

Q(x) ≥ E(πν)T (h−Tx) =
K

∑
k=1

pk(πνk)T hk −
(

K

∑
k=1

pk(πνk)T Tk

)
x ,

respectively. By θ ≥ Q(x) , it follows that a pair (x,θ) is feasible for (1.13) only
if θ ≥ E(πν)T (h−Tx) , which corresponds to (1.4) where E� and e� are defined
in (1.6) and (1.7).

On the other hand, if (xν ,θν) is optimal for (1.13), it follows that Q(xν) = θν ,
because θ is unrestricted in (1.13) except for θ ≥ Q(x) . This happens when θν =
E(πν)T (h−Txν) , which justifies the termination criterion in Step 3.

This means that at each iteration either θν ≥ Q(xν) implying termination or
θν < Q(xν) . In the latter case, none of the already defined optimality cuts (1.4)
adequately imposes θ ≥Q(x) ; so, a new set of multipliers πνk will be defined at xν

to generate an appropriate constraint (1.4). The finite convergence of the algorithm
follows from the fact that there is only a finite number of different combinations
of the K multipliers πk , because each corresponds to one of the finitely many
different bases of (1.5).

198 5 Two-Stage Recourse Problems

An alternative proof of convergence could be obtained by showing that Step 3 co-
incides with an iteration of the subproblems in the Dantzig-Wolfe decomposition of
the dual of (1.12) while Step 1 coincides with the master problem. We will consider
this approach in Section 5.6.

We now have to prove that at most a finite number of constraints (1.3) is needed
to guarantee x ∈ K2 . Constraints (1.3) are generated in Step 2 of the algorithm. By
definition, x ∈ K2 is equivalent to

x ∈ {x | for k = 1, . . . ,K , ∃y ≥ 0 s.t. Wy = hk −Tkx} .

Referring to a previously introduced notation, this means

hk −Tkx ∈ pos W , for k = 1, . . . ,K .

In Step 2, a subproblem (1.8) is solved that tests whether hk −Tkxν belongs to pos
W for k = 1, . . . ,K . If not, this means that for some k = 1, . . . ,K , hk − Tkxν �∈
pos W . Then, there must be a hyperplane separating hk − Tkxν and pos W . This
hyperplane must satisfy σT t ≤ 0 for all t ∈ pos W and σT (hk − Tkxν) > 0 . In
Step 2, this hyperplane is obtained by taking σ for the value σν of the simplex
multipliers of the subproblem (1.8) solved in Step 2.

By duality, w′ being strictly positive is the same as (σν)T (hk −Tkxν) > 0 . Also,
(σν)TW ≤ 0 is satisfied because σν is an optimal simplex multiplier and, at the
optimum, the reduced costs associated with y must be non-negative. Therefore,
σν has the desired property. A necessary condition for x belonging to K2 is that
(σν)T (hk − Tkx) ≤ 0 . There is at most a finite number of such constraints (1.3)
because there are only a finite number of optimal bases to the problem (1.8) solved
in Step 2. This is no surprise because we already know from Theorem 3.5 that K2 is
polyhedral when ξ is a finite random variable. We thus have proved the following
theorem.

Theorem 2. When ξ is a finite random variable, the L -shaped algorithm finitely
converges to an optimal solution when it exists or proves the infeasibility of Problem
(3.1.2), namely,

min cT x +Q(x)
s. t. x ∈ K1 ∩K2 .

d. The multicut version

In Step 3 of the L -shaped method, all K realizations of the second-stage program
are optimized to obtain their optimal simplex multipliers. These multipliers are then
aggregated in (1.10) and (1.11) to generate one cut (1.4). The structure of stochastic

5.1 The L -Shaped Method 199

programs clearly allows placing several cuts instead of one. In the multicut version,
one cut per realization in the second stage is placed. For those familiar with Dantzig-
Wolfe decomposition (explored more deeply in Section 5.5), adding multiple cuts
at each iteration corresponds to including several columns in the master program of
an inner linearization algorithm (see, e.g., Lasdon [1970] for a general presentation
and Birge [1985b] for an analysis of the stochastic case). We first give a presentation
of the multicut algorithm, taken from Birge and Louveaux [1988].

The Multicut L -Shaped Algorithm

Step 0. Set r = ν = 0 and sk = 0 for all k = 1, . . . ,K .

Step 1. Set ν = ν+ 1 . Solve the linear program (1.15)–(1.18):

min z = cT x+
K

∑
k=1

θk (1.15)

s. t. Ax =b , (1.16)

D�x ≥d� , � = 1, . . . ,r , (1.17)

E�(k)x +θk ≥e�(k) , �(k) = 1, . . . ,sk , (1.18)

x ≥0 , k = 1, . . . ,K ,

Let (xν ,θν1 , . . . ,θνK) be an optimal solution of (1.15)–(1.18). If no constraint (1.18)
is present for some k , θνk is set equal to −∞ and is not considered in the compu-
tation of xν .

Step 2. As before.

Step 3. For k = 1, . . . ,K solve the linear program (1.9). Let πνk be the simplex
multipliers associated with the optimal solution of problem k . If

θνk < pk(πνk)T (hk −Tkxν) , (1.19)

define

Esk+1 = pk(πνk)T Tk , (1.20)

esk+1 = pk(πνk)T hk , (1.21)

and set sk = sk + 1 . If (1.19) does not hold for any k = 1, . . . ,K , stop; xν is an
optimal solution. Otherwise, return to Step 1.

We illustrate the multicut L -shaped method on Example 2. Starting from x1 = 0 ,
the sequence of iterations is as follows:

Iteration 1:

x1 is not optimal, add the cuts

200 5 Two-Stage Recourse Problems

θ1 ≥ 1− x
3

; θ2 ≥ 2− x
3

; θ3 ≥ 4− x
3

·

Iteration 2:

x2 = 10 , θ 2
1 = −3 , θ 2

2 = −8/3 , θ 2
3 = −2 is not optimal; add the cuts

θ1 ≥ x−1
3

; θ2 ≥ x−2
3

; θ3 ≥ x−4
3

·

Iteration 3:

x3 = 2 , θ 3
1 = 1/3 , θ 3

2 = 0 , θ 3
3 = 2/3 is the optimal solution.

Let us define a major iteration to consist of the operations performed between re-
turns to Step 1 in both algorithms. By adding multiple cuts, a solution is found in
two major iterations instead of four with the single-cut L -shaped method.

A few observations are necessary. By adding disaggregate cuts, more detailed
information is given to the first stage. The number of major iterations is expected
then to be fewer than in the single cut method. Because the two methods do not
necessarily follow the same path, by chance, the L -shaped method can conceivably
do better than the multicut approach. Exercise 1 provides such an example.

In general, however, as numerical experiments reveal, the number of major itera-
tions is reduced. This is done at the expense of a larger first-stage program, because
many more cuts are added. The balance between fewer major iterations but larger
first-stage programs is problem-dependent. The results of numerical experiments
are available in Birge and Louveaux [1988] and Gassmann [1990]. As a rule of
thumb, the multicut approach is expected to be more effective when the number of
realizations K is not significantly larger than the number of first-stage constraints
m1 .

Finally, some hybrid approach may be worthwhile, where subsets of the realiza-
tions are grouped to form a smaller number of combination cuts. Exercise 2 provides
such an example.

Exercises

5. Assume n1 = 1 , m1 = 0 , m2 = 3 , n2 = 6 ,

W =

⎛
⎝1 −1 −1 −1 0 0

0 1 0 0 1 0
0 0 1 0 0 1

⎞
⎠ ,

and K = 2 realizations of ξ with equal probability 1/2 . These realizations
are ξ 1 = (q1,h1,T 1)T and ξ 2 = (q2,h2,T 2)T , where q1 = (1,0,0,0,0,0)T ,

5.1 The L -Shaped Method 201

q2 = (3/2,0,2/7,1,0,0)T , h1 = (−1,2,7)T , h2 = (0,2,7)T , and T 1 = T 2 =
(1,0,0)T . For the first value of ξ , Q(x,ξ) has two pieces, such that

Q1(x) =

{
−x−1 if x ≤ −1,

0 if x ≥ −1 .

For the second value of ξ , Q(x,ξ) has four pieces such that

Q2(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−1.5x if x ≤ 0 ,

0 if 0 ≤ x ≤ 2,

2/7(x−2) if 2 ≤ x ≤ 9 ,

x−7 if x ≥ 9 .

Assume also that x is bounded by −20 ≤ x ≤ 20 and c = 0 . Starting from any
initial point x1 ≤ −1 , show that one obtains the following sequence of iterate
points and cuts for the L -shaped method.

Iteration 1:

x1 = −2 , θ 1 is omitted; new cut: θ ≥ −0.5−1.25x .

Iteration 2:

x2 = +20 , θ 2 = −25.5 ; new cut: θ ≥ 0.5x−3.5 .

Iteration 3:

x3 = 12/7 , θ 3 = −37/14 ; new cut: θ ≥ 0 .

Iteration 4:

x4 ∈ [−2/5,7] , θ 4 = 0 . If x4 is chosen to be any value in [0,2] , then the
algorithm terminates at Iteration 4. The multicut approach would generate the
following sequence.

Iteration 1:

x1 = −2 , θ 1
1 and θ 1

2 omitted; new cuts: θ1 ≥ −0.5x−0.5 , θ2 ≥ −3/4x .

Iteration 2:

x2 = 20 , θ 2
1 = −10.5 , θ 2

2 = −15 ; new cuts: θ1 ≥ 0 , θ2 ≥ 0.5x−3.5 .

Iteration 3:

x3 = 2.8 , θ 3
1 = 0 , θ 3

1 = −2.1 ; new cut: θ2 ≥ 1/7(x−2) .

Iteration 4:

x4 = 0.32 , θ 4
1 = 0 , θ 4

2 = −0.24 ; new cut: θ2 ≥ 0 .

202 5 Two-Stage Recourse Problems

Iteration 5:

x5 = 0 , θ 5
1 = θ 5

2 = 0 , stop.

6. Consider Example 2, now with ξ taking values:

0.5,1.0,1.5 with probability 1/9 each,

2 with probability 1/3 ,

3,4,5 with probability 1/9 each.

As can be seen, the expectation of ξ is still 2 1
3 , and new uncertainty is added

around 1 and 4 .

(a) Show that the L -shaped method follows exactly the same path as before
(x1 = 0 , x2 = 10 , x3 = 7/3 , x4 = 1.5 , x5 = 2) provided that in Itera-
tion 4, the support is chosen to describe the region [1.5,2] . If it is chosen
to describe the region [1,1.5] , one more iteration is needed.

(b) Show the multicut version also follows the same path as before (x1 = 0 ,
x2 = 10 , x3 = 2).

(c) Now consider an intermediate situation, where Q(x) is approximated by
1
3 [Q1(x)+Q2(x)+Q3(x)] , where Q1(x) is the expectation over the three
realizations 0.5 , 1.0 , and 1.5 (conditional on ξ being in the group
{0.5,1.0,1.5}), Q2(x) = Q(x,ξ = 2) , and Q3(x) is the (similarly con-
ditional) expectation over the realizations 3 , 4 , and 5 . Thus, the objective
becomes 1

3 (θ1 +θ2 +θ3) . Show that in Iteration 1, the cuts at x1 = 0 are
θ1 ≥ 1 − x , θ2 ≥ 2 − x , and θ3 ≥ 4 − x . In Iteration 2, x2 = 10 , and the
cuts become θ1 ≥ x−1 , θ2 ≥ x−2 , and θ3 ≥ x−4 . Show, without com-
putations, that only two major iterations are needed. What conclusions can
you draw from this example?

5.2 Regularized Decomposition

Regularized decomposition is a method that combines a multicut approach for the
representation of the second-stage value function with the inclusion in the objec-
tive of a quadratic regularizing term. This additional term is included to avoid two
classical drawbacks of the cutting plane methods. One is that initial iterations are
often inefficient. The other is that iterations may become degenerate at the end of
the process. Regularized decomposition was introduced by Ruszczyński [1986].
We present a somewhat simplified version of his algorithm using the notation of
Section 5.1d.

5.2 Regularized Decomposition 203

The Regularized Decomposition Method

Step 0. Set r = ν = 0 , sk = 0 for all k = 1, . . . ,K . Select a1 , a feasible solution.

Step 1. Set ν = ν+ 1 . Solve the regularized master program

min cT x +
K

∑
k=1

θk +
1
2
‖x−aν‖2 (2.1)

s. t. Ax = b ,

D�x ≥ d� , � = 1, . . . ,r ,

E�(k)x +θk ≥ e�(k) , �(k) = 1, . . . ,sk , k = 1, . . . ,K ,

x ≥ 0 .

Let (xν ,θν) be an optimal solution to (2.1) where (θν)T = (θν1 , . . . ,θνK)T is the
vector of θk ’s. If sk = 0 for some k , θνk is ignored in the computation. If cT xν +
eTθν = cT aν +Q(aν) , stop; aν is optimal.

Step 2. As before, if a feasibility cut (5.1.3) is generated, set aν+1 = aν (null infea-
sible step), and go to Step 1.

Step 3. For k = 1, . . . ,K , solve the linear subproblem (5.1.9). Compute Qk(xν) . If
(5.1.19) holds, add an optimality cut (5.1.18) using formulas (5.1.20) and (5.1.21).
Set sk = sk + 1 .

Step 4. If (5.1.19) does not hold for any k , then aν+1 = xν (exact serious step); go
to Step 1.

Step 5. If cT xν + Q(xν) ≤ cT aν + Q(aν) , then aν+1 = xν (approximate serious
step); go to Step 1. Else, aν+1 = aν (null feasible step), go to
Step 1.

Observe that when a serious step is made, the value Q(aν+1) should be memo-
rized, so that no extra computation is needed in Step 1 for the test of optimality. Note
also that a more general regularization would use a term of the form α‖x − aν‖2

with α > 0 . This would allow tuning of the regularization with the other terms in
the objective. As will be illustrated in Exercise 2, regularized decomposition works
better when a reasonable starting point is chosen.

Example 1 (continued)

Consider Exercise 1 of Section 5.1d. Take a1 = −0.5 as a starting point. It cor-
responds to the solution of the problems with ξ = ξ̄ with probability 1. We have
Q(a1) = 3/8 .

Iteration 1: Cuts θ1 ≥ 0 , θ2 ≥ − 3
4 x are added. Let a2 = a1 .

204 5 Two-Stage Recourse Problems

Iteration 2: The regularized master is

min θ1 +θ2 +
1
2

(x + 0.5)2

s. t. θ1 ≥ 0 , θ2 ≥ −3
4

x,

with solution x2 = 0.25 : θ1 = 0 , θ2 = −3/16 . A cut θ2 ≥ 0 is added. As
Q(0.25) = 0 < Q(a1) , a3 = 0.25 (approximate serious step 1).

Iteration 3: The regularized master is

min θ1 +θ2 +
1
2

(x−0.25)2

s. t. θ1 ≥ 0 , θ2 ≥ −3
4

x , θ2 ≥ 0,

with solution x3 = 0.25 , θ1 = 0 , θ2 = 0 . Because θν = Q(aν) , a solution is
found.

In Exercise 1, the L -shaped and multicut methods are compared. The value of a
starting point is given in Exercise 2.

We now describe the main results needed to prove convergence of the regularized
decomposition to an optimal solution when it exists. For notational convenience,
we drop the first-stage linear terms cT x in the rest of the section. This poses no
theoretical difficulty, as we may either define θk = pk(cT x + Qk(x)) , k = 1, . . . ,K
or add a (K +1) -th term θK+1 = cT x . With this notation, the original problem can
be written as

min Q(x) =
K

∑
k=1

pkQk(x) (2.2)

s. t. (5.1.2), x ≥ 0 ,

and Qk(x) = min{qT
k y | Wy = hk −Tkx,y ≥ 0} . This is equivalent to

min eTθ =
K

∑
k=1

θk (2.3)

s. t. (5.1.2), (5.1.3), (5.1.4), x ≥ 0 ,

provided all possible cuts (5.1.3) and (5.1.18) are included.
The regularized master program is

min η(x,θ ,aν) =
K

∑
k=1

θk +
1
2

‖x−aν‖2 (2.4)

s. t. (5.1.2), (5.1.3), (5.1.18), x ≥ 0 .

5.2 Regularized Decomposition 205

Note, however, that in the regularized master, only some of the potential cuts (5.1.3)
and (5.1.18) are included. We follow the proof in Ruszczyński [1986].

Lemma 3. eTθν ≤ η(xν ,θν ,aν) ≤ Q(aν) .

Proof: The first inequality simply comes from ‖xν − aν‖2 ≥ 0 . We then ob-
serve that aν always satisfies (5.1.2), (5.1.3), as a1 is feasible and the seri-
ous steps always pick feasible aν ’s. The solution (aν , θ̂) obtained by choosing
θ̂k = pkQk(aν) , k = 1, . . . ,K necessarily satisfies all constraints (5.1.18) as θk is
a lower bound on pkQk(·) . Thus, η(xν ,θν ,aν) ≤ η(aν , θ̂ ,aν) = Q(aν) .

Lemma 4. If the algorithm stops at Step 1, then aν solves the original problem
(2.2).

Proof: By Lemma 3 and the optimality criterion, eTθν = Q(aν) (remember the
linear term cT x has been dropped). It follows that eTθν = η(xν ,θν ,aν) , which
implies ‖xν − aν‖2 = 0 , hence xν = aν . Thus, aν solves the regularized master
(2.4) with the cuts (5.1.3) and (5.1.18) available at iteration ν . The cone of feasi-
ble directions at aν does not include any direction of descent of η(x,θ ,aν) . The
cone of feasible directions at xν for problem (2.3) is included in the cone of fea-
sible directions at iterations ν of the regularized master (2.4) contains fewer cuts).
Moreover, the gradient of the regularizing term vanishes at aν . Thus, the descent
directions of the regularized program (2.4) are the same as the descent directions of
(2.3). Hence, aν solves (2.3), which means aν solves the original program (2.2).

Lemma 5. If there is a null step at iteration ν , then

η(xν+1,θν+1,aν+1) > η(xν ,θν ,aν) .

Proof: Because the objective function of the regularized master is strictly convex,
program (2.4) has a unique solution. A null step at iteration ν may be either a null
infeasible step or a null feasible step. In the first case, a cut (5.1.3) is added that ren-
ders xν infeasible. In the second case, a cut (5.1.18) is added that renders (xν ,θν)
infeasible. Thus, as the previous solution becomes infeasible and the solution is
unique, the objective function necessarily increases.

Lemma 6. If the number of serious steps is finite, the algorithm stops at Step 1.

Proof: If the number of serious steps is finite, there exists some ν0 such that
aν = aν0 for all ν ≥ ν0 . By Lemma 5, this implies the objective function of the
regularized master strictly increases at each iteration ν,ν ≥ ν0 . Because there are
only finitely many possible cuts (5.1.3) and (5.1.18), the algorithm must stop.

Lemma 7. The number of approximate serious steps is finite.

206 5 Two-Stage Recourse Problems

Proof: By definition of Step 5, the value of Q(·) does not increase in an approx-
imate serious step (remember that the term cT x is dropped here). Approximate se-
rious steps only happen when Q(xν) �= eTθν . This can only happen finitely many
times because the number of cuts (5.1.18) is finite.

Lemma 8. If the algorithm does not stop, then either Q(aν) tends to −∞ as
ν → ∞ or the sequence {aν} converges to a solution of the original problem.

Proof: (i) Let us first consider the case in which the original problem has solution
x̂ . Define θ̂ by θ̂k = pkQk(x̂) . Thus (x̂, θ̂) solves (2.3). Also (x̂, θ̂) must be
feasible for the regularized master for all ν . Because (xν ,θν) is the solution of the
regularized master at iteration ν , the derivative of η at (xν ,θν) in the direction
(x̂− xν , θ̂ −θν) must be non-negative, i.e.,

(xν −aν)T (x̂− xν)+ eT θ̂ − eTθν ≥ 0

or
(xν −aν)T (xν − x̂) ≤ Q(x̂)− eTθν , (2.5)

because eT θ̂ = Q(x̂) .

Let S be the set of iterations at which serious steps occur. In view of Lemma 7,
without loss of generality, we may consider such a set where all serious steps are
exact. Because, for an exact serious step, eTθν = Q(xν) , (5.1.19) does not hold
for any k , and xν = aν+1 by definition of the step, for all ν ∈ S , (2.5) may be
rewritten as

(aν+1 −aν)T (aν+1 − x̂) ≤ Q(x̂)−Q(aν+1) .

By properties of sums of sequences,

‖aν+1 − x̂‖2 = ‖aν − x̂‖2 + 2(aν+1 −aν)T (aν+1 − x̂)−‖aν+1 −aν‖2 .

By dropping the last terms and using the inequality, for all ν ∈ S ,

‖aν+1 − x̂‖2 ≤ ‖aν − x̂‖2 + 2(aν+1 −aν)T (aν+1 − x̂) (2.6)

≤ ‖aν − x̂‖2 + 2(Q(x̂)−Q(aν+1)) .

Because Q(x̂) ≤ Q(aν+1) for all ν , ‖aν+1 − x̂‖ ≤ ‖aν − x̂‖ , i.e., the sequence
{aν} is bounded.

Now (2.6) can be rearranged as

2(Q(aν+1)−Q(x̂)) ≤ ‖aν − x̂‖2 −‖aν+1 − x̂‖2 .

Summing up both sides for ν ∈ S , it can be seen that

∑
ν∈S

(Q(aν+1)−Q(x̂)) < ∞ ,

5.2 Regularized Decomposition 207

which implies Q(aν+1) → Q(x̂) for some subsequence {aν} , ν ∈ S1 where S1 ⊆
S . Therefore, there must exist an accumulation point â of {aν} with Q(â) =
Q(x̂) . All aν are feasible, hence â is feasible and â may substitute for x̂ in (2.6)
implying ‖aν+1 − â‖ ≤ ‖aν − â‖ , which shows that â is the only accumulation
point of {aν} .

ii) Now assume that the original problem is unbounded but {Q(aν)} is bounded.
Thus one can find a feasible x̂ and an ε > 0 such that Q(x̂) ≤ Q(aν)− ε , ∀ ν .
Then (2.6) gives ‖aν+1 − x̂‖2 ≤ ‖aν − x̂‖2 − 2ε , which yields a contradiction as
ν → ∞ , ν ∈ S .

Lemma 9. If the algorithm does not stop and Q{aν} is bounded, there exists ν0

such that if a serious step occurs at ν ≥ ν0 , then the solution (xν ,θν) of (2.4) is
also a solution of (2.4) without the regularizing term.

Proof: Let Kν denote the set of (x,θ) that satisfy all constraints (5.1.2), (5.1.3),
(5.1.18) at iteration ν . The problem (2.4) without the regularizing term is thus:

min eTθ (2.7)

s. t. (x,θ) ∈ Kν .

Assume Lemma 9 is false. It is thus possible to find an infinite set S such that, for
all ν ∈ S , a serious step occurs and the solution (xν ,θν) to (2.4) is not optimal for
(2.7).

Let K∗
ν denote the normal cone to the cone of feasible directions for Kν at

(xν ,θν) . Nonoptimality of (xν ,θν) means that the negative gradient of the objec-

tive in (2.7), −d =
[

0
−e

]
�∈ K∗

ν . As this holds for all ν ∈ S ,

−d �∈ ∪ν∈S K∗
ν . (2.8)

Now Kν is polyhedral. There can only be a finite number of constraints (5.1.2) and
cuts (5.1.3) and (5.1.18). Thus, the right-hand-side of (2.8) is the union of a finite
number of closed sets and, hence, is closed. There exists an ε > 0 such that

B(−d,ε)∩K∗
ν = /0 , ∀ ν ∈ S (2.9)

where B(−d,ε) denotes the ball of radius ε centered at −d . On the other hand,
(xν ,θν) solves (2.4); hence,

−∇η(xν ,θν ,aν) ∈ K∗
ν , ∀ ν ∈ S . (2.10)

By Lemma 8, aν → x̂ . By Lemma 7, there exists a ν0 such that for ν ≥ ν0 ,
eTθν = Q(aν) for all serious steps. Hence, at serious steps ν ≥ ν0 , we have

Q(aν) ≥ η(xν ,θν ,aν) =
1
2
‖aν − xν‖2 + eTθν

208 5 Two-Stage Recourse Problems

=
1
2
‖xν −aν‖2 +Q(aν) .

This implies xν → aν , ∀ ν ∈ S . Hence,

∇η(xν ,θν ,aν) → d ∀ ν ∈ S ,

and (2.10) contradicts (2.9).

Theorem 10. If the original problem has a solution, then the algorithm stops after
a finite number of iterations. Otherwise, it generates a sequence of feasible points
{aν} such that Q(aν) tends to −∞ as ν → ∞ .

Proof: By Lemma 6, the algorithm may only stop at a solution. Suppose the orig-
inal problem has a solution but the algorithm does not stop. By Lemma 8, {aν}
converges to a solution x̂ . Lemma 7 implies that for all ν large enough, all serious
steps are exact, i.e.,

Q(aν+1) = eTθν .

By Lemma 9, for ν large enough, xν also solves (2.4) without the regularizing
term implying

eTθν ≤ Q(x̂) ,

because problem (2.4) without the regularizing term is a relaxation of the original
problem. Because Q(x̂) ≤ Q(aν) for all ν , it follows that, for ν large enough,
Q(xν) = Q(x̂) . Thus, no more serious steps are possible, which by Lemma 6 im-
plies finite termination. The unbounded case was proved in Lemma 8.

Implementation of the regularized decomposition algorithm poses a number of
practical questions, such as controlling the size of the master regularized problem
and numerical stability. An implementation using a QR factorization and an active
set strategy is described in Ruszczyński [1986]. On the problems tested by the author
(see also Ruszczyński [1993b]) the regularized decomposition method outperforms
all other methods. This includes a regularized version of the L -shaped method, the
L -shaped method, or the multicut method and is confirmed in the experiments made
by Kall and Mayer [1996].

Solving the regularized master program (2.1) is equivalent to solving

min cT x +
K

∑
k=1

θk (2.11)

s. t. Ax = b ,

D�x ≥ d� , � = 1, . . . ,r ,

E�(k)x +θk ≥ e�(k) , �(k) = 1, . . . ,sk ,k = 1, . . . ,K,

‖x−aν‖2 ≤ Δν ,
x ≥ 0 .

5.2 Regularized Decomposition 209

for some value of Δν (Exercise 4), which then suggests the general form of a trust-
region method (see, e.g., Conn, Gould, and Toint [2000]). The norm as well as the
centering point can also be varied in this approach. Linderoth and Wright [2003] use
the ∞ -norm (maximum component deviation) to obtain a trust region algorithm for
stochastic programs that also allows for significant parallelization and can achieve
substantial computational efficiency.

Exercises

1. Check that, with the same starting point, both the L -shaped and the multicut
methods require five iterations in Example 1.

2. The regularized decomposition only makes sense with a reasonable starting
point. To illustrate this, consider the same example taking as starting point a
highly negative value, e.g., a1 = −20 . At Iteration 1, the cuts θ1 ≥ − x−1

2 and
θ2 ≥ − 3

4 x are created. Observe that, for many subsequent iterations, no new
cuts are generated as the sequence of trial points aν move from −20 to − 75

4 ,
then − 70

4 , − 65
4 , . . . each time by a change of 5

4 , until reaching 0 , where new
cuts will be generated. Thus a long sequence of approximate serious steps is
taken.

3. As we mentioned in the introduction of this section, the regularized decom-
position algorithm works with a more general regularizing term of the form
α
2 ‖x−aν‖2 .

(a) Observe that the proof of convergence relies on strict convexity of the
objective function (Lemma 5), thus α > 0 is needed. It also relies on
∇α

2 ‖xν − aν‖2 → 0 as xν → aν , which is simply obtained by taking a
finite α . The algorithm can thus be tuned for any positive α and α can
vary within the algorithm.

(b) Taking the same starting point and data as in Exercise 2, show that by se-
lecting different values of α , any point in]−20,20] can be obtained as a
solution of the regularized master at the second iteration (where 20 is the
upper bound on x and the first iteration only consists of adding cuts on θ1

and θ2).
(c) Again taking the same starting point and data as in Exercise 2, how would

you take α to reduce the number of iterations? Discuss some alternatives.
(d) Let α = 1 for Iterations 1 and 2. As of Iteration 2, consider the following

rule for changing α dynamically. For each null step, α is doubled. At each
exact step, α is halved. Show why this would improve the performance
of the regularized decomposition in the case of Exercise 2. Consider the
starting point x1 = −0.5 as in Example 1 and observe that the same path
as before is followed.

4. Show the equivalence of (2.1) and (2.11).

210 5 Two-Stage Recourse Problems

5. The choice of α in Exercise 3 has an analogy in the trust-region L -shaped
method in terms of the size of the region Δν . Find a general expression for Δν
as a function of α and the solution of (2.1) with weight α on the regularizing
term. Find the corresponding value when α = 1 for Example 1. What updating
rule for Δν would be analogous to the rule in Exercise 3d. Starting with Δ1

corresponding to α = 1 , follow that updating rule for the trust-region L -shaped
method for Example 1.

5.3 The Piecewise Quadratic Form of the L -shaped Methods

In this section, we consider two-stage quadratic stochastic programs of the form

minz(x) = cT x +
1
2

xTCx + Eξ[min[qT (ω)y(ω)+
1
2

yT (ω)D(ω)y(ω)]]

s. t. Ax = b , T (ω)x +Wy(ω) = h(ω) ,

x ≥ 0 , y(ω) ≥ 0 ,

(3.1)

where c , C , A , b , and W are fixed matrices of size n1 ×1 , n1 ×n1 , m1 ×n1 ,
m1 × 1 , and m2 × n2 , respectively and q , D , T , and h are random matrices of
size n2 × 1 , n2 × n2 , m2 × n1 , and m2 × 1 , respectively. Compared to the linear
case defined in (3.1.1), only the objective function is modified. As usual, the random
vector ξ is obtained by piecing together the random components of q , D , T , and
h . Although more general cases could be studied, we also make the following two
assumptions.

Assumption 11. The random vector ξ has a discrete distribution.

Recall that an n × n matrix M is positive semi-definite if xT Mx ≥ 0 for all
x ∈ℜn and M is positive definite if xT Mx > 0 for all 0 �= x ∈ℜn .

Assumption 12. The matrix C is positive semi-definite and the matrices D(ω) are
positive semi-definite for all ω . The matrix W has full row rank.

The first assumption guarantees the existence of a finite decomposition of the
second-stage feasibility set K2 . The second assumption guarantees that the recourse
functions are convex and well-defined.

We may again define the recourse function for a given ξ (ω) by:

Q(x,ξ (ω)) = min{qT (ω)y(ω)+
1
2

yT (ω)D(w)y(w) |
T (ω)x +Wy(ω) = h(ω),y(ω) ≥ 0} , (3.2)

which is −∞ or +∞ if the problem is unbounded or infeasible, respectively. The
expected recourse function is

5.3 The Piecewise Quadratic Form of the L -shaped Methods 211

Q(x) = EξQ(x,ξ) (3.3)

with the convention +∞+(−∞) = +∞ .
The definitions of K1 and K2 are as in Section 3.5. Theorem 3.32 and Corollar-

ies 3.33 and 3.34 apply, i.e., Q(x) is a convex function in x and K2 is convex. Of
greater interest to us is the fact that Q(x) is piecewise quadratic. Loosely stated,
this means that K2 can be decomposed in polyhedral regions called the cells of the
decomposition and in addition to being convex, Q(x) is quadratic on each cell.

Example 2

Consider the following quadratic stochastic program

minz(x) = 2x1 + 3x2 + Eξ min{−6.5y1 −7y2 +
y2

1

2
+ y1y2 +

y2
2

2
}

s. t. 3x1 + 2x2 ≤ 15 , y1 ≤ x1 , y2 ≤ x2

x1 + 2x2 ≤ 8 , y1 ≤ ξ1 , y2 ≤ ξ2

x1 + x2 ≥ 0 , x1,x2 ≥ 0 , y1,y2 ≥ 0 .

This problem consists of finding some product mix (x1,x2) that satisfies some
first-stage technology requirements. In the second stage, sales cannot exceed the
first-stage production and the random demand. In the second stage, the objective is
quadratic convex because the prices are decreasing with sales. We might also con-
sider financial problems where minimizing quadratic penalties on deviations from a
mean value leads to efficient portfolios.

Assume that ξ1 can take the three values 2, 4, and 6 with probability 1/3, that
ξ2 can take the values 1, 3, and 5 with probability 1/3, and that ξ1 and ξ2 are
independent of each other. For very small values of x1 and x2 , it always is optimal
in the second stage to sell the production, y1 = x1 and y2 = x2 . More precisely, for
0 ≤ x1 ≤ 2 and 0 ≤ x2 ≤ 1,y1 = x1,y2 = x2 is the optimal solution of the second
stage for all ξ . If needed, the reader may check this using the Karush-Kuhn-Tucker
conditions.

Thus, Q(x,ξ) = −6.5x1 −7x2 + x2
1
2 +x1x2 + x2

2
2 for all ξ and Q(x) = −6.5x1 −

7x2 + x2
1
2 + x1x2 + x2

2
2 . Here, the cell is {(x1,x2) | 0 ≤ x1 ≤ 2,0 ≤ x2 ≤ 1} . Within

that cell, Q(x) is quadratic.

Definition 13. A finite closed convex complex K is a finite collection of closed
convex sets, called the cells of K , such that the intersection of two distinct cells
has an empty interior.

212 5 Two-Stage Recourse Problems

Definition 14. A piecewise convex program is a convex program of the form
inf{z(x) | x ∈ S} where f is a convex function on IRn and S is a closed convex
subset of the effective domain of f with nonempty interior.

Let K be a finite closed convex complex such that

(a) the n -dimensional cells of K cover S ,
(b) either f is identically −∞ or for each cell Cν of the complex there exists a

convex function zν (x) defined on S and continuously differentiable on an open
set containing Cν which satisfies

(a) z(x) = zν (x) ∀ x ∈ Cν , and
(b) ∇zν (x) ∈ ∂ z(x) ∀ x ∈ Cν .

Definition 15. A piecewise quadratic function is a piecewise convex function where
on each cell Cν the function zν is a quadratic form.

Taking Example 2, we have both Q(x) and z(x) piecewise quadratic. On C1 =
{0 ≤ x1 ≤ 2,0 ≤ x2 ≤ 1} ,

Q1(x) = −6.5x1 −7x2 +
x2

1

2
+ x1x2 +

x2
2

2

and z1(x) = −4.5x1 −4x2 +
x2

1

2
+ x1x2 +

x2
2

2
.

Defining a polyhedral complex was first done by Walkup and Wets [1967] for the
case of stochastic linear programs. Based on this decomposition, Gartska and Wets
[1974] proved that the optimal solution of the second stage is a continuous, piece-
wise linear function of the first-stage decisions and showed that Q(x,ξ) is piece-
wise quadratic in x . It follows that under Assumption 1, Q(x) and z(x) are also
piecewise quadratic in x .

For the sake of completeness, observe that z(x) is not always
maxν zν (x) . To this end, consider

z(x) =

⎧⎪⎨
⎪⎩

z1(x) = x
2 when 0 ≤ x ≤ 2 ,

z2(x) = (x−1)2 when x ≥ 2.

This function is easily seen to be piecewise quadratic. On (0,1/2) , z(x) = z1(x)
while max{z1(x),z2(x)} = z2(x) .

An algorithm

In this section, we study a finitely convergent algorithm for piecewise quadratic
programs (Louveaux [1978]).

5.3 The Piecewise Quadratic Form of the L -shaped Methods 213

Algorithm PQP
Initialization: Let S1 = S , x0 ∈ S , ν = 1 .

Step 1. Obtain Cν , a cell of the decomposition of S containing xν−1 . Let zν (·) be
the quadratic form on Cν .

Step 2. Let xν ∈ argmin{zν(x) | x ∈ Sν} and wν ∈ argmin{zν(x) | x ∈ Cν} . If wν

is the limiting point of a ray on which zν(x) is decreasing to −∞ , the original PQP
is unbounded and the algorithm terminates.

Step 3. If
∇T zν(wν)(xν −wν) = 0 , (3.4)

then stop; wν is an optimal solution.

Step 4. Let Sν+1 = Sν ∩ {x | ∇T zν(wν)x ≤ ∇T zν (wν)wν} . Let ν = ν + 1 ; go to
Step 1.

Thus, contrary to the L -shaped method in the linear case, the subgradient inequality
is not applied at the current iterate point xν . Instead, it is applied at wν , a point
where zν (·) is minimal on Cν . Under some practical conditions on the construc-
tions of the cells, the algorithm is finitely convergent.

We first prove that the condition,

∇T zν (wν)x ≤∇T zν(wν)wν , (3.5)

is a necessary condition for optimality of x .
Because ∇zν (wν) ∈ ∂ z(wν) , the subgradient inequality applied at wν im-

plies that z(x) ≥ z(wν) +∇T zν (wν)(x − wν) for all x . Now, x is a minimizer
of z(·) only if z(x) ≤ z(wν) . This implies that x is a minimizer of z(·) only if
∇T zν(wν)(x−wν) ≤ 0 , which is precisely (3.5). Thus, a solution x ∈ argmin{z(x) |
x ∈ Sν} is also a solution x ∈ argmin{z(x) | x ∈ S} .

We next show that any solution x ∈ argmin{zν (x) | x ∈ Sν} is a solution ∈
argmin{z(x) | x ∈ Sν} (and thus by the argument, a solution is in argmin{z(x) | x ∈
S}) if x ∈ Cν .

By definition, x ∈ argmin{zν(x) | x ∈ Sν} is a solution of a quadratic convex
program whose objective is continuously differentiable on Sν ; it must satisfy the
condition ∇T zν (x)(x−x) ≥ 0,∀ x ∈ Sν . If x ∈Cν , then ∇zν(x) ∈ ∂ z(x) . Applying
the subgradient inequality for z(·) at x implies

z(x) ≥ z(x)+∇T zν(x)(x− x) ≥ z(x) ∀ x ∈ Sν .

Thus, if x ∈ Cν , it is a solution to the original problem.
Finally, if the optimality condition (3.4) holds, applying the gradient inequality

to the quadratic convex function zν(·) at wν implies

zν (xν) ≥ zν(wν)+∇T zν (wν)(xν −wν) = zν(wν) ,

214 5 Two-Stage Recourse Problems

which proves wν ∈ argmin{zν(x) | x ∈ Sν} . Thus, wν is (another) minimizer of
zν(·) on Sν . As wν ∈ Cν , the conclusion implies it is a solution to the original
problem. A more detailed proof, including properties of the successive sets Sν and
a discussion of the construction of full dimensional cells of a piecewise quadratic
program, can be found in Louveaux [1978].

Exercises

1. For Example 2, consider the values x1 = 4.5 , x2 = 0 . Check that around these
values, y2 = x2 for all ξ2 , and

y1 =

{
ξ1 if ξ1 = 2 or 4 ,

x1 if ξ1 = 6,

are the optimal second-stage decisions. Check that the corresponding cell is
defined as

{(x1,x2) | 4 ≤ x1 ≤ 6 , 0 ≤ x2 ≤ 1 , x1 + x2 ≤ 6.5}

and

z(x) = −29
3

− x1

6
−2x2 +

x2
1

6
+

x1x2

3
+

x2
2

2
.

2. We now apply the PQP algorithm to the problem of Example 2.

Initialization: x0 = (0,0) ; ν = 1

S1 = S = {x | 3x1 + 2x2 ≤ 15,x1 + 2x2 ≤ 8 , x1,x2 ≥ 0} .

Iteration 1:
As we saw in the discussion of Example 2, C1 = {x | 0 ≤ x1 ≤ 2 , 0 ≤ x2 ≤ 1}
and z1(x) = −4.5x1 −4x2 + x2

1
2 + x1x2 + x2

2
2 . Using the classical Karush-Kuhn-

Tucker condition, we obtain x1 = (4.5,0)T and w1 = (2,1)T ∈ C1 . Hence,
∇T z1(w1) = (−1.5,−1) , ∇T z1(w1)(x1 −w1) = −2.75 �= 0 , and

S2 = S∩{x | −1.5x1 − x2 ≤ −4} .

Iteration 2:
As we saw in Exercise 1, x1 ∈C2 = {x | 4 ≤ x1 ≤ 6 , 0 ≤ x2 ≤ 1 , x1 +x2 ≤ 6.5}
and

z2(x) = −29
3

− x1

6
−2x2 +

x2
1

6
+

x1x2

3
+

x2
2

2
.

We obtain x2=
(22

19 , 43
19

)T
, a point where the optimality constraint −1.5x1−x2 ≤

−4 is binding. We also obtain w2 =
(
4, 2

3

)T ∈ C2 , ∇T z2(w2)=(25/18,0)T ,

5.3 The Piecewise Quadratic Form of the L -shaped Methods 215

and (3.3) does not hold.

S3 = S2 ∩
{

x | 25
18

x1 ≤ 100
18

}
.

Iteration 3:

(a) We now obtain x2 ∈C3 = {x | 0 ≤ x1 ≤ 2 , 1 ≤ x2 ≤ 3} . In the second stage,
y1 = x1∀ ξ1,y2 = x2 when ξ2 ≥ 3 and y2 = 1 when ξ2 = 1 , so that

z3(x) = −13
6

− 25
6

x1 − 5
3

x2 +
x2

1

2
+

2x1x2

3
+

x2
2

3
.

(b) x3 = (4,0)T ; w3 = w1 = (2,1)T .
(c) S4 = S3 ∩{x | − 3

2 x1 + x2
3 ≤ − 8

3} .

Iteration 4:

(a) x3 ∈ C4 = {x | 2 ≤ x1 ≤ 4 , 0 ≤ x2 ≤ 1} .

z4(x) = − 11
3 − 7

3 x1 − 10
3 x2 + x2

1
3 + 2x1x2

3 + x2
2
2 .

(b) x4 � (2.18,1.81)T , a point where − 3
2 x1 + x2

3 = − 8
3 .

w4 = (2.5,1) .
(c) S5 = S4 ∩{x | − 2x2

3 ≤ − 2
3} .

Iteration 5:

(a) x4 ∈ C5 = {x | 2 ≤ x1 ≤ 4 , 1 ≤ x2 ≤ 3}∩S .

z5(x) = − 101
18 − 19

9 x1 − 11
9 x2 + x2

1
3 + 4x1x2

9 + x2
2
3 .

(b) x5 = w5 = (2.5,1)T is an optimal solution to the problem.

The PQP iterations for the example are shown in Figure 4. The thinner lines
represent the limits of cells and the constraints containing S . The heavier lines
give the optimality cuts, OCν , for ν = 1 , 2 , 3 , 4 . A few comments are in
order:

(a) Observe that the objective values of the successive iterate points are not nec-
essarily monotone decreasing. As an example, z1(w1)=−8.5 and z2(w2)=
− 71

9 > z1(w1) .
(b) A stronger version of (3.4) can be obtained. Let z =

minν{z(wν)} be the best known solution at iteration ν . Starting from the
subgradient inequality at wν ,

z(x) ≥ z(wν)+∇zT
ν (wν)(x−wν)

and observing that z(x) ≤ z is a necessary condition for optimality, we
obtain an updated cut,

∇T zν (wν)x ≤ ∇T zν(wν)wν + z− z(wν) . (3.6)

216 5 Two-Stage Recourse Problems

Fig. 4 The cells and PQP cuts of Example 2.

Updating is quite easy, as it only involves the right-hand sides of the cuts.
As an example, at Iteration 2, the cut could be updated from

25x1

18
≤ 100

18
to

25
18

x1 ≤ 100
18

−8.5 +
71
9

,

namely,
25x1

18
≤ 89

18
. Similarly, at Iteration 4, z becomes − 103

12 and the

right-hand sides of all previously imposed cuts can be modified by(− 103
12 + 8.5

)
, i.e., by − 1

12 . In the example, the updating does not change
the sequence of iterations.

(c) The number of iterations is strongly dependent on the starting point. In par-
ticular, if one cell exists such that the minimizer of its quadratic form over
S is in fact within the cell, then starting from that cell would mean that a
single iteration would suffice. In Example 2, this is not the case. However,
starting from {x | 2 ≤ x1 ≤ 4 , 1 ≤ x2 ≤ 3} would require only two iter-
ations. This is in fact a reasonable starting cell. Indeed, the intersection of
the two nontrivial constraints defining S ,

3x1 + 2x2 ≤ 15 , x1 + 2x2 ≤ 8 ,

5.4 Bunching and Other Efficiencies 217

is the point (3.5,2.25) that belongs to that cell. (An alternative would be
to start from the minimizer of the mean value problem on S .)

(d) If we observe the graphical representation of the cells and of the cuts, we
observe that the cuts each time eliminate all points of a cell, except possibly
the point wν at which they are imposed, and possibly other points on a
face of dimension strictly less than n1 . (Working with updated cuts (3.6)
sometimes also eliminates the point wν at which it is imposed.) The finite
termination of the algorithm is precisely based on the elimination of one
cell at each iteration. (We leave aside the question of considering cells of
full dimension n1 .) There is thus no need at iteration ν to start from a cell
containing xν−1 . In fact, any cell not yet considered is a valid candidate.

One reasonable candidate could be the cell containing
xν−1 + wν−1

2
, for

example, or any convex combination of xν−1 and wν−1 .

3. Consider the farming example of Section 1.1. As in Exercise 1.1, assume that
prices are influenced by quantities. As an individual, the farmer has little in-
fluence on prices, so he may reasonably consider the current solution optimal.
If we now consider that all farmers read this book and optimize their choice
of crop the same way, increases of sales will occur in parallel for all farmers,
bringing large quantities together on the market. Taking things to an extreme,
this means that changes in the solution are replicated by all farmers. Assume a
decrease in selling prices of $0.03 per ton of grain and of $0.06 per ton of corn
brought into the market by each individual farmer. Assume the selling price of
beets and purchase prices are not affected by quantities.

Show that the PQP algorithm reaches the solution in one iteration when the
starting point is taken as {x1,x2,x3 | 80 ≤ x2 ≤ 100 ; 250 ≤ x3 ≤ 300 ; x1 +x2 +
x3 = 500} . (Remark: Although only one iteration is needed, calculations are
rather lengthy. Observe that constant terms are not needed to obtain the optimal
solution.)

5.4 Bunching and Other Efficiencies

One big issue in the efficient implementation of the L -shaped method is in Step 3.
The second-stage program (1.5) has to be solved K times to obtain the optimal mul-
tipliers, πνk . For a given xν and a given realization k , let B be the optimal basis of
the second stage. It is well-known from linear programming that B is a square sub-
matrix of W such that (πνk)T = qT

k,BB−1 , qT
k − (πνk)TW ≥ 0 , B−1(hk −Tkxν) ≥ 0 ,

where qk,B denotes the restriction of qk to the selection of columns that define B .
Important savings can be obtained in Step 3 when the same basis B is optimal for
several realizations of k . This is especially the case when q is deterministic. Then,
two different realizations that share the same basis also share the same multipliers
πνk . We present the rest of the section, assuming q is deterministic.

218 5 Two-Stage Recourse Problems

To be more precise, define

τ = {t | t = hk −Tkxν for some k = 1, . . . ,K} (4.1)

as the set of possible right-hand sides in the second stage. Let B be a square subma-
trix and πT = qT

BB−1 . Assume B satisfies the optimality criterion qT −πTW ≥ 0 .
Then define a bunch as

Bu = {t ∈ τ | B−1t ≥ 0} , (4.2)

the set of possible right-hand sides that satisfy the feasibility condition. Thus, π is
an optimal dual multiplier for all t ∈ Bu . Note also that, by virtue of Step 2 of the L -
shaped method, only feasible first-stage xν ∈ K2 are considered. This observation
means that, by construction,

τ ⊆ pos W = {t | t = Wy , y ≥ 0} .

We now provide an introduction to possible implementations that use these ideas.
For more details, the reader is referred to Gassmann [1990], Wets [1988], or Wets
[1983b].

a. Full decomposability

One first possibility is to work out a full decomposition of pos W into component
bases. This can only be done for small problems or problems with a well-defined
structure. As an example, consider the farming example of Section 1.1. The second-
stage representation (1.1.4) is repeated here under the notation of the current chap-
ter:

Q(x,ξ) = min 238y1 −170y2 + 210y3 −150y4 −36y5 −10y6

s. t. y1 − y2 −w1 = 200− ξ1x1 ,

y3 − y4 −w2 = 240− ξ2x2 ,

y5 + y6 + w3 = ξ3x3 ,

y5 + w4 = 6000 ,

y,w ≥ 0 ,

where w1 to w4 are slack variables. This second stage has complete recourse, so
pos W =ℜ4 . The matrix W =

⎛
⎜⎜⎝

1 −1 0 0 0 0 −1 0 0 0
0 0 1 0 0 0 0 −1 0 0
0 0 0 −1 1 1 0 0 1 0
0 0 0 0 1 0 0 0 0 1

⎞
⎟⎟⎠ ,

5.4 Bunching and Other Efficiencies 219

which has 4 rows and 10 columns; so that theoretically,
(

10
4

)
= 210 bases could

be found. However, in practice w1 , w2 , and w3 are never in the basis, as they are
always dominated by y2 , y4 , and y6 , respectively. The matrix where the columns
w1 , w2 , and w3 are removed is sometimes called the support of W (see Wallace
and Wets [1992]). Also, y5 is always in the basis (a fact of worldwide importance
as it is one of the reasons that created tension between United States and Europe
within the GATT negotiations). Moreover, y1 or y2 and y3 or y4 are always basic.
In this case, not only is a full decomposition of pos W available, but an immediate
analytical expression for the multipliers is also obtained. Thus,

π1(ξ) =

{
238 if ξ1x1 < 200 ,

−170 otherwise;

π2(ξ) =

{
210 if ξ2x2 < 240 ,

−150 otherwise;

π3(ξ) =

{
−36 if ξ3x3 < 6000 ,

0 otherwise;

π4(ξ) =

{
10 if ξ3x3 > 6000,

0 otherwise.

The dual multipliers are easily obtained because the problem is small and enjoys
some form of separability. The decomposition is thus (1,3,5,6) , (1,3,5,10) ,
(1,4,5,6) , (1,4,5,10) , (2,3,5,6) , (2,3,5,10) , (2,4,5,6) , (2,4,5,10) , where
the four variables in a basis are described by their indices (where the index is 6 + j
for the j -th slack variable). Another example is given in Exercise 1 and Wallace
[1986a].

When applicable, full decomposability has proven very efficient. In general, how-
ever, it is expected to be applicable only for small problems.

b. Bunching

A relatively simple bunching procedure is as follows. Again let τ = {t | t = hk −
Tkxν for some k = 1, . . . ,K} be the set of possible right-hand sides in the second
stage. Consider some k . Denote tk = hk − Tkxν . It might arbitrarily be k = 1 , or,
if available, a value of k such that hk − Tkxν = t̄ , the expectation of all tk ∈ τ .
Let B1 be the corresponding optimal basis and π(1) the corresponding vector of
simplex multipliers. Then, Bu(1) = {t ∈ τ | B−1

1 t ≥ 0} . Let τ1 = τ\Bu(1) .
We can now repeat the same operations. Some element of τ1 is chosen. The

corresponding optimal basis B2 and its associated vector of multipliers π(2) are
formed . Then, Bu(2) = {t ∈ τ1 | B−1

2 t ≥ 0} and τ2 = τ1\Bu(2) . The process is
repeated until all tk ∈ τ are in one of b total bunches. Then, (1.6) and (1.7) are

220 5 Two-Stage Recourse Problems

replaced by

Es+1 =
b

∑
�=1

π(�)T ∑
tk∈Bu(�)

pkTk (4.3)

and

es+1 =
b

∑
�=1

π(�)T ∑
tk∈Bu(�)

pkhk . (4.4)

This procedure still has some drawbacks. One is that the same tk ∈ τ may be
checked many times against different bases. The second is that a new optimization is
restarted every time a new bunch is considered. It is obvious here that some savings
can be obtained in organizing the work in such a way that the optimal basis in the
next bunch is obtained by performing only one (or a few) dual simplex iterations
from the previous one. As an example, consider the following second stage:

max 6y1+5y2+4y3+3y4

s. t. 2y1+y2 +y3 ≤ ξ1 ,

y2 +y3 +y4 ≤ ξ2,

y1 +y3 ≤ x1 ,

2y2 +y4 ≤ x2 ,

y ≥0 .

Let ξ1 ∈ {4,5,6,7,8} with equal probability 0.2 each and ξ2 ∈ {2,3,4,

5,6} with equal probability 0.2 each. There are theoretically
(

8
4

)
= 70 differ-

ent possible bases. In view of the possible realizations of ξ , at most 25 different
bases can be optimal.

Let t1 to t25 denote the possible right-hand sides with

t1 =

⎛
⎜⎜⎝

4
2
x1

x2

⎞
⎟⎟⎠ , t2 =

⎛
⎜⎜⎝

4
3
x1

x2

⎞
⎟⎟⎠ , · · · , t25 =

⎛
⎜⎜⎝

8
6
x1

x2

⎞
⎟⎟⎠ .

Consider the case where x1 = 3.1 and x2 = 4.1 . Let us start from ξ = ξ̄ = (6,4)T .
Represent a basis again by the variable indices with 4+ j the index of the j th slack.
The optimal basis is B1 = {1,4,7,8} with y1 = 3 , y4 = 4 , w3 = 0.1 , w4 = 0.1 ,
the values of the basic variables.

The optimal dictionary associated with B1 is

z = 3ξ1 + 3ξ2 − y2 −2y3 −3w1 −3w2 ,

y1 = 1/2ξ1 −1/2y2 −1/2y3 −1/2w1 ,

y4 = ξ2 − y2 − y3 −w2 ,

w3 = 3.1−1/2ξ1 + 1/2y2 −1/2y3 + 1/2w1 ,

5.4 Bunching and Other Efficiencies 221

w4 = 4.1− ξ2 − y2 + y3 + w2 .

This basis is optimal and feasible as long as ξ1/2 ≤ 3.1 and ξ2 ≤ 4.1 , which in
view of the possible values of ξ amounts to ξ1 ≤ 6 and ξ2 ≤ 4 , so that Bu(1) =
{t1, t2, t3, t6,t7,t8,t11,t12,t13} . Neighboring bases can be obtained by considering
either ξ1 ≥ 7 or ξ2 ≥ 5 . Let us start with ξ2 ≥ 5 . This means that w4 becomes
negative and a dual simplex pivot is required in Row 4. This means that w4 leaves
the basis, and, according to the usual dual simplex rule, y3 enters the basis.

The new basis is B2 = {1,3,4,7} with an optimal dictionary:

z = 3ξ1 + ξ2 + 8.2−3y2−3w1 −w2 −2w4 ,

y1 =
ξ1

2
− ξ2

2
+ 2.05− y2 − w1

2
+

w2

2
− w4

2
,

y3 = ξ2 −4.1 + y2 −w2 + w4 ,

y4 = 4.1−2y2 −w4 ,

w3 = 5.15− ξ1

2
− ξ2

2
+

w1

2
+

w2

2
− w4

2
.

The condition ξ1 − ξ2 + 4.1 ≥ 0 always holds. This basis is optimal as long as
ξ2 ≥ 5 and ξ1 + ξ2 ≤ 10 , so that Bu(2) = {t4, t5, t9} .

Neighboring bases are B1 when ξ2 ≤ 4 and B3 obtained when w3 < 0 , i.e.,
ξ1 + ξ2 ≥ 11 . This basis corresponds to w3 leaving the basis and w2 entering
the basis. To keep a long story short, we just summarize the various steps in the
following list:

B1 = {1,4,7,8} Bu(1) = {t1, t2, t3, t6, t7, t8, t11, t12, t13}

B2 = {1,3,4,7} Bu(2) = {t4, t5, t9}

B3 = {1,3,4,6} Bu(3) = {t10,t14, t15}

B4 = {1,4,5,6} Bu(4) = {t19,t20, t24, t25}

B5 = {1,2,4,5} Bu(5) = {t18,t22, t23}

B6 = {1,2,4,8} Bu(6) = {t16,t17, t21}

B7 = {1,2,5,8} Bu(7) = /0 .

Several paths are possible, as one may have chosen B6 instead of B2 as a second
basis. Also, the graph may take the form of a tree, and more elaborate techniques for
constructing the graph and recovering the bases can be used, see Gassmann [1988]
and Wets [1983b].

222 5 Two-Stage Recourse Problems

Research has also been done to find an appropriate root of the tree (Haugland
and Wallace [1988]) and to develop preprocessing techniques (Wallace and Wets
[1992]). Other attempts include the sifting procedure, a sort of parametric analy-
sis proposed by Gartska and Rutenberg [1973]. Finally, parallel processing may be
helpful in the search of the optimal multipliers in the second stage. As an example,
Ariyawansa and Hudson [1991] designed a parallel implementation of the L -shaped
algorithm, in which the computation of the dual simplex multipliers in Step 3 is par-
allelized. Linderoth and Wright [2003] also took considerable advantage of parallel
processing in their trust region version as noted above.

Exercise

1. Consider the capacity expansion example from Section 1.3. Order the equip-
ment in increasing order of utilization cost q1 ≤ q2 ≤ Observe that it is
always optimal to use the equipment in that order. Then obtain a full decompo-
sition of pos W .

5.5 Basis Factorization and Interior Point Methods

As observed earlier in this chapter, the matrices in (1.1) and its dual have a spe-
cial structure that may allow efficient specific basis factorizations. In this way, the
extensive form of the problem may be more efficiently solved by either extreme
point or interior point methods. There are similarities with the previous decomposi-
tion approaches. We discuss relative advantages and disadvantages at the end of this
section.

Basis factorization for extreme point methods has generally been considered the
dual structure, although the same ideas apply to either the dual or primal problems.
For more details on this approach, we refer to Kall [1979] and Strazicky [1980]. We
consider the primal approach because, generally, the number of columns (n1 +Kn2)
is larger than the number of rows (m1 + Km2) in the original constraint matrix.
In this case, we can write a basic solution as (xI0 ,xI1 , . . . ,xIK ,yJ1 , . . . ,yJk) , where
I j , j = 0, . . . ,K, and Jl , l = 1, . . . ,K , are index sets that may be altered at each
iteration. The constraints are also partitioned according to these index sets so that a
basis is:

B =

⎛
⎜⎜⎜⎝

AI0 AI1 . . . AIK
T1,I0 T1,I1 . . . T1,IK WJ1

...
...

...
... WJk

TK,I0 TK,I1 . . . TK,IK WJK

⎞
⎟⎟⎟⎠ . (5.1)

For Example 2 in Section 5.1, a basis B corresponding to x = 0 , y1
j = ξ j ,

j = 1,2,3 , is

5.5 Basis Factorization and Interior Point Methods 223

B0 =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ , (5.2)

where the first column corresponds to a slack variables s ≥ 0 such that x + s = 10
and WJk = [1] for k = 1,2,3 .
The main observation in basis factorization is that we may permute the rows of B
to achieve an efficient form. This is the result of the following proposition.

Proposition 16. A basis matrix, B , for problem (1.1) is equivalent after a row
permutation P to

B′ = PB =
(

D C
F L

)
, (5.3)

where D is square invertible and at most n1 ×n1 and L is an invertible matrix of
K invertible blocks of sizes at most m2 ×m2 each.

Proof: We can perform the required permutation on B in (5.1). First, note that
the number of columns in AI0 , . . . ,AIK is at most n1 for B to be nonsingular. We
must also be able to form a nonsingular submatrix from these columns if B is
invertible. Suppose this matrix is composed of AI0 , . . . ,AIK and rows Tku,Ij from
each subproblem j = 1, . . . ,K . In this case, we have constructed

D =

⎛
⎜⎜⎜⎝

AI0 AI1 . . . AIK
T1u,I0 T1u,I1 . . . T1u,IK

...
...

...
...

TKu,I0 TKu,I1 . . . TKu,IK

⎞
⎟⎟⎟⎠ .

Hence,

C =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 . . . 0 0
W1u,J1 0 . . . 0 0

0
. . . 0 . . . 0

... 0 Wku,Jk 0
...

0 . . . 0
. . . 0

0 0 . . . 0 WKu,JK

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Next, assume that the remaining rows of Tk,Ij are Tkl,Ij . We then obtain:

F =

⎛
⎜⎝

T1l,I0 T1l,I1 . . . T1l,IK
...

...
...

...
TKl,I0 TKl,I1 . . . TKl,IK

⎞
⎟⎠

and

224 5 Two-Stage Recourse Problems

L =

⎛
⎝W1l,J1 0 0

0 . . .Wkl,Jk . . . 0
0 0 WKl,JK

⎞
⎠ .

Because D has rank at least m1 , each Wkl,Jk in L has rank at most m2 . This gives
the result.

For Example 2 from Section 5.1, the solution, x1 = 1 and y1
k = ξk − 1 , k =

1,2,3 , corresponds to the basis:

B1 =

⎛
⎜⎜⎝

1 1 0 0
1 0 0 0
1 0 1 0
1 0 0 1

⎞
⎟⎟⎠ , (5.4)

which already has the form in Proposition 5 with D =
(

1 1
1 0

)
, C =

(
0 0
0 0

)
, F =(

1 0
1 0

)
, and L =

(
1 0
0 1

)
. Note in this case that W1 = W1u = W1l = [] , an empty

matrix.
To show how the partition in Proposition 5 is used, consider the forward trans-

formation to find the basic values of (xI0 ,xI1 , . . . ,xIK ,yJ1 , . . . ,yJk) , which we write
as (xB,yB) , that solve:

DxB +CyB = b′ ; FxB + LyB = h′ , (5.5)

where b′ =
(

b
hu

)
, h′ = hl , hu corresponds to the components of the right-hand

side for rows of T in D , and hl corresponds to the components with rows in F .
Note that L is invertible; so,

yB = L−1(h′ −FxB) . (5.6)

Substituting in the first system of equations yields

(D−CL−1F)xB = b′ −CL−1h′ . (5.7)

Hence, we use L to solve for the columns of L−1F and L−1h′ , then form the work-
ing basis, (D−CL−1F) , to solve for xB , and multiply xB again by L−1F and sub-
tract from L−1h′ to obtain yB . Because most of the work involves just the square
block matrices in L and the working basis, substantial effort can be saved in the de-
composition procedure (see Exercise 1). The backward transformation can also be
performed by taking advantage of this structure (see Exercise 2). The other forward
transformation in the simplex method to find the leaving column is, of course, the
same as the operations used in (5.6) and (5.7).

5.5 Basis Factorization and Interior Point Methods 225

For basis B1 in the Example 2, b′ = [1,0,1]T , D =
(

1 1
1 0

)
, and C = 02×2 ,

yields a solution to 5.7 with xB = [1,9]T , where again the second component cor-

responds to the first-period slack variable. Now, with h′ = [2,4] , F =
(

1 0
1 0

)
, and

L = I , the solution to (5.6) is yB = [1,3]T .
The entire simplex method then has the following form.

Basic Factorization Simplex Method

Step 0. Suppose that (x0
B0 ,y

0
B0′)=(x0

I0
0
, . . . ,x0

I0
K
,y0

J0
0
, . . . ,y0

J0
K
) is an initial basic feasible

solution for (1.1), with initial indices partitioned according to B0 = {β 0
1 , . . . ,β 0

l0} =
{I0

i , i = 0, . . . ,K} and B0′ = {β 0,′
1,1, . . . ,β

0,′
1,l′1

, . . . ,β 0,′
K,1, . . . ,β

0,′
K,l′K

} = J0
j , j = 1, . . . ,K .

Let the initial permutation matrix be P0 , and set ν = 0 .

Step 1. Solve (ρT ,πT)
(

D C
F L

)
= (cT

B0 , q̂
T
β 0) , where q̂k,i = pkqk,i .

Step 2. Find c̄s = min j{c j − (ρT | πT)Pν(AT· j | T T
1,· j | · · · | T T

K,· j)
T} and q̄k′,s′ =

min j,k{pkqk, j − (ρT | πT)Pν(0 . . .Wk,· j . . .0)} . If c̄s ≥ 0 and q̄k′,s′ ≥ 0 , then stop;
the current solution is optimal. Otherwise, if c̄s < q̄k′,s′ , go to Step 4. If c̄s ≥ q̄k′,s′ ,
go to Step 3.

Step 3. Solve for the entering column,

(
D C
F L

)
W̄k′,·s′ = Pν(0 . . .W T

k′,·s′ . . .0)T . Let

θ = xνBν (r)/W̄k′,rs′ = min
W̄k′ ,is′>0 , 1≤i≤lν

{xνBν(i)/W̄k′,is′ } (5.8)

and
θ ′ = yνBν′(r′)/W̄k′,r′s′ = min

W̄k′ ,is′>0 , lν+1≤i≤m1+Km2

{yνBν′(i)/W̄k′,is′ } . (5.9)

If no minimum exists in either (5.8) or (5.9), then stop; the problem is unbounded.
Otherwise, if θ < θ ′ , go to Step 5. If θ ≥ θ ′ , go to Step 6.

Step 4. Solve for the entering column,

(
D C
F L

)
Ā·s′ = Pν(AT·s | T T

1,·s | . . . | T T
K,·s)T .

Let
θ = xνBν (r)/Ārs = min

Āis>0 , 1≤i≤lν
{xνBν(i)/Āis′} (5.10)

and
θ ′ = yνBν′(r′)/Ār′s = min

Āis′>0 , lν+1≤i≤m1+Km2

{yνBν′(i)/Āis} . (5.11)

If no minimum exists in either (5.10) or (5.11), then stop; the problem is unbounded.
Otherwise, if θ < θ ′ , go to Step 5. If θ ≥ θ ′ , go to Step 6.

226 5 Two-Stage Recourse Problems

Step 5. Let Bν+1 = Bν , Bν+1′ = Bν′ , Iν+1
i = Iνi , and Jν+1 = Jν . Suppose Bν(r) =

Iνj,w = t . If xs is entering, then let Bν+1(r) = Iν+1(j,w) = s . If yk′s′ is entering,

then let Bν+1(i) = Bν(i+1) , i ≥ r , Iν+1
j,i = Iνj,i+1 , i ≥ w , Jν+1

k′,l′
k′+1 = s′ , and l′k′ =

l′k′ +1 . Update Pν to Pν+1 , the factorization correspondingly, let ν = ν+1 , and
go to Step 1.

Step 6. Let Bν+1 = Bν , Bν+1′ = Bν′ , Iν+1
i = Iνi , and Jν+1 = Jν . Suppose

Bν′(r′) = Jνk,w = t . If xs is entering, then let Bν+1(∑k
j=1 l j) = Iν+1(k, lk + 1) = s ,

Bν+1(i) = Bν(i− 1), i > ∑k
j=1 l j , lk = lk+1 , Jν+1

k,i = Jνk,i+1 , i ≥ w . If yk′s′ is en-

tering, then let Bν+1(i) = Bν(i + 1) , i ≥ r , Iν+1
j,i = Iνj,i+1 , i ≥ w , Jν+1

k′,l′
k′+1 = s′ ,

Jν+1
k,i = Jν+1

k,i+1 , i ≥ w , l′k = l′k − 1 , and l′k′ = l′k′ + 1 . Update Pν to Pν+1 , the
factorization correspondingly, let ν = ν+ 1 , and go to Step 1.

For updating a factorization of the basis as used in (5.6) and (5.7), several cases
need to be considered according to the possibilities in Steps 5 and 6 (see Exercise 3).
If the entering and leaving variables are both in x , then only D changes. Substantial
effort can again be saved. In other cases, only one block of L is altered by any
iteration so we can again achieve some savings by only updating the corresponding
parts of L−1F and L−1h .

As mentioned earlier, this procedure can also apply to the dual of (1.1) and the
primal. In this case, the procedure can mimic decomposition procedures and entails
essentially the same work per iteration as the L -shaped method (see Birge [1988b])
or the inner linearization method applied to the dual. If choices of entering columns
are restricted in a special variant of a decomposition procedure, then factorization
and decomposition follow the same path.

In general, decomposition methods have been favored for this class of problems
because they offer other paths of solutions, require less overhead, and, by maintain-
ing separate subproblems, allow for parallel computation. The extensive form offers
little hope for efficient solution, so it is not surprising that even sophisticated fac-
torizations would not prove beneficial. Because most commercial methods already
have substantial capabilities for exploiting general matrix structure, it is difficult
to see how substantial gains could be obtained from basis factorization alone for
a direct extreme point approach. Combinations of decomposition and factorization
approaches may, however, be beneficial, as observed in Birge [1985b].

Factorization schemes also offer substantial promise for interior point methods,
where there is much speculation that the solution effort grows linearly in the size
of the problem. This observation is supported by the results we present here. For
this discussion, we assume that the interior point method follows a standard form
version of Karmarkar’s projective algorithm (Karmarkar [1984]).We also assume an
unknown optimal objective value and use Todd and Burrell’s [1986] method for up-
dating a lower bound on the optimal objective value. We use an initial lower bound,
as is often available in practice. An alternative is Anstreicher’s [1989] method to
obtain an initial lower bound.

5.5 Basis Factorization and Interior Point Methods 227

Many other interior point methods are available (see, e.g., Roos, Terlaky, and Vial
[2005] and Ye [1997]). In particular, many commercial solvers use the homogeneous
self-dual formulation of the standard linear program (see, e.g., Andersen [2009]).
Other interior point methods and interpretations include path-following, logarithmic
barrier, and affine scaling (see Roos, Terlaky, and Vial [2005] for descriptions of
alternatives). They all follow similar steps to the method given below.

We first describe the algorithm for a standard linear program:

min cT x

s. t. Ax = b ,

x ≥ 0 ,

(5.12)

where x ∈ ℜn , c ∈ Zn (i.e., an n -vector of rationals), b ∈ Zm , A ∈ Zm×n with
optimal value cT x∗ = z∗ . In referring to the parameters in (5.12), we use ext as a
modifier, e.g., cext , when necessary to distinguish the parameters in (5.12) from our
standard stochastic program form in (1.1).

Suppose we have a strictly interior feasible point x0 of (5.12), i.e.,

Ax0 = b , x0 > 0 , (5.13)

a lower bound β 0 on z∗ , and the set of optimal solutions in (5.12) is bounded. Note
that if we do not have a feasible solution, we can solve a phase-one problem or use
the self-dual form of the problem. In that case, the goal becomes finding (x, t,λ) to
solve:

min 0

s. t. Ax −bt = 0 ,

−ATλ +ct ≥ 0,

bTλ − cT x ≥ 0,

x ≥ 0, t ≥ 0 ,

(5.14)

which can be solved by an interior point method initiated at any solution (x0, t0,λ 0)
with x0 > 0 and t0 > 0 by iteratively choosing search directions to reduce the
infeasibility of the system (5.14) with solution (xk, tk,λ k) at iteration k .

For exposition here, we follow the standard form variant of the projective scaling
algorithm, which creates a sequence of points x0 , x1 , . . . , xk by the following
steps.

Standard Form Projective Scaling Method

Step 0. Set ν = 0 and lower bound β 0 ≤ z∗ .

Step 1. If cT xν −βν is small enough, i.e., less than a given positive number ε , then
stop. Otherwise, go to Step 2.

228 5 Two-Stage Recourse Problems

Step 2. Let D = diag{xν1 , . . . ,xνn} , Â := [AD,−b] , and let ΠÂ be the projection
onto the null space of Â . Find

u =ΠÂ

(
Dc
0

)
, v =ΠÂ

(
0
1

)
, (5.15)

and let μ(βν) = min{ui −βνvi : i = 1, . . . ,n + 1} . If μ(βν) ≤ 0 , let βν+1 = βν .
Otherwise, let βν+1 = min{ui/vi : vi > 0, i = 1, . . . ,n + 1} . Go to Step 3.

Step 3. Let cp = u − βν+1v − (cT xν − βν+1)e/(n + 1) , where e = (1, . . . ,1)T ∈
ℜn+1 . Let

g′ =
1

n + 1
e−α

cp

‖cp‖2
.

Let g ∈ℜn consist of the first n components of g′ . Then xν+1 = Dg/g′
n+1 , ν =

ν+ 1 , go to Step 1.

For the purpose of obtaining a worst-case bound, the step length α in the def-
inition of g′ may be set equal to 1

3(n+1) , (Gay [1987]), but better performance is
obtained by choosing α using a line search.

To show how the structure of a stochastic program can be exploited in these
methods, we consider the number of arithmetic operations in a complexity analysis.
The main computational effort in each iteration of the algorithm is to compute the
projections in (5.15), which requires, for n > m , O(n3) arithmetic operations (and,
on average, O(n2.5) , operations per iteration using a rank-one updating scheme).
In O(n/ε) iterations, or with some modifications in O(

√
n/ε) , the method finds a

solution with O(ε) precision.
In our case, if we consider the stochastic program (1.1) in the extensive form

(5.12), then n = n2 + Kn2 , m = m1 + Km2 , and xext =

⎛
⎜⎜⎜⎝

x
y1
...

yK

⎞
⎟⎟⎟⎠ , cext =

⎛
⎜⎜⎜⎝

c
p1q1

...
pKqK

⎞
⎟⎟⎟⎠ ,

bext =

⎛
⎜⎜⎜⎝

b
h1
...

hK

⎞
⎟⎟⎟⎠ , and

Aext =

⎛
⎜⎜⎜⎝

A 0 . . . 0
T1 W . . . 0
... 0

. . . 0
TK 0 . . . W

⎞
⎟⎟⎟⎠ . (5.16)

The main computational work at each step of the projective scaling algorithm is to
compute the projection in (5.15), which can be written as

ΠÂ = (I − ÂT (ÂÂT)−1Â) , (5.17)

5.5 Basis Factorization and Interior Point Methods 229

where (ÂÂT) = AD2AT + bbT := M + bbT . In this case, the work is dominated by
computing M−1 (or solving systems with coefficient matrix, M = AD2AT). For
the general A in the formulation in (5.12), using the specific Aext in the stochastic
program extensive form as in (5.16) and letting D0 = diag(xν) , Dk = diag(yνk) ,
k = 1, . . . ,K , we would have

M =

⎛
⎜⎜⎜⎝

AD2
0AT AD2

0T T
1 . . . AD2

0T T
K

T1D2
0AT T1D2

0T T
1 +WD2

1W T . . . T1D2
0T T

K
...

...
. . .

...
TKD2

0AT T1D2
0T T

K . . . TKD2
0T T

K +WD2
KW T

⎞
⎟⎟⎟⎠ , (5.18)

which is clearly much denser than the original constraint matrix in (1.1). In this case,
a straightforward implementation of an interior point method that solves systems
with M is quite inefficient.

To see the structure, we consider Example 2 from Section 5.1. Here,

Aext =

⎛
⎜⎜⎝

1 1 0 0 0 0 0 0
1 0 1 −1 0 0 0 0
1 0 0 0 1 −1 0 0
1 0 0 0 0 0 1 −1

⎞
⎟⎟⎠ . (5.19)

Now, let x0
ext = (3,7,1,3,1,2,2,1)T in (5.13) represent x0 = (3,7)T , y0

1 =
(1,3)T , y0

2 = (1,2)T , and y0
2 = (2,1)T in Example 2. We then have D0 =

diag(3,7) , D1 = diag(1,3) , D2 = diag(1,2) , and D3 = diag(2,1) . The matrix
M in this case is:

M =

⎛
⎜⎜⎝

58 9 9 9
9 19 9 9
9 9 14 9
9 9 9 14

⎞
⎟⎟⎠ . (5.20)

While M is dense, it in fact has a great deal of structure that can be exploited in
any solution scheme. This is the object of the factorization scheme given by Birge
and Qi [1988] (see also Birge and Holmes [1992] for an implementation discussion).
The following proposition gives the essential characterization of that factorization.

Proposition 17. Let S0 = I2 ∈ℜm1×m1 , Sl = WlD2
l W T

l , l = 1, . . . ,K ,
S = diag{S0, . . . ,SK} . Then S−1 = diag{S0,S

−1
1 , . . . ,S−1

N } . Let I1 and I2 be iden-
tity matrices of dimensions n1 and m1 , respectively. Let

G1 = (D0)−2 + AT S−1
0 A +

K

∑
l=1

T T
l S−1

l Tl , G2 = −AG−1
1 AT , (5.21)

U =

⎛
⎜⎜⎜⎝

A I2

T1 0
...

...
TK 0

⎞
⎟⎟⎟⎠ , V =

⎛
⎜⎜⎜⎝

A −I2

T1 0
...

...
TK 0

⎞
⎟⎟⎟⎠ .

230 5 Two-Stage Recourse Problems

If A , Wk,k = 1, . . . ,K have full row rank, then G2 and M are invertible and

M−1 = S−1 −S−1U

(
I1 −G−1

1 AT

0 I2

)(
I1 0
0 −G−1

2

)

(
I1 0
A I2

)(
G−1

1 0
0 I2

)
V T S−1 . (5.22)

Proof: Exercise 6.

Following the assumptions, the number of arithmetic operations using this fac-
torization can be reduced from O((n1 + Kn2)4) as in the general projective scal-
ing method. Using the factorization, the effort is, in fact, dominated by O(K(n3

2 +
n2

2n1 +n2n2
1)) . It is also possible to reduce this bound further with a partial rank-one

updating scheme as mentioned earlier. In this case, for n = n1 +Kn2 , the complex-
ity using the factorization in (5.22) becomes O((n0.5n2

2 + nmax{n1,n2}+ n3
1)n/ε)

for the entire algorithm, or, if K ∼ n1 ∼ n2 , the full arithmetic complexity is
O(n2.5/ε) , compared to the general result of O(n3.5/ε) . Thus, the factorization in
(5.22) provides an order of magnitude improvement over a general solution scheme
if the number of realizations K approaches the number of variables in the first and
second stage.

In practice, we would not compute M−1 explicitly, but solve a set of systems as
follows:

Mv = u (5.23)

using
v = p− r , (5.24)

where
Sp = u , Gq = V T p , Sr = Uq , (5.25)

where G is the inverse of the matrix between U and V T in (5.22):

G =
(

G1 AT

−A 0

)
=

(
G1 0
0 I2

)(
I1 0
A I2

)−1(
I1 0
0 −G2

)(
I1 −G−1

1 AT

0 I2

)−1

. (5.26)

The systems in (5.25) require solving systems with Sl , computation of G1 and
G2 , and solving systems with G1 and G2 . In practice, we find a Cholesky factor-
ization of each Sl , use them to find G1 and G2 , and find Cholesky factorizations
of G1 and G2 .

For Example 2, with initial values (x0,y0
1, . . . ,y

0
K) given above, we have

S0 = [1];S1 = [10];S2 = [5];S3 = [5]; (5.27)

G1 =
(1

9 0
0 1

49

)
+

(
1 1
1 1

)
+

(
1
10 0
0 0

)
+

(
1
5 0
0 0

)
+

(
1
5 0
0 0

)
=

(
1.61 1

1 1.02

)
; (5.28)

5.5 Basis Factorization and Interior Point Methods 231

G2 = −[1 1]
(

1.61 1
1 1.02

)−1(1
1

)
= [−0.98]; (5.29)

U =

⎛
⎜⎜⎝

1 1 1
1 0 0
1 0 0
1 0 0

⎞
⎟⎟⎠ ;V =

⎛
⎜⎜⎝

1 1 −1
1 0 0
1 0 0
1 0 0

⎞
⎟⎟⎠ . (5.30)

To solve for v in Mv = u , we first solve Sp = u as
⎛
⎜⎜⎝

1 0 0 0
0 10 0 0
0 0 5 0
0 0 0 5

⎞
⎟⎟⎠

⎛
⎜⎜⎝

p1

p2

p3

p4

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

u1

u2

u3

u4

⎞
⎟⎟⎠ (5.31)

to obtain:
p1 = u1, p2 = 0.1u2; p3 = 0.2u3; p4 = 0.2u4. (5.32)

Next, we find

V T p =

⎛
⎝u1 + 0.1u2 + 0.2u3 + 0.2u4

u1

−u1

⎞
⎠ . (5.33)

Next, we solve Gq = V T p as follows:

• find q1 such that

(
G1 0
0 I2

)
q1 = V T p as

⎛
⎝1.61 1 0

1 1.02 0
0 0 1

⎞
⎠q1 =

⎛
⎝u1 + 0.1u2 + 0.2u3 + 0.2u4

u1

−u1

⎞
⎠ (5.34)

to obtain q1 =

⎛
⎝0.03u1 + 0.16u2 + 0.32u3 + 0.32u4

0.95u1 −0.16u2 −0.31u3 −0.31u4

−u1

⎞
⎠ ;

• find q2 such that q2 =
(

I1 0
A I2

)
q1 as

q2 =

⎛
⎝1 0 0

0 1 0
1 1 1

⎞
⎠q1 =

⎛
⎝ 0.03u1 + 0.16u2 + 0.32u3 + 0.32u4

0.95u1 −0.16u2 −0.31u3 −0.31u4

−0.02u1 + 0.003u2 + 0.006u3 + 0.001u4

⎞
⎠ ; (5.35)

• find q3 such that

(
I1 0
0 −G2

)
q3 = q2 as

⎛
⎝1 0 0

0 1 0
0 0 0.98

⎞
⎠q3 = q2 (5.36)

232 5 Two-Stage Recourse Problems

to obtain q3 =

⎛
⎝ 0.03u1 + 0.16u2 + 0.32u3 + 0.32u4

0.95u1 −0.16u2 −0.31u3 −0.31u4

−0.02u1 + 0.003u2 + 0.01u3 + 0.01u4

⎞
⎠ ;

• find q = q4 such that q4 =
(

I1 −G−1
1 AT

0 I2

)
q3 as

q =

⎛
⎝1 0 −0.03

0 1 −0.95
0 0 1

⎞
⎠q3 =

⎛
⎝ 0.03u1 + 0.16u2 + 0.32u3 + 0.32u4

0.97u1 −0.16u2 −0.32u3 −0.32u4

−0.02u1 + 0.003u2 + 0.01u3 + 0.01u4

⎞
⎠ . (5.37)

The next step is to solve for Sr = Uq as
⎛
⎜⎜⎝

1 0 0 0
0 10 0 0
0 0 5 0
0 0 0 5

⎞
⎟⎟⎠

⎛
⎜⎜⎝

r1

r2

r3

r4

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

0.98u1 + 0.003u2 + 0.01u3 + 0.01u4

0.03u1 + 0.16u2 + 0.32u3 + 0.32u4

0.03u1 + 0.16u2 + 0.32u3 + 0.32u4

0.03u1 + 0.16u2 + 0.32u3 + 0.32u4

⎞
⎟⎟⎠ (5.38)

or r =

⎛
⎜⎜⎝

0.98u1 + 0.003u2 + 0.01u3 + 0.01u4

0.003u1 + 0.02u2 + 0.03u3 + 0.03u4

0.01u1 + 0.03u2 + 0.06u3 + 0.06u4

0.01u1 + 0.03u2 + 0.06u3 + 0.06u4

⎞
⎟⎟⎠ , which finally yields v = p− r as

v =

⎛
⎜⎜⎝

0.02u1 −0.003u2 −0.01u3 −0.01u4

−0.003u1 + 0.08u2 −0.03u3 −0.03u4

−0.01u1 −0.03u2 + 0.14u3 −0.06u4

−0.01u1 −0.03u2 −0.06u3 −0.14u4

⎞
⎟⎟⎠ , (5.39)

which can be seen as M−1u for M in (5.20).
Now, for the projection operation defined in (5.17), note that

(ÂÂT)−1Â = M−1Â−M−1bbT M−1Â/(1 + bT M−1b), (5.40)

which requires finding V 1 and v2 such that MV 1 = Â and Mv2 = b where

Â =

⎛
⎜⎜⎝

3 7 0 0 0 0 0 0 −10
3 0 1 −3 0 0 0 0 −1
3 0 0 0 1 −2 0 0 −2
3 0 0 0 0 0 2 −1 −4

⎞
⎟⎟⎠and b =

⎛
⎜⎜⎝

10
1
2
4

⎞
⎟⎟⎠ , (5.41)

where note that v2 is also the negative of the last column of V 1 .
Using (5.39) then yields

V1=[V11 −v2]=

⎛
⎜⎜⎝

0.01 0.14 −0.003 0.01 −0.01 0.01 −0.01 0.01 −0.16
0.05 −0.02 0.08 −0.25 −0.03 0.06 −0.06 0.0 0.14
0.11 −0.05 −0.03 0.10 0.14 −0.27 −0.13 0.06 0.08
0.11 −0.05 −0.03 0.10 −0.06 0.13 0.27 −0.14 −0.32

⎞
⎟⎟⎠

(5.42)

5.5 Basis Factorization and Interior Point Methods 233

From (5.40), (ÂÂT)−1Â = V1 − v2bTV1/(1 + bTv2) or

(ÂÂT)−1Â =

⎛
⎜⎜⎝

−0.02 0.10 0.003 −0.01 −0.003 0.01 −0.04 0.02 −0.04
0.08 0.02 0.08 −0.24 −0.03 0.07 −0.04 0.02 0.04
0.12 −0.02 −0.03 0.10 0.14 −0.27 −0.11 0.06 0.02
0.03 −0.14 −0.02 0.06 −0.06 0.11 0.21 −0.11 −0.09

⎞
⎟⎟⎠ .

(5.43)
Finally, the search direction components u and v in (5.15) are then:

u=(I−Â(ÂÂT)−1Â)
(

Dcext

0

)
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.31
0.17
0.53
0.42
0.43
0.47
0.24
0.55
0.22

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

;v = (I−Â(ÂÂT)−1Â)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
0
0
0
0
0
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.22
0.32
−0.04
0.12
−0.02
0.04
0.18
−0.09
0.28

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(5.44)
Note how these operations only required solutions with G1 (n1 ×n1), G2 (m1 ×
m1), and S (K solutions using m2 × m2 matrices). After finding u and v , the
other operations in the project scaling method only involve simple operations on
vectors of the same size. Exercise 7 asks for completion of these operations until
the objective value is within 0.01 of the bound.

Other factorizations or formulations can also yield advantages for interior point
methods. These include the following approaches:

1. Schur complement updates;
2. Column splitting;
3. Solution of the dual.

The Schur complement approach is used in many interior point method implemen-
tations. The basic idea is to write M as the sum of a matrix with sparse columns,
AsD2

s AT
s , and a matrix with dense columns, AdD2

dAT
d . Using a Cholesky factoriza-

tion of the sparse matrix, LLT = AsD2
s AT

s , the method involves solving Mu = v by:
(

LLT −AdDd

DdAT
d I

)(
v
w

)
=

(
u
0

)
, (5.45)

which requires solving [I+DdAT
d (LLT)−1AdDd]w =−DdAT

d (LLT)−1b and LLT v =
b + AdDdw , where I + DdAT

d (LLT)−1AdDd is a Schur complement.
The Schur complement is thus quite similar to the factorization method given ear-

lier. If every column of x is considered a dense column, then the remaining matrix
is quite sparse but rank deficient. The factorization in (5.22) is a method for main-
taining an invertible matrix when AsD2

s AT
s is singular. It can thus be viewed as an

extension of the Schur complement to the stochastic linear program. Because of the
possible rank deficiency and the size of the Schur complement, the straightforward

234 5 Two-Stage Recourse Problems

Schur complement approach in (5.45) is quick but can lead to numerical instabilities
(see Carpenter, Lustig, and Mulvey [1991]).

Carpenter et al. also propose the column splitting technique. The basic idea is to
rewrite problem (1.1) with explicit constraints on nonanticipativity. The formulation
then becomes:

min
K

∑
k=1

pk(cT xk + qT
k yk) (5.46)

s. t. Axk =b , (5.47)

Tkxk +Wyk =hk , k = 1, . . . ,K , (5.48)

xk − xk+1 =0 , k = 1, . . . ,K −1 , (5.49)

xk ≥ 0 , yk≥0 , k = 1, . . . ,K . (5.50)

The difference now is that the constraints in (5.47) and (5.48) separate into separate
subproblems k and constraints (5.49) link the problems together. Alternating con-
straints, (5.47), (5.48) and (5.49) for each k in sequence, the full constraint matrix
has the form:

Ā =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A 0 0 0 0 0 0 0
T1 W 0 0 0 0 0 0
I 0 −I 0 0 0 0 0
0 0 A 0 0 0 0 0
0 0 T2 W 0 0 0 0
0 0 I 0 −I 0 0 0
...

... 0
. . .

...
. . . 0

...
0 0 0 0 I 0 −I 0
0 0 0 0 0 0 A 0
0 0 0 0 0 0 Tk W

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (5.51)

If we form ĀĀT , then we obtain ĀĀT =
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

AAT AT T
1 A 0 0 0 0 0

T1AT T1T T
1 T1 0 0 0 0 0

+WW T

AT T T
1 2I −AT 0 0 0 0

0 0 −A AAT AT T
2 A 0 0

0 0 T2AT T2T T
2 T2 0 0 0

+WW T

0 0 0 T T
2 2I 0 0 0

...
...

...
. . .

. . .
... 0

...
0 0 0 AT T T

K−1 2I −AT 0
0 0 0 0 0 −A AAT AT T

K
0 0 0 0 0 0 TKAT TKT T

K
+WW T

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (5.52)

5.5 Basis Factorization and Interior Point Methods 235

which is clearly much sparser than the original matrix in (5.18). It is, however, larger
than the matrix in (5.18) (see Exercise 8) so there is some tradeoff for the reduced
density.

The third additional approach is to form the dual of (1.1) and to solve that prob-
lem using the same basic interior point method we gave earlier. (In the self-dual
form for (5.14), this corresponds to eliminating the primal variables first and then
solving for the dual variables. The primal projective scaling method corresponds
to eliminating the dual variables and then solving for the primal variables. Another
alternative for the self-dual form is directly to solve the full system again taking ad-
vantage of the stochastic program constraint structure.) The dual approach considers
the problem:

max bTρ+
K

∑
k=1

pkπT
k hk (5.53)

s. t. ATρ+
K

∑
k=1

pkT T
k πk ≤ c , k = 1, . . . ,K , (5.54)

W Tπk ≤ q , k = 1, . . . ,K , (5.55)

where the variables are not restricted in sign. For this problem, we can achieve a
standard form as in (5.12) by splitting the variables πk and ρ into differences
of non-negative variables and by adding slack variables to constraints (5.54) and
(5.55)1. In this way the constraint matrix for (5.54) and (5.55) becomes A′ =

⎛
⎜⎜⎜⎝

AT −AT T T
1 −T T

1 0 T T
2 −T T

2 . . . T T
K −T T

K 0 I
0 0 W T −W T I 0 0 0 0 0 0 0
0 0 0 0 0 W T −W T I 0 0 0 0
...

...
...

...
... 0

. . .
. . .

. . . 0 0
...

0 0 0 0 0 0 0 0 W T −W T I 0

⎞
⎟⎟⎟⎠ . (5.56)

The matrix in (5.56) may again be much larger than the matrix in the original, but
the gain comes in considering A′A′T which is now:

⎛
⎜⎜⎜⎝

2(AT A+∑K
k=1 T T

k Tk)+ I 2T T
1 W 2T T

2 W . . . 2T T
k W

2W T T1 2W TW + I 0 0 0
2W T T2 0 2W TW + I 0 0

... 0 0
. . . 0

2W T Tk 0 0 0 2W TW

⎞
⎟⎟⎟⎠ , (5.57)

with an inherent sparsity of which an interior point method can take advantage. In
fact, it is not necessary to take the dual to use this alternative factorization form
by again using the Sherman-Morrison-Woodbury formula (see Birge, Freund, and

1 The dual problem may no longer have a bounded set of optima causing some theoretical difficul-
ties for convergence results. In practice, bounds are placed on the variables to guarantee conver-
gence.

236 5 Two-Stage Recourse Problems

Vanderbei [1992]). In this way, the matrix in the form of (5.57) replaces the dense
matrix in (5.18).

In addition to reducing total computational effort, the factorizations described in
this section also allow significant parallel processing for the computations involving
sub-matrices corresponding to the second-period subproblems (see, e.g., Yang and
Zenios [1997] and Gondzio and Grothey [2009]). The interior point method fac-
torization also can be extended to multistage problems using a recursive form (see
Pflug and Halada [2003]).

An additional strategy for interior point methods is to combine the outer lin-
earization and with an interior point method so that the interior point iterations are
taken with an increasingly constrained region as in the standard L-shaped method
to solve (1.2)–(1.4). This method may reduce the effort in solving subproblems to
optimality while still obtaining refined information about the recourse function con-
straints without requiring full information as in the extensive form. Bahn, Goffin,
du Merle, and Vial [1995] provide a description and computational results for this
approach.

Exercises

1. Use the matrix structure in Proposition 5 to complete the simplex iterations
starting from basis B1 for Example 2 from Section 5.1.

2. Compare the number of operations to solve (5.5) using (5.6) and (5.7) compared
to solving (5.5) as an unstructured linear system of equations.

3. Give a similar basis factorization scheme to (5.6) and (5.7) to solve the backward
transformation, (σT ,πT)B = (cT

B ,qT
B) , for a basis corresponding to columns B

from the constraint matrix of (1.1).

4. Describe an efficient updating procedure for any possible combination of en-
tering and leaving columns in the basis matrix of (5.5) using the factorization
scheme in (5.6) and (5.7).

5. Find the number of arithmetic operations for a single step of the interior point
method using (5.22). Compare this to the number of arithmetic operations if no
special factorization is used.

6. Prove Proposition 6.

7. Assuming an initial lower bound β 0 = 0 , follow the projective scaling al-
gorithm for Example 2 starting from the x0

ext = (3,7,1,3,1,2,2,1)T until
cT

extx
ν
ext −βν < ε = 0.01 . (Note: the number of iterations required here in com-

parison to the L -shaped method may surprise you, but the number of iterations
for interior point methods generally grows slowly as the problem size increases.)

8. Compare the sizes of the adjacency matrices in (5.18) and (5.51). Assuming
that each matrix A , Tk , and W is completely dense, compare the number of
nonzero entries in these two matrices.

5.6 Inner Linearization Methods and Special Structures 237

5.6 Inner Linearization Methods and Special Structures

As mentioned earlier, the most direct alternative to an outer linearization, or cut
generation, approach is an inner linearization or column generation approach (see
Geoffrion [1970] for other basic approaches to large-scale problems). In fact, this
was the first suggestion of Dantzig and Madansky [1961] for solving stochastic
linear programs. They observed that the structure of the dual in Figure 2 fits the
prototype for Dantzig-Wolfe decomposition. In fact, we can derive this approach
from the L -shaped method by taking duals.

Consider the following dual linear program to (1.2)–(1.4).

max ζ = ρT b +
r

∑
�=1

σ�d� +
s

∑
�=1

π�e� (6.1)

s. t. ρT A +
r

∑
�=1

σ�D� +
s

∑
�=1

π�E� ≤ cT , (6.2)

s

∑
�=1

π� = 1 , σ� ≥ 0 , � = 1, . . . ,r , π� ≥ 0 , � = 1, . . . ,s . (6.3)

The linear program in (6.1)–(6.3) includes multipliers σ� on extreme rays, or direc-
tions of recession, which cannot be produced with positive combinations of other
distinct recession directions, of the duals of the subproblems and multipliers π� on
the expectations of extreme points of the duals of the subproblems. To see this, sup-
pose that (6.1)–(6.3) is solved to obtain a multiplier xν on constraint (6.2). Now,
consider the following dual to (1.9):

maxw = πT (hk −Tkxν) s.t. πTW ≤ qT . (6.4)

If (6.4) is unbounded for any k , we then must have some σν such that σνTW ≤ 0
and σνT (hk −Tkxν) > 0 , or (1.5)–(1.6) has a feasible dual solution (hence optimal
primal solution) with a positive value. So, Step 2 of the L -shaped method is equiv-
alent to checking whether (6.4) is unbounded for any k . In this case, we form Dr+1

and dr+1 as in (1.7) and (1.8) of the L -shaped method and add them to (6.1)–(6.3).
Next, note, that if (6.4) is infeasible, the stochastic program is not well-formulated

(see Exercise 1). Consider when (6.4) has a finite optimal value for all k . In the L -
shaped method, if (1.9) was solvable for all k , then we formed Es+1 and es+1 and
added them to (1.2)–(1.4). In this case in the inner linearization procedure, we again
use (1.10) and (1.11) to form Es+1 and es+1 and add them to (6.1)–(6.3).

Solving the duals in Steps 1 to 3 of the L -shaped algorithm then consists of solv-
ing (6.1)–(6.3) as a master problem and problems (6.4) as subproblems. Formally,
this method is the following inner linearization method.

Inner Linearization Algorithm

Step 0. Set r = s = ν = 0 .

238 5 Two-Stage Recourse Problems

Step 1. Set ν = ν + 1 and solve the linear program in (6.1)–(6.3). Let the solution
be (ρν ,σν ,πν) with a dual solution, (xν ,θν) .

Step 2. For k = 1, . . . ,K , solve (6.4). If any infeasible problem (6.4) is found, stop
and evaluate the formulation. If an unbounded solution with extreme ray σν is
found for any k , then form new columns (dr+1 = (σν)T hk , Dr+1 = (σν)T Tk), set
r = r + 1 , and return to Step 1.

If all problems (6.4) are solvable, then form new columns, Es+1 and es+1 , as in
(1.10) and (1.11). If es+1 −Es+1xν −θν ≤ 0 , then stop; (ρν ,σν ,πν) and (xν ,θν)
are optimal in the original problem (1.2).

If es+1 −Es+1xν −θν > 0 , set s = s+ 1 , and return to Step 1.

Clearly, the inner linearization method follows the same steps as the L -shaped
method, except that we solve the duals of the problems instead of the primals.
Hence, convergence follows directly from the L -shaped method. We could also
view this approach directly as in Dantzig-Wolfe decomposition by stating that (6.1)–
(6.3) is an inner linearization of the dual of the basic L -shaped problem in (1.2) and
that the subproblems (6.4) generate new extreme points and rays to add to this inner
linearization (see Exercise 2).

If, as in many problems, n1 >> m1 , the primal version has smaller basis ma-
trices, at most of order m1 + m2 , than the n1 × n1 bases for the dual. Hence, the
L -shaped implementation is usually preferred. Inner linearization can, however, be
applied directly to the primal by assuming T is fixed using the form in (3.1.5),
which we repeat here:

min z = cT x +Ψ(χ) (6.5)

s. t. Ax = b ,

Tx− χ = 0 ,

x ≥ 0 ,

where Ψ(χ) = Eωψ(χ ,ξ (ω)) and ψ(χ ,ξ (ω)) = min{q(ω)T y | Wy = h(ω) −
χ ,y ≥ 0}. Note that, in this form, we assume that T is fixed but q and h may
still be functions of ω . For this reason, we revert to the use of Ψ for the recourse
function.

In this case, we wish to build an inner linearization of the function Ψ(χ) us-
ing the generalized programming approach as in Dantzig [1963, Chapter 24]. The
basic idea is to replace Ψ (χ) by the convex hull of points Ψ (χ�) chosen in each
iteration of the algorithm. Each iteration generates a new extreme point of a region
of linearity for Ψ , which is polyhedral as we showed in Theorem 3.6. Thus, finite
convergence is assured with finite numbers of realizations. The algorithm follows.

Generalized Programming Method for Two-Stage Stochastic Linear Programs

Step 0. Set s = t = ν = 0 .

5.6 Inner Linearization Methods and Special Structures 239

Step 1. Set ν = ν+ 1 and solve the linear program master problem:

min zν = cT x +
r

∑
i=1

μiΨ+
0 (ζ i)+

s

∑
i=1

λiΨ (χ i) (6.6)

s. t. Ax = b , (6.7)

T x−
r

∑
i=1

μiζ i −
s

∑
i=1

λiχ i = 0 , (6.8)

r

∑
i=1

λi = 1 , (6.9)

x,μi ≥ 0 , i = 1, . . . ,r , λi ≥ 0 , i = 1, . . . ,s .

If (6.6)–(6.9) is infeasible or unbounded, stop. Otherwise, let the solution be
(xν ,μν ,λν) with associated dual variables, (σν ,πν ,ρν) .

Step 2. Solve the subproblem:

min
χ
Ψ(χ)+ (πν)T χ−ρν , (6.10)

which we assume has value less than ∞ .
If (6.10) is unbounded, a recession direction ζ r+1 is obtained, such that for

some χ , Ψ(χ +αζ r+1)+ (πν)T (χ +αζ r+1) → −∞ as α → ∞ . In this case, let

Ψ+
0 (ζ r+1) = limα→∞

Ψ(χ+αζ r+1)−Ψ(χ)
α , r = r + 1 , and return to Step 1.

If (6.10) is solvable, let the solution be χ s+1 . If Ψ(χ) + (πν)T χ − ρν ≥ 0 ,
then stop; (xν ,μν ,λν) corresponds to an optimal solution to (6.5). Otherwise, set
s = s+ 1 and return to Step 1.

This algorithm generates columns in (6.6)–(6.9) corresponding to new proposals
from the subproblem in (6.10). In the two-stage stochastic linear program form,
(6.10) can be recast as:

min
K

∑
k=1

pkqT
k yk +(πν)T χ−ρν (6.11)

s. t. Wyk + χ = hk , k = 1, . . . ,K ,

yk ≥ 0 , k = 1, . . . ,K .

This problem is not generally separable into different subproblems for each k .
Hence, for general problems, the L -shaped method has an advantage. In some
cases (notably simple recourse), Ψ(χ) is separable into components for each k ,
and (6.11) can again be divided into K independent subproblems. We discuss this
possibility further in Section 5.7.

To see how the generalized programming form of inner linearization can be ap-
plied to a stochastic program, we again consider Example 2 from Section 5.1.

240 5 Two-Stage Recourse Problems

Iteration 1:

Suppose we start with an initial solution of χ1 = 1 and Ψ(χ1) = 7
3 in (6.6),

which then takes the form:

min zν = 0x1 +λ1Ψ(χ1) (6.12)

s. t. x1 + x2 = 10 , (6.13)

x1 − 0 ·λ1 = 0 , (6.14)

λ1 = 1 , (6.15)

x1,x2,λ1 ≥ 0 ,

which has an optimal solution (x1
1,x

1
2,λ 1) = (0,10,1) with dual multipliers

(σ1,π1,ρ1) = (0,0, 7
3) .

Next, for Step 2, the solution is to find the minimum value of (6.10) or Ψ (χ)−ρ1

over χ , which is achieved at χ2 = 2 with Ψ(χ2) = 1 . Since Ψ(χ2)−ρ1 = 1 −
7
3 = − 4

3 < 0 , the algorithm returns to Step 1 with ν = 2 .

Iteration 2:

The solution of (6.6) now is (x2
1,x

2
2,λ 2

1 ,λ 2
2) = (1,9,0,1) with dual multipliers

(σ2,π2,ρ2) = (0,0,1) . In Step 2, the minimum value for (6.10) occurs at χ3 =
χ2 = 1 and the objective value Ψ(χ3)−ρ2 = 0 , the termination condition.

The steps of this inner linearization algorithm can be viewed as taking the con-
vex hull of an increasing numbers of extreme points of the epigraph of the recourse
function. This can be seen for Example 2 in Figure 3. The solution starts at the point
on the function corresponding to x(= χ) = 0 and then moves directly to including
the point on the epigraph at x = χ = 1 , where no further descent is possible. The
algorithm terminates virtually immediately for this example because the best candi-
date χ directly yields an overall optimal solution. This circumstance of course does
not always occur, but the algorithm may be quite efficient when T is fixed and the
subproblems (6.10) can be solved efficiently.

To show that the generalized programming method also converges finitely, we
wish to demonstrate the property of generating extreme points on the epigraph of Ψ
by showing that an extreme solution in (6.11) is an extreme value of linear regions
of Ψ(χ) . We do this for extreme points in the following proposition.

Proposition 18. Every optimal extreme point, (ȳ1, . . . , ȳK , χ̄) , of the feasible region
in (6.11) corresponds to an extreme point χ̄ of {χ |Ψ (χ) = π̄T χ + θ} , where
π̄ = ∑K

k=1 π̄k , and each π̄k is an extreme point of {πk | πT
k W ≤ qT

k } .

Proof: Suppose (ȳ1, . . . , ȳK , χ̄) is an optimal extreme point in (6.11). In this case,
we must have qT

i ȳi ≤ qT
i yi for all Wyi = ξi − χ̄ . We must also have that ȳi is

an extreme point of {yi | Wyi = ξi − χ̄,yi ≥ 0} because, otherwise, we could take
ȳi = (1/2)(y1

i + y2
i) for distinct feasible y1

i and y2
i . So, ȳk has a complementary

dual solution, π̄k , that is an extreme point of {πk | πT
k W ≤ qT

k } and such that
(qT

k − π̄T
k W)ȳk = 0 .

5.6 Inner Linearization Methods and Special Structures 241

Now, suppose χ̄ is not an extreme point of the linearity region where Ψ(χ) =
π̄Tχ+θ for θ =Ψ (χ̄)− π̄T χ with π̄ =∑K

k=1 π̄k . In this case, there exists χ1 and
χ2 such that χ̄ = λχ1 +(1−λ)χ2 where 0 < λ < 1 , for Ψ(χ1) = π̄T χ1 +θ and
Ψ(χ2) = π̄T χ2 +θ . We also have that Ψ(χ j) =∑K

k=1 qT
k y j

k , where qT
k y j

k = π̄T
k (hk −

χ j) for j = 1,2 , because, by π̄T
k feasible in the k -th recourse problem, the only

other possibility is qT
k y j

k > π̄T
k (ξ − χ j) , which would imply Ψ(χ j) > π̄Tχ j + θ .

This also implies that

(π̄T
k W −qT

k)(λy1
k +(1−λ)y2

k) = 0 , (6.16)

which implies that λy1
k +(1−λ)y2

k = ȳk because ȳk is an extreme point of the fea-
sible region in recourse problem k . In this case, (ȳ1, . . . , ȳK , χ̄)= λ (y1

1, . . . , ȳ
1
K ,χ1)+

(1 − λ)(y2
1, . . . , ȳ

2
K ,χ2) , with both terms feasible in (6.11). This contradicts that

(ȳ1, . . . , ȳK , χ̄) is an extreme point.

A similar argument shows that any extreme ray found in solving (6.11) is an
extreme ray of a region of linearity of Ψ (χ) (Exercise 3). Now, we can state the
generalized programming finite convergence result.

Theorem 19. The generalized programming applied to problem (6.5) with subprob-
lem (6.11) solves (6.5) in a finite number of steps.

Proof: At each solution of (6.11), a new linear region extreme value is generated.
First for a new extreme ray, we must have Ψ+

0 (ζ r+1)+ (πν)T (ζ r+1) < 0 , while,
for 1 ≤ i ≤ s , Ψ+

0 (ζ i) ≥−(πν)Tζ i . For an extreme point, we only add that point if
Ψ(χ s+1)+(πν)T χ s+1 −ρν < 0 , while, for 1 ≤ i ≤ s , Ψ(χ s)+(πν)T χ s −ρν ≥ 0.
Because the number of such regions is finite and each has a finite number of extreme
points and rays, the algorithm converges finitely.

The solution found solves (6.5) because if we reach the termination condition,
then

(σν)T b +ρν ≤ (σν)T b +Ψ(χ)+ (πν)T χ
≤ (σνT A +(πν)T T)x +Ψ(χ) , (x,χ) feasible in (6.5) ,

≤ cT x +Ψ(χ) , (6.17)

for all (x,χ) feasible in (6.5).

As with the L -shaped method, we can also modify the generalized linear pro-
gramming approach to consider only active columns so that s and t can be bounded
again by m2 . Of course, this approach’s greatest potential is in simple recourse
problems as we mentioned earlier. It may also be advantageous if an algorithm can
take advantage of the special matrix structure in (6.11). The most direct approach
in this case is to construct a working basis and to try to perform most linear trans-
formations with submatrices chosen from W . In this case, the procedure becomes
quite similar to the procedures for directly attacking (3.1.2) that are given in the next
section.

242 5 Two-Stage Recourse Problems

The generalized programming approach is also useful in considering the stochas-
tic program as a procedure for combining tenders χi (see Nazareth and Wets
[1986]) bid from the subproblems. In this case, the method may converge most
quickly if the initial set of tenders is chosen well. A method for choosing such an
initial set of tenders appears in Birge and Wets [1984]. This view of stochastic pro-
grams can also be quite useful for stochastic integer programs and is used to obtain
efficiencies in branch-and-bound algorithms as discussed in Section 7.3.

Exercises

1. Suppose Problem (6.4) is infeasible for some k . What can be said about the
original two-stage stochastic linear program? Find examples for these possible
situations.

2. Prove directly that the inner linearization method converges to an optimal solu-
tion to the two-stage stochastic linear program (3.1.2).

3. Show that any extreme descending ray in (6.11) corresponds to an extreme ray
of a linear piece of Ψ(χ) .

4. Describe the steps of the generalized programming method for a modification
of Example 2 in which the first period costs are δx , where δ = {−2,−0.5,
0.5,1,2} . What differs in the path of the algorithm as δ changes?

5.7 Simple and Network Recourse Problems

In many stochastic programming problems, special structure provides additional
computational advantages. The most common structures that allow for further effi-
ciencies are simple recourse and network problems. The key features of these prob-
lems are separability of any nonlinear objective terms and efficient matrix computa-
tions.

Separability is the key to simple recourse computations. In Section 3.1 and Sec-
tion 5.6, we described how these problems involve a recourse function that separates
into components for each random variable. With simple recourse, the stochastic pro-
gram in (6.5) can then be written with a separable recourse function as:

min z = cT x +
m2

∑
i=1

Ψi(χi)

s. t. Ax = b ,

T x− χ = 0 ,

x ≥ 0 ,

(7.1)

5.7 Simple and Network Recourse Problems 243

where Ψi(χi) =
∫

hi≤χi
q−(χi − hi)dF(hi) +

∫
hi>χi

q+(hi − χi)dF(hi) . Using this
form of the objective in χ , we can substitute in (3.1.9) to obtain:

Ψi(χi) = q+
i h̄i − (q+

i −qiFi(χi))χi −qi

∫
hi≤χi

hidF(hi) , (7.2)

where h̄i = E [hi] .
The separable objective terms in (7.1) offer advantages for computation. In gen-

eral, we can use nonlinear programming techniques that apply even when the ran-
dom variables are continuous. Linear programming-based procedures apply as well
when the random variables have a finite number of values. In this section, we will
first show how to use linear programming structure, assuming that each hi takes on
the values, hi, j, j = 1, . . . ,Ki with probabilities pi, j . We then consider methods for
general nonlinear problems.

Wets [1983a] gave the basic framework for computation of finitely distributed
simple recourse problems as a linear program with upper bounded variables. The
idea is to split χi into values corresponding to each interval, [hi, j,hi, j+1] , so that

χi =
Ki

∑
j=0

χi, j, χi,0 ≤ hi,1 , 0 ≤ χi, j ≤ hi, j+1 −hi, j , 0 ≤ χi,Ki . (7.3)

The objective coefficients correspond to the slope of Ψ(χi) in each of these inter-
vals. They are:

di,0 = −q+
i ,di, j = −q+

i + qi

(
j

∑
l=1

pi,l

)
, j = 1, . . . ,Ki . (7.4)

The piecewise linear program with these objective coefficients and variables is:

min z = cT x +
m2

∑
i=1

((
Ki

∑
j=0

di, jχi, j

)
+ q+

i h̄i

)

s. t. Ax = b ,

T x− χ = 0 ,

x ≥ 0 and (7.3).

(7.5)

The equivalence of (7.1) and (7.5) is given in the following theorem.

Theorem 20. Problems (7.1) and (7.5) have the same optimal values and sets of
optimal solutions, (x∗,χ∗) .

Proof: We first show any solution (x,χ1, . . . ,χm2) to (7.1) corresponds to a so-
lution (x,χ1, . . . ,χm2 ,χ1,1, . . . ,χm2,Km2

) to (7.5) with the same objective value. We
then also show the reverse to complete the proof. Suppose (x,χ) feasible in (7.1).
If hi, j ≤ χi < hi, j+1 for some 1 ≤ j ≤ Ki , then let χi,0 = hi,1 , χi,l = hi,l+1 −hi,l ,

244 5 Two-Stage Recourse Problems

1 ≤ l ≤ j − 1 , χi, j = χi − hi, j and χi,l = 0 , l ≥ j + 1 . If χi < hi,0 , then let
χi,0 = χi , χi,l = 0, l ≥ 1 . In this way, we satisfy (7.3).

If χi ≥ hi,1 , the variable i objective term in (7.5) with these values is then

q+
i h̄i −q+

i

(
hi,1 +

j−1

∑
l=1

(hi,l+1 −hi,l)+ (χi −hi, j)

)

+ qi

(
j−1

∑
l=1

[
(

l

∑
k=1

pi,k)(hi,l+1 −hi,l)

]
+

j

∑
k=1

pi,k(χi −hi, j)

)

= q+
i h̄i −q+

i χi + qi

(
j−1

∑
k=1

pi,k

[
j−1

∑
l=k

(hi,l+1 −hi,l)−hi, j

]

−pi, jhi, j +
j

∑
k=1

pi,kχi

)

= q+
i h̄i −q+

i χi −qi(
j

∑
k=1

pi,khi,k)+ qi(
j

∑
k=1

pi,k)χi

= q+
i h̄i −q+

i χi −qi

∫
hi≤χi

hidF(hi)+ qiFi(χi)χi

=Ψi(χi) , (7.6)

where the last equality follows from substitution in (7.2).
If χi < hi,1 , then the objective term is q+

i h̄i − q+
i χi which again agrees with

Ψi(χi) from (7.2). Hence, any feasible (x,χ) in (7.1) corresponds to a feasible
(x,χ) (where χ is extended into the components for each interval) in (7.5).

Suppose now that some (x∗,χ∗) is optimal in (7.5). Because each qi > 0 and
pi, j > 0 , for hi, j ≤ χ∗

i < hi, j+1 for some 1 ≤ j ≤ Ki , we must have χ∗
i,0 = hi,1 ,

χ∗
i,l = hi,l+1 −hi,l , 1 ≤ l ≤ j −1 , χ∗

i, j = χ∗
i −hi, j and χ∗

i,l = 0 , l ≥ j + 1 . If not,
then χ∗

i,l < hi,l+1 − hi,l − δ for some l ≤ j − 1 and χ∗
i,l̄

> δ > 0 for some l̄ ≥
j + 1 . A feasible change of increasing χ∗

i,l by δ and decreasing χ∗
i,l̄

by δ yields

an objective decrease of δqi∑l̄
s=l+1 pi,s and would contradict optimality. Hence,

we must have that the i th objective term in (7.5) is again Ψi(χ∗
i) . Similarly, this

must be true if χ∗
i < hi,1 . Therefore, any optimal solution in (7.1) corresponds to a

feasible solution with the same objective value in (7.5), and any optimal solution in
(7.5) corresponds to a feasible solution with the same objective value in (7.1). Their
optima must then correspond.

This formulation as an upper bounded variable linear program can lead to signifi-
cant computational efficiencies. An implementation in Kallberg, White, and Ziemba
[1982] uses this approach in a short-term financial planning model with 12 random
variables with three realizations, each corresponding to uncertain cash requirements
and liquidation costs. They solve the stochastic model with problem (7.5) in approx-
imately 1.5 times the effort to solve the corresponding mean value linear program

5.7 Simple and Network Recourse Problems 245

with expected values substituted for all random variables. This result suggests that
stochastic programs with simple recourse can be solved in a time of about the same
order of magnitude as a deterministic linear program ignoring randomness.

Further computational advantages for these problems are possible by treating the
special structure of the χi, j variables as χi variables with piecewise, linear convex
objective terms. Fourer [1985, 1988] presents an efficient simplex method approach
for these problems. This implementation lends further support to the similar mean
value problem–stochastic program order of magnitude claim.

Decomposition methods can also be applied to the simple recourse problem with
finite distributions, although solution times better than the mean-value linear pro-
gramming solution would generally be difficult to obtain. As mentioned in Sec-
tion 5.1d., the multicut approach offers some advantage for the L -shaped algorithm
(in terms of major iterations), but solution times are generally at best comparable
with the mean-value linear program time.

For generalized programming, because Ψ(χ) = ∑m2
i=1Ψi(χi) and each Ψi(χi) is

easily evaluated, the subproblem in (6.10) is equivalent to finding χνi such that

−πνi ∈ ∂Ψi(χνi) . (7.7)

From (7.4) and the argument in Proposition 5.1, ∂Ψi(χi) = {di, j} for hi, j < χi <
hi, j+1 and ∂Ψi(χi) = [di, j−1,di, j] for hi, j = χi . Thus, we can choose χνi = hi, j

for di, j−1 ≤ −πνi ≤ di, j , j = 1, . . . ,Ki . If πνi < −q+
i , then the value in (6.10) is

unbounded. The algorithm chooses ζ s+1
i = −1 , and Ψ+

0,i(−1) = q+
i . In this way,

generalized programming can be implemented easily, but would appear similar to
the piecewise linear approach.

In network problems, the simple recourse formulation can be even more effi-
ciently solved. Suppose, for example, that the random variables hi correspond to
random demands at m2 destinations, that the variables xst are flows from s to t ,
Ax = b corresponds to the network constraints for all source nodes, transshipment
nodes, and destinations with known demands, and that T x represents all the flows
entering the destinations with random demand. By adding the constraint,

m2

∑
i=1

(
li

∑
j=1

χi, j

)
− ∑

sources s
∑

t
xst = − ∑

known demand
destinations r

demand(r) , (7.8)

every variable in (7.5) corresponds to a flow so that (7.5) becomes a network linear
program. Hence, efficient network codes can be applied directly to (7.5) in this case.

When T has gains and losses, (7.5) is a generalized network. This problem was
one of the first types of practical stochastic linear programs solved when Ferguson
and Dantzig [1956] used the generalized network form to give an efficient procedure
for allocating aircraft to routes (fleet assignment). We describe this problem to show
the possibilities inherent in the stochastic program structure.

The problem includes m1 aircraft and m2 routes. The decision variables are
xsr aircraft s allocated to route r . The number of aircraft s available is bs , the
passenger capacity of aircraft s on route r is tsr , and the uncertain passenger

246 5 Two-Stage Recourse Problems

demand is hr . Hence, the i th row of Ax = b is ∑m2
r=1 xir = bi . The j -th row of

Tx− χ = 0 is ∑m1
s=1 ts jxs j − χ j = 0 .

The key observation about this problem is that the basis corresponds to a pseudo-
rooted spanning forest (see, e.g., Bazaraa, Jarvis, and Sherali [1990]). For this prob-
lem, the simplex steps solve with trees and one-trees in an efficient manner. For
example, suppose m1 = 3 , m2 = 3 , b = (2,2,2) , t1· = (200,100,300) , t2· =
(300,100,200) , and t3· = (400,100,150) , pi, j = 0.5 , and h1,1 = 500 , h1,2 = 700 ,
h2,1 = 200 , h2,2 = 400 , h3,1 = 200 , h3,2 = 400 . A basic solution is x1,1 = 1 ,
x1,2 = 1 , x2,1 = 1 , x2,2 = 1 , x3,3 = 2 , and χ3,1 = 100 with all other variables
nonbasic. This basis is illustrated in Figure 5. The forest consists of a cycle and a
subtree. Exercises 1, 2, and 3 explore this example in more detail.

Fig. 5 Graph of basic arcs for aircraft-route assignment example.

For general network problems, Sun, Qi and Tsai [1993] describe a piecewise linear
network method that allows the use of network methods and does not require adding
the additional arcs that correspond to the χi, j values. Other generalizations for net-
work structured problems allow continuous distributions and apply directly to the
nonlinear problem. We discuss these methods in more detail in the next chapter.

The methods all apply to simple recourse problems in which the first-stage vari-
ables represent a network. Another class of problems includes network constraints
in the second (and following) stages. These problems are called network recourse
problems. In this case, some computational advantages are again possible.

Most computational experience with solving these problems directly has been
with the L -shaped method. The efficiencies occur in constructing feasibility con-
straints, in generating facets of the polyhedral convex recourse function, and in solv-
ing multiple recourse problems using small Schur complement updates of a network
basis. These procedures are described in Wallace [1986b]. Other methods for net-
work recourse problems involve nonlinear programming-based procedures.

We suppose the simple recourse problem structure in (7.1). As noted earlier,
the most direct methods for solving (7.1) use standard nonlinear programming
techniques. We briefly describe some of the alternatives here. The most com-
mon procedures applied here are single-point linearization approaches, such as the

5.7 Simple and Network Recourse Problems 247

Frank-Wolfe method, multiple-point linearization, such as generalized linear pro-
gramming as in Section 5.6, and active set or reduced variable methods, similar
to simplex method extensions. Other methods are described in Nazareth and Wets
[1986].

The Frank-Wolfe method for simple recourse problems appears in Wets [1966]
and Ziemba [1970]. The basic procedure is to approximate the objective using the
gradient and to solve a linear program to find a search direction. The algorithm
contains the following basic steps. We assume that each random variable hi has an
absolutely continuous distribution function Fi so that each Ψi is differentiable. In
this case, the gradient of Ψ(T x) is easily calculated as ∇Ψ(T x) = (q+ −q)T (F̄)T ,
where F̄ = diag{Fi(Ti·x)} , the diagonal matrix of the probability that hi is below
Ti·x .

Frank-Wolfe Method for Simple Recourse Problems

Step 0. Suppose a feasible solution x0 to (7.1). Let ν = 0 . Go to Step 1.

Step 1. Let x̂ν solve:

min z = (cT +(q+ −q)T (F̄ν)T)x
s. t. Ax = b ,

x ≥ 0 ,

(7.9)

where F̄ν = diag{Fi(Ti·xν)} .

Step 2. Find xν+1 to minimize cT (xν +λ (x̂ν −xν))+∑m2
i=1Ψi(T (xν +λ (x̂ν −xν)))

over 0 ≤ λ ≤ 1 . If xν+1 = xν , stop with an optimal solution. Otherwise, let ν =
ν+ 1 and return to Step 1.

The basis for this approach is that x∗ is optimal in (7.1) if and only if x∗ solves
(7.9) with x∗ = xν . If xν is not a solution of (7.1), then xν+1 �= xν , and descent
occurs along x̂ν − xν . Exercise 1 asks for the details of this convergence result.

The L -shaped method and generalized linear programming can be considered
extensions of the linearization approach that use multiple points of linearization.
We have already considered the L -shaped method in some detail in the previous
chapter. For generalized programming, the key advantage is that Ψ(χ) is separa-
ble. Williams [1966] and Beale [1961] observed the advantage of this property and
gave generalized programming procedures for specific problems. In the case of the
general problem in (7.1), the master problem of (3.4.9)–(3.4.10) becomes

min zν = cT x +
m2

∑
j=1

(
r j

∑
i=1

μ jiΨ+
0 j (ζ ji)+

s j

∑
i=1

λ jiΨj(χ ji)

)
(7.10)

s. t. Ax = b , (7.11)

Ti·x−
r j

∑
i=1

μ jiζ ji −
s j

∑
i=1

λ jiχ ji = 0 , j = 1, . . . ,m2 , (7.12)

248 5 Two-Stage Recourse Problems

s j

∑
i=1

λ ji = 1 , (7.13)

x,μ ji ≥ 0 , i = 1, . . . ,r j ; λ ji ≥ 0 , i = 1, . . . ,s j , j = 1, . . . ,m2 ,

where we can divide the components of χ in the constraints because of the separa-
bility.

We then have a subproblem of the form in (3.5.12) for each j :

min
χ j

Ψj(χ j)+πνj χ j −ρνj . (7.14)

We can create an entering column whenever any of the values in (7.14) is negative.
If all are non-negative, then the algorithm again terminates with an optimal value.

Example 4

As an example of generalized programming applied to a simple recourse problem,
suppose the following situation. We have $400 to buy boxes of blueberries ($5 per
box) and cherries ($7 per box) from a farmer. We take the berries to the town market
where we hope to sell them ($11 per blueberry box and $15 per cherry box). Any
unsold berries at the end of the market day can be sold to a local baker ($3 per
blueberry box and $5 per cherry box).

The demand for berries is stochastic. We assume that blueberry demand dur-
ing market hours is uniformly distributed between 10 and 30 boxes and that cherry
demand is uniformly distributed between 20 and 40 boxes. In the simple recourse
problem, the correlation between these demands does not affect the recourse func-
tion value; so, we only need this marginal information.

The initial decisions are x1 , the number of boxes of blueberries to buy, and x2 ,
the number of boxes of cherries to buy. The full problem is then to find x∗ , χ∗ to

min z = 2x1 + 2x2 +Ψ1(χ1)+Ψ2(χ2)
s. t. 5x1 + 7x2 ≤ 400 ,

x1 − χ1 = 0 ,

x2 − χ2 = 0 ,

x1,x2 ≥ 0 ,

(7.15)

where

Ψ1(χ1) =

⎧⎪⎨
⎪⎩

−8χ1 if χ1 ≤ 10 ,
1
5χ

2
1 −12χ1 + 20 if 10 ≤ χ1 ≤ 30 ,

−160 if χ1 ≥ 30 ,

5.7 Simple and Network Recourse Problems 249

∇Ψ1(χ1) =

⎧⎪⎨
⎪⎩

−8 if χ1 ≤ 10 ,
2
5χ1 −12 if 10 ≤ χ1 ≤ 30 ,

0 if χ1 ≥ 30 ,

Ψ2(χ2) =

⎧⎪⎨
⎪⎩

−10χ2 if χ2 ≤ 20 ,
1
4χ

2
2 −20χ2 + 100 if 20 ≤ χ2 ≤ 40 ,

−300 if χ2 ≥ 40 ,

and

∇Ψ2(χ2) =

⎧⎪⎨
⎪⎩

−10 if χ2 ≤ 20 ,
1
2χ2 −20 if 20 ≤ χ2 ≤ 40 ,

0 if χ2 ≥ 40 .

The generalized programming method follows these iterations.

Iteration 0:

Step 0. We start with (7.10)–(7.13) with ν = r j = s j = 0 .

Step 1. The obvious solution is x0 = (0,0)T with multipliers, π0 = ρ0 = (0,0)T .

Step 2. Setting π0
i =−∇Ψi(χ11) , we obtain χ11 = 30 and χ21 = 40 with Ψ1(χ11)=

−160 and Ψ2(χ21) = −300 and clearly Ψj(χ j,s j+1)+πνj χ j,s j+1 −ρνj < 0 for each
j = 1,2 . Now, s1 = s2 = 1 , ν = 1 and we repeat.

Iteration 1:

Step 1. We assume that we can dispose of berries (to avoid creating an infeasibility
in (7.10)–(7.13)). The master problem then has the form:

min z = 2x1 + 2x2 −160λ11 −300λ21

s. t. 5x1 + 7x2 ≤ 400 ,

x1 −30λ11 ≥ 0 ,

x2 −40λ21 ≥ 0 ,

λ11 = 1 ,

λ21 = 1 ,

x1,x2,λ11,λ21 ≥ 0 .

(7.16)

The solution is z1 = −300 , x1 = (24,40)T , λ11 = 0.8 , λ21 = 1.0 , π1 = (5.333,
6.667)T and ρ1 = (0,−33.333)T .

Step 2. Setting π0
i = −∇Ψi(χ11) , we obtain χ12 = 16.667 and χ22 = 26.667 with

Ψ1(χ11) = −124.4 and Ψ2(χ22) = −255.55 . Again, Ψj(χ j,s j+1) + πνj χ j,s j+1 −
ρνj < 0 for each j = 1,2 with Ψ(χ12) + π1

1χ12 − ρ1
1 = −35.5 and Ψ (χ22) +

π1
2χ22 −ρ1

2 = −44.4 . Now, s1 = s2 = 2 , ν = 2 .

250 5 Two-Stage Recourse Problems

Iteration 2:

Step 1. The new master problem is:

min z = 2x1 + 2x2 −160λ11 −124.4λ12 −300λ21 −255.55λ22

s. t. 5x1 + 7x2 ≤ 400 ,

x1 −30λ11 −16.667λ12 ≥ 0 ,

x2 −40λ21 −26.667λ22 ≥ 0 ,

λ11 +λ12 = 1 ,

λ21 +λ22 = 1 ,

x1,x2,λ11,λ12,λ21,λ22 ≥ 0 .

(7.17)

The solution is z2 = −316.0 , x2 = (24,40)T , λ 2
11 = 0.55 , λ 2

12 = 0.45 , λ 2
21 = 1.0 ,

π2 = (2.667,2.934)T and ρ2 = (−80.0,−182.6)T .

Step 2. Setting π2
i = −∇Ψi(χi,si+1) , we obtain χ13 = 23.33 and χ23 = 34.13 with

Ψ1(χ13) = −151.1 and Ψ2(χ23) = −291.4 . Here, Ψ1(χ13)+π2
1χ13 −ρ2

1 = −8.88
and Ψ2(χ23)+π2

2χ23 −ρ2
2 = −8.61 . Now, s1 = s2 = 3 , ν = 3 .

Iteration 3:

Step 1. The new master problem is:

min z = 2x1 + 2x2 −160λ11 −124.4λ12−151.1λ13

−300λ21 −255.55λ22−291.4λ23

s. t. 5x1 + 7x2 ≤ 400 ,

x1 −30λ11 −16.667λ12 −23.333λ13 ≥ 0 ,

x2 −40λ21 −26.667λ22 −34.133λ23 ≥ 0 ,

λ11 +λ12 +λ13 = 1 ,

λ21 +λ22 +λ23 = 1 ,

x1,x2,λi j ≥ 0 .

(7.18)

The solution is z3 = −327.57 , x3 = (23.333,34.133)T , λ 3
13 = 1.00 , λ 3

23 = 1.0 ,
π3 = (2.0,2.0)T and ρ3 = (−104.44,−223.13)T .

Step 2. Setting π3
i = −∇Ψi(χi,si+1) , we obtain χ14 = 25 and χ24 = 36 with

Ψ1(χ14) = −155 and Ψ2(χ24) = −296 . Here, Ψ1(χ14)+π3
1χ14 −ρ3

1 = −0.56 and
Ψ2(χ24)+π3

2χ24 −ρ3
2 = −0.87 . Now, s1 = s2 = 4 , ν = 3 .

Iteration 4:

5.7 Simple and Network Recourse Problems 251

Step 1. We add λ14 and λ24 with their objective and constraint entries to (7.18) to
obtain the same form of the master problem. The solution is now z4 = −329 , x4 =
(25,36)T , λ 4

14 = 1.00 , λ 4
24 = 1.0 , π4 = (2.0,2.0)T and ρ4 = (−105,−224)T .

Step 2. Because π4 = π3 , we obtain χi5 = χi4 , and Ψi(χi5)+π4
i χi5 −ρ4

i = 0 for
i = 1,2 . Hence, no columns can be added. We stop with the optimal solution, x∗ =
(25,36)T with objective value z∗ = 329 .

Notice that in this example the budget constraint is not binding. We only spend
$377 of the total possible, $400. If we had solved this problem as separate news
vendor problems in each type of berry, we would have obtained the same solution.
In fact, this is one of the suggestions for initial tenders to start the generalized pro-
gramming process (see Birge and Wets [1984] and Nazareth and Wets [1986]). In
this case, we would terminate on the first step with this initial offer (just as in the
case of Example 2 described in Section 5.6).

Notice also as in Section 5.6 that the algorithm appears to converge quite quickly
here. In general, the retention of information about gradients at many points should
improve convergence over techniques that use only local information. Second-
order information is also valuable, assuming twice-differentiable functions. This
is the motivation behind Beale’s [1961] approach of quadratic approximation. This
method is another form of the generalized programming approach for convex sepa-
rable functions.

The other procedures specifically used on the simple recourse problem concern
some form of active set or simplex based strategy. Wets [1966] and Ziemba [1970]
give the basic reduced gradient or convex simplex method procedure. This method
consists of computing a search direction corresponding to a change in the value of a
nonbasic variable (assuming only basic variables change concomitantly). The basis
is changed if the line search implies that basic variable becomes zero. Otherwise,
the nonbasic variable’s value is updated and other nonbasic variables are checked
for possible descent.

A different approach is given by Qi [1986], who suggests alternating between
the solution of a linear program with χ fixed and the solution of a reduced variable
convex program. The linear program is to find

min
x

cT x +Ψ(χν)

s. t. Ax = b ,

T x = χν ,

x ≥ 0 ,

(7.19)

to obtain xν+1 = (xνB,xνN) , where xνN = 0 . Then solve the reduced convex program:

min
x,χ

cT x +Ψ(χ)

s. t. Ax = b , T x = χ ,

xB ≥ 0 , xN = 0,

(7.20)

252 5 Two-Stage Recourse Problems

to obtain x̂ν+1,χν+1 . The algorithm is the following.

Alternating Algorithm for Simple Recourse Problems

Step 0. Let ν = 0 , choose a feasible solution x0 to (7.20) and let χ0 be part of a
solution to (7.20) with N defined according to x0 . Go to Step 1.

Step 1. Solve (7.19). Let Xν+1 = {x optimal in (7.19) } . Choose xν+1 ∈ Xν+1 such
that cT xν+1 +Ψ(T xν+1) < cT xν +Ψ(T xν) . If none exists, then stop. Otherwise,
go to Step 2.

Step 2. Solve (7.20) with N defined for xν+1 to obtain χν+1 . Let ν = ν+ 1 and
return to 1.

The algorithm converges to an optimal solution because xν+1 can always be
found with cT xν+1 +Ψ(T xν+1) < cT xν +Ψ(T xν) whenever xν is not optimal
(Exercise 5). Of course, the algorithm’s advantage is when the number of first-period
variables n1 is much greater than the number of second-period random variables
m2 , so that solving problem (7.20) provides a computational savings over solving
(7.1) directly.

This algorithm (and indeed the convex simplex method) raises the possibility for
multiple optima of the linear program (degeneracy). In this case, many solutions
may be searched before improvement is found. In tests of partitioning in discretely
distributed general stochastic linear programming problems (Birge [1985b]), this
problem was found to overcome computational advantages of reducing the working
problem size. The approach has, therefore, not been followed extensively in practice
although it may, of course, offer efficient computation on some problems.

Other methods for simple recourse have built on the special structure. For trans-
portation constraints, Qi [1985] gives a method based on using the forest structure
of the basis to obtain a search direction and improved forest solution. This method
only requires the solution of one-dimensional monotone equations apart from stan-
dard tree solutions. Piecewise linear techniques as in Sun, Qi, and Tsai [1990] can
also be adapted here to general network structures and used in conjunction with Qi’s
forest procedure to produce a convergent algorithm.

Exercises

1. Show that any basis for the aircraft allocation problem consists of a collection of
m1 + m2 basic variables that correspond to a collection of trees and one-trees.

2. Describe a procedure for finding the values of basic variables, multipliers, re-
duced costs, and entering and leaving basic variables for the structure in the
aircraft allocation problem.

3. Solve the aircraft allocation problem using the procedure in (7.2) starting at
the basis given with cost data corresponding to c1· = (300,200,100) , c2· =

5.8 Methods Based on the Stochastic Program Lagrangian 253

(400,100,300) , c3· = (200,100,300) , q+
i = 25 , q−

i = 0 for all i . You may
find it useful to use the graph to compute the appropriate values.

4. Show that the Frank-Wolfe method for the simplex recourse problem converges
to an optimal solution (assuming that one exists).

5. Solve the example in (7.15) using the L -shaped method.

6. Solve the example in (7.15) using the Frank-Wolfe method.

7. In the general stochastic linear programming model (with fixed T , (3.1.5)),
show that solving (7.19) with χν = χ∗ yields an optimal solution x∗ . Use
this to show that there always exists a solution to (3.1.5) with at most m1 + m2

nonzero variables (Murty [1968]). What does this imply for retaining cuts in the
L -shaped method?

8. Show that the alternating algorithm for simple recourse problems converges to
an optimal solution assuming that the support of h is compact. (Hint:From any
xν , consider a path to x∗ , use the convexity of Ψ , and consider the solution as
xν is approached from x∗ .)

5.8 Methods Based on the Stochastic Program Lagrangian

Again consider the general nonlinear stochastic program given in (3.5.1), which we
repeat here without equality constraints to simplify the following discussion:

infz = f 1(x)+Q(x) (8.1)

s. t. g1
i (x) ≤ 0 , i = 1, . . . ,m1 ,

where Q(x) = Eω [Q(x,ω)] and

Q(x,ω) = inf f 2(y(ω),ω) (8.2)

s. t. g2
i (x,y(ω),ω) ≤ 0 , i = 1, . . . ,m2 ,

with the continuity assumptions mentioned in Section 3.5.
In general, we can consider a variety of approaches to (8.1) based on available

nonlinear programming methods. For example, we may consider gradient projec-
tion, reduced gradient methods, and straightforward penalty-type procedures, but
these methods all assume that gradients of Q are available and relatively inexpen-
sive to acquire. Clearly, this is not the case in stochastic programs because each
evaluation may involve solving several problems (8.2). Lagrangian approaches have
been proposed to avoid this problem.

The basic idea behind the Lagrangian approaches is to place the first- and second-
stage links into the objective so that repeated subproblem optimizations are avoided
in finding search directions. To see how this approach works, consider writing (8.1)
in the following form:

254 5 Two-Stage Recourse Problems

infz = f 1(x)+ Eω [f 2(y(ω),ω)] (8.3)

s. t. g1
i (x) ≤ 0 , i = 1, . . . ,m1 ,

g2
i (x,y(ω),ω) ≤ 0 , i = 1, . . . ,m2 , a. s.

If we let (λ ,π) be a multiplier vector associated with the constraints, then we can
form a dual problem to (8.3) as:

max
π(ω)≥0

w = θ (π) , (8.4)

where

θ (π) = inf
x,y

z = f 1(x)+ Eω [f 2(y(ω),ω)]

+ Eω [
m2

∑
i=1

π(ω)i(g2
i (x,y(ω),ω))] (8.5)

s. t. g1
i (x) ≤ 0 , i = 1, . . . ,m1 .

We show duality in the finite distribution case in the following theorem.

Theorem 21. Suppose the stochastic nonlinear program (8.1) with all functions
convex has a finite optimal value and a point strictly satisfying all constraints,
and suppose Ω = {1, . . . ,K} with P{ω = i} = pi . Then z ≥ w for every feasi-
ble x,y1, . . . ,yK in (8.1)–(8.2) and π1, . . . ,πK feasible in (8.4), and their optimal
values coincide, z∗ = w∗ .

Proof: From the general optimality conditions (see, e.g., Bazaraa and Shetty [1979,
Theorem 6.2.1]), the result follows by noting that we may take x satisfying the first-
period constraints as a general convex constraint set X so that only the second-
period constraints are placed into the dual. We also divide any multipliers on the
second-period constraints in (8.3) by pi if they correspond to ω = i . In this way,
the expectation over ω in (8.5) is obtained.

Now, we can follow a dual ascent procedure in (8.4). This takes the form of a
subgradient method. We note that

∂θ (π̄) = co{(ζ 1
1 , . . . ,ζ 1

m2
)T , . . . ,(ζK

1 , . . . ,ζK
m2

)T} , (8.6)

where again “ co ” denotes the convex hull,

ζ k
i = g2

i (x̄, ȳk,k) , (8.7)

and (x̄, ȳ1, . . . , ȳK) solves the problem in (8.5) given π = π̄ . This again follows
from standard theory as in, for example, Bazaraa and Shetty [1979, Theorem 6.3.7].

We can now describe a basic gradient method for the dual problem. For our
purposes, we assume that (8.5) always has a unique solution.

5.8 Methods Based on the Stochastic Program Lagrangian 255

Basic Lagrangian Dual Ascent Method

Step 0. Set π0 ≥ 0 , ν = 0 and go to Step 1.

Step 1. Given π = πν in (8.5), let the solution be (xν ,yν1 , . . . ,yνK) . Let π̂k
i = 0 if

πν,k
i = 0 and g2

i (x
ν ,yνk ,k) ≤ 0 , and π̂k

i = g2
i (x

ν ,yνk ,k) , otherwise. If π̂k = 0 for
all k , stop.

Step 2. Let λν maximize θ (πν + λ π̂) over πν + λ π̂ ≥ 0,λ ≥ 0 . Let πν+1 =
πν +λνπ̂ , ν = ν+ 1 , and go to Step 1.

Assuming the unique solution property, this algorithm always produces an as-
cent direction in θ . The algorithm either converges finitely to an optimal solution
or, assuming a bounded set of optima, produces an infinite sequence with all limit
points optimal (see Exercise 1). For the case of multiple optima for (8.5), some
nondifferentiable procedure must be used. In this case, one could consider finding
the maximum norm subgradient to be assured of ascent or one could use various
bundle-type methods (see Section 5.9).

The basic hope for computational efficiency in the dual ascent procedure is that
the number of dual iterations is small compared to the number of function evalua-
tions that might be required by directly attacking (8.1) and (8.2). Substantial time
may be spent solving (8.2) but that should be somewhat easier than solving (8.1) be-
cause the linking constraints appear in the objective instead of as hard constraints.
Overall, however, this type of procedure is generally slow due to our using only
a single-point linearization of θ . This observation has led to other types of La-
grangian approaches to (8.1) that use more global or second-order information.

Rockafellar and Wets [1986] suggested one such procedure for a special case of
(8.5) where f 1(x) = cT x + 1

2 xTCx and y(ω) can be eliminated so that the second
and third objective terms become Φ(π ,x) and the dual problem in (8.4) is then

max
π≥0

inf
{x|g1(x)≤0}

[cT x +
1
2

xTCx +Φ(π ,x)] . (8.8)

Their approach is not to restrict the search to a single search direction but to al-
low optimization over a low dimensional set. Implementation of this method, called
the Lagrangian finite-generation method for linear-quadratic stochastic programs,
is described in King [1988a] and its application to solve practical water manage-
ment problems concerning Lake Balaton in Hungary appears in Somlyódy and Wets
[1988].

A similar method based on inner linearization approaches in nonlinear program-
ming is restricted simplicial decomposition (Ventura and Hearn [1993]). This proce-
dure replaces the line search in the Topkis-Veinott [1967] feasible direction method
with a search over a simplex. The finite generation algorithm is analogously an en-
hancement over basic Lagrangian dual ascent methods that consider only gradient
or subgradient steps. Both the finite-generation and restricted simplicial decompo-
sition methods tend to avoid the zigzagging behavior that often occurs in methods
based on single-point linearizations.

256 5 Two-Stage Recourse Problems

Another method for accelerating convergence is to enforce strictly convex terms
in the objective. Rockafellar and Wets discussed methods for adding quadratic terms
to the matrices C and D(ω) so that these matrices become positive definite. In
this way, the finite generation method becomes a form of augmented Lagrangian
procedure. We next discuss the basic premise behind these procedures.

In an augmented Lagrangian approach, one generally adds a penalty
r‖g2

i (x̄, ȳk,k))+‖2 to θ (π) and performs the iterations including this term. The
advantage (see the discussion in Dempster [1988]) is that Newton-type steps can be
applied because we would obtain a nonsingular Hessian. The result should gener-
ally be that convergence becomes superlinear in terms of the dual objective without
a significantly greater computational burden over the Lagrangian approach.

The computational experience reported by Dempster suggests that few dual it-
erations need be used but that a more effective alternative was to include explicit
nonanticipative constraints as in (3.5.4) and to place these constraints into the ob-
jective instead of the full second-period constraints. In this way, θ becomes

θ ′(ρ) = infz = f 1(x)+
K

∑
k=1

pk[f 2(yk,k)]

+
K

∑
k=1

[ρT
k (x− xk)+ r/2‖x− xk‖2] (8.9)

s. t. g1
i (x) ≤ 0 , i = 1, . . . ,m1 ,

g2
i (xk,yk,k) ≤ 0 , i = 1, . . . ,m2 ,

k = 1, . . . ,K .

Notice how in (8.9) the only links between the nonanticipative x decision and the
scenario k decisions are in the (x−xk) objective terms. Dempster suggests solving
this problem approximately on each dual iteration by iterating between searches
in the x variables and search in the xk,yk variables. In this way, the augmented
Lagrangian approach of solving (8.9) to find a dual ascent Newton-type direction
achieves superlinear convergence in dual iterations. The only problem may come in
the time to construct the search directions through solutions of (8.9).

This method also resembles the progressive hedging algorithm of Rockafellar
and Wets [1991]. This method achieves a full separation of the individual scenario
problems for each iteration and, therefore, has considerably less work in each itera-
tion; however, the number of iterations as we shall see, may be greater. The method
can offer many computational advantages, particularly for structured problems (see
Mulvey and Vladimirou [1991a]). The key to this method’s success is that individual
subproblem structure is maintained throughout the algorithm. Related implemen-
tations by Nielsen and Zenios [1993a, 1993b] on parallel processors demonstrate
possibilities for parallelism and the solution of large problems.

The basic progressive hedging method begins with a nonanticipative solution x̂ν

and a multiplier ρν . The nonanticipative (but not necessarily feasible) solution is
used in place of x in (8.9). The first-period constraints are also split into each xk .

5.8 Methods Based on the Stochastic Program Lagrangian 257

In this way, we obtain a subproblem:

infz =
K

∑
k=1

pk[f 1(xk)+ f 2(yk,k)+ρν,T
k (xk − x̂ν)+ r/2‖xk − x̂ν‖2]

s. t. g1
i (xk) ≤ 0 , i = 1, . . . ,m1 , k = 1, . . . ,K ,

g2
i (xk,yk,k) ≤ 0 , i = 1, . . . ,m2 , k = 1, . . . ,K .

(8.10)

Now (8.10) splits directly into subproblems for each k so these can be treated sep-
arately.

Supposing that (xν+1
k ,yν+1

k) solves (8.10). We obtain a new nonanticipative de-
cision by taking the expected value of xν+1 as x̂ν+1 and step in ρ by ρν+1 =
ρν +(xν+1 − x̂ν+1) .

The steps then are simply stated as follows.

Progressive Hedging Algorithm (PHA)

Step 0. Suppose some nonanticipative x0 , some initial multiplier ρ0 , and r > 0 .
Let ν = 0 . Go to Step 1.

Step 1. Let (xν+1
k ,yν+1

k) for k = 1, . . . ,K solve (8.10). Let x̂ν+1 = (x̂ν+1,1, . . . ,

x̂ν+1,K)T where x̂ν+1,k = ∑K
l=1 plxν+1,l for all k = 1, . . . ,K .

Step 2. Let ρν+1 = ρν + r(xν+1,k − x̂ν+1) . If x̂ν+1 = x̂ν and ρν+1 = ρν , then,
stop; x̂ν and ρν are optimal. Otherwise, let ν = ν+ 1 and go to Step 1.

The convergence of this method is based on Rockafellar’s proximal point method
[1976a]. The basis for this approach is not dual ascent but the contraction of the pair,
(x̂ν+1,ρν+1) , about an optimal point. The key is that the algorithm mapping can be
described as (Πxν+1,ρν+1/r) = (I −V)−1(Πxν ,ρν/r) , where V is a maximal
monotone operator and Π is the diagonal matrix of probabilities corresponding to
xk and ρk , i.e, where Π(k−1)n1+i,(k−1)n1+i = pk for i = 1, . . . ,n1 and k = 1, . . . ,K .

To describe this approach we first define a maximal monotone operator at V
(see Minty [1961] for more general details) such that for any pairs (w,z) where
z ∈ V (w) and (w′,z′) for z′ ∈ V (w′) , we have

(w−w′)TV (z− z′) ≥ 0 . (8.11)

The key point here is that if we have a Lagrangian function l(x,y) that is convex in
x and concave in y , then the subdifferential set of l(x,y) at (x̄, ȳ) defined by

{(ζ ,η) | ζT (x− x̄)+ l(x̄, ȳ) ≤ l(x, ȳ),∀x ;

ηT (y− ȳ)+ l(x̄, ȳ) ≥ l(x̄,y), ∀y} (8.12)

yields a maximal monotone operator by

V (x̄, ȳ) = {(ζ ,η)} (8.13)

258 5 Two-Stage Recourse Problems

for (ζ ,−η) ∈ ∂ l(x̄, ȳ) (Exercise 3).
The second result that follows for maximal monotone operators is that a contrac-

tion mapping can be defined on it by taking (I −V)−1(x,y) to obtain (x′,y′) , or,
equivalently, where (x′ − x,y′ − y) ∈ V (x′,y′) . The contraction result (Exercise 4)
is that, if V is maximal monotone, then, for all (x′,y′) = (I − (1/r)V)−1(x,y) and
(x̄′, ȳ′) = (I −V)−1(x̄, ȳ) ,

‖(x′ − x̄′,y′ − ȳ′)‖2 ≤ (x− x̄,y− ȳ)T (x′ − x̄′,y′ − ȳ′) . (8.14)

These results then play the fundamental role in the following proof of convergence.

Theorem 22. The progressive hedging algorithm, applied to (8.1) with the same
conditions as in Theorem 14, converges to an optimal solution, x∗,ρ∗ , (or termi-
nates finitely with an optimal solution) and, at each iteration that does not terminate
in Step 2,

‖(Π x̂ν+1,ρν+1/r)− (Πx∗,ρ∗/r)‖ < ‖(Π x̂ν ,ρν/r)− (Πx∗,ρ∗/r)‖ . (8.15)

Proof: As stated, the key is to find the associated Lagrangian and to show that the
iterations follow the mapping as in (8.14). For the Lagrangian, define

l(x̄, ρ̄) = inf
x

(1/r)z(x)+ ρ̄TΠx (8.16)

s. t. JΠx− x̄ = 0 ,

where z(x) is defined as ∑K
k=1[f 1(xk)+ Q(xk,k)] for feasible xk and as +∞ oth-

erwise, Π is defined as the diagonal probability matrix, and J is the matrix corre-
sponding to column sums, Jr,s equal one if r (mod n1) = s (mod n1) and zero
otherwise. We want to show that

(Π(x̂ν − x̂ν+1),(ρν −ρν+1)/r) ∈ ∂ l(Π x̂ν+1,ρν+1/r);

so, we can use the contraction property in (8.14) from the maximal monotone oper-
ator defined on ∂ l(Π x̂ν+1,ρν+1/r) .

Note that, for x̄ =Π x̂ν and ρ̄ = ρν/r =∑ν
i=1(x

i − x̂i) , x̄T ρ̄ = x̂ν,T Π(∑ν
i=1(x

i−
x̂i)) = (x′)ν,T JΠ(∑ν

i=1(x
i − x̂i)) for (x′)ν,T = (1/K)x̂ν,T . Because JΠxi = x̂i , we

have x̄T ρ̄ = 0 . We can thus add the term, x̄T ρ̄ to the objective in (8.16) without
changing the problem. We then obtain:

η ∈ ∂ρ̄ l(x̄, ρ̄) ⇔ −Πρ̄ ∈ (1/r)∂ z(Π−1(−η)+ x̄)+πT JΠ , (8.17)

where JΠ(Π−1(−η)) = x̄ and π is some multiplier. For ∂x̄l(x̄, ρ̄) , ζ = −πT JΠ ,
and some π ,

ζ ∈ ∂x̄l(x̄, ρ̄) ⇔ ζ −Πρ̄ ∈ (1/r)∂Z(x′) , (8.18)

for some JΠx′ = x̂ . We combine (8.17) and (8.18) to obtain that (ζ ,η) ∈ ∂ l(x̄, ρ̄)
if

5.8 Methods Based on the Stochastic Program Lagrangian 259

ζ −Πρ̄ ∈ (1/r)∂ z(Π−1(−η)+ x̄) . (8.19)

We wish to show that

Π(x̂ν − x̂ν+1)−Πρν+1/r ∈ (1/r)∂ z(Π−1(ρν+1 −ρν)/r + x̂ν+1) . (8.20)

From the algorithm,

−Πρν ∈ ∂ z(xν+1)+ rΠ(xν+1 − x̂ν) . (8.21)

Substituting, ρν+1 = ρν + r(xν+1 − x̂ν+1) , we obtain from (8.21),

−Πρν+1 + rΠ(xν+1 − x̂ν+1) ∈ ∂ z(xν+1)+ rΠ(xν+1 − x̂ν) , (8.22)

which, after eliminating rΠxν+1 from both sides, coincides with (8.20).
By the nonexpansive property, there exists (Πx∗,ρ∗/r) , a fixed point of this

mapping. By substituting into (8.14), with (Πx∗,ρ∗/r) = (I −V)(Πx∗,ρ∗/r) and
(Π x̂ν+1,ρν+1/r) = (I −V)(Π x̂ν ,ρν/r) , we have (Exercise 5):

‖(Π x̂ν+1,ρν+1/r)− (Πx∗,ρ∗/r)‖ < ‖(Π x̂ν ,ρν+1/r)− (Πx∗,ρ∗/r)‖ . (8.23)

Our result follows if (x∗,ρ∗) is indeed a solution of (8.1). Note that in this case,
we must have 0 = xν+1 − x̂ν+1 = xν+1 − x̂ν ; so, from (8.21), −Πρ∗ ∈ ∂ z(x∗) .
From Theorem 3.2.5, optimality in (8.1) is equivalent to ρTΠ ∈ ∂ z(x∗) for some
ρ , where JΠρ = 0 , which is true because JΠ(−ρ∗) = −∑ν JΠ(xν+1 − xν) = 0 .
Hence, we obtain optimality. The method converges as desired.

We note that Rockafellar and Wets obtained these results by defining an inner
product as 〈ρ ,x〉 = ρTΠx and using appropriate operations with this definition.
They also show that, in the linear-quadratic case, the convergence to optimality is
geometric.

Variants of this method are possible by considering other inner products and
projection operators. For example, we can let ˆ̄xν+1 be the standard orthogonal pro-
jection of xν+1 into the null space of JΠ . This value is the simple average of xν+1

k
values, so that ˆ̄xν+1

k (i) = (1/K)∑K
k=1 xν+1

k (i) for all k = 1, . . . ,K . The multiplier
update is then:

ρν+1 = ρν + rΠ−1(xν+1 − ˆ̄xν+1) . (8.24)

One can again obtain the maximal monotone operator property, and, observing that
Jxν+1 = J ˆ̄xν+1 , obtain JΠρ∗ = 0 and optimality.

Example 3

The algorithm’s geometric convergence may require many iterations even on small
problems as we show in the following small example. Suppose we can invest

260 5 Two-Stage Recourse Problems

$10,000 in either of two investments, A or B. We would like a return of $25,000,
but the investments have different returns according to two future scenarios. In the
first scenario, A returns just the initial investment while B returns 3 times the initial
investment. In the second scenario, A returns 4 times the initial investment and B
returns twice the initial investment.The two scenarios are considered equally likely.
To reflect our goal of achieving $25,000, we use an objective that squares any return
less than $25,000. The overall formulation is then:

min z = 0.5(y2
1 + y2

2)
s. t. xA + xB ≤ 10 ,

xA + 3xB + y1 ≥ 25 ,

4xA + 2xB + y2 ≥ 25 ,

xA,xB,y1,y2 ≥ 0 .

(8.25)

Clearly, this problem has an optimal solution at x∗
A = 2.5 and x∗

B = 7.5 with an
objective value z∗ = 0 . A single iteration of Step 1 in the basic Lagrangian method
is all that would be required to solve this problem for any positive π value. A
single iteration is also all that would be necessary in the augmented Lagrangian
problem in (8.9). The price for this efficiency is, however, the incorporation of all
subproblems into a single master problem. Progressive hedging on the other hand
maintains completely separate subproblems. We will follow the first two iterations
of PHA for r = 2 here.

Iteration 0:

Step 0. Begin with a multiplier vector of ρ0 = 0 , and let x0
1 = (x0

1A,x0
1B) = (0,10)T

and let x0
2 = (x0

2A,x0
2B) = (10,0)T . The initial value of x̂0 = (5,5)T .

Step 1. We wish to solve:

min(1/2)[y2
1 + y2

2 +(x1
1A −5)2 +(x1

1B −5)2 +(x1
2A −5)2 +(x1

2B −5)2]

s. t. x1
1A + x1

1B ≤ 10 ,

x1
2A + x1

2B ≤ 10 ,

x1
1A + 3x1

1B − y1 ≥ 25 ,

4x1
2A + 2x1

2B − y2 ≥ 25 ,

x1
1A,x1

1B,x1
2A,x1

2B,y1,y2 ≥ 0 .

(8.26)

This problem splits into separate subproblems for x1
1A , x1

1B , y1 and x1
2A ,

x1
2B , y2 , as mentioned earlier. For x1

1A , x1
1B , y1 feasible in (8.26), the K-K-T

conditions are that there exist λ1 ≥ 0 , λ2 ≥ 0 such that

2(x1
1A −5)+λ1 −λ2 ≥ 0 ,

2(x1
1B −5)+λ1 −3λ2 ≥ 0 ,

5.8 Methods Based on the Stochastic Program Lagrangian 261

2y1 +λ2 ≥ 0 ,

(2(x1
1A −5)+λ1 −λ2)x1

1A = 0 ,

(2(x1
1B −5)+λ1 −3λ2)x1

1B = 0 ,

(2y1 +λ2)y1 = 0 ,

(x1
1A + x1

1B −10)λ1 = 0 ,

(x1
1A + 3x1

1B − y1 −25)λ2 = 0 , (8.27)

which has a solution of (x1
1A,x1

1B,y1) = (10/3,20/3,5/3) and (λ1,λ2) =
(20/3,10/3) . Similar conditions exist for the second subproblem, which has a so-
lution (x1

2A,x1
2B,y2) = (5,5,0) . We then let (x̂1

iA, x̂1
iB) = (4 1

6 ,5 5
6) for i = 1,2 .

Step 2. The new multiplier is ρ1 = (ρ1
1A,ρ1

1B,ρ1
2A,ρ1

2B)T = 2((10/3−25/6),(20/3−
35/6),(5−25/6),(5−35/6))T = (−5/3,5/3,5/3,−5/3)T .

Iteration 2:

Step 1. The first subproblem is now

min y2
1 − (5/3)(x2

1A −25/6)+ (5/3)(x2
1B−35/6)

+ (x2
1A −25/6)2 +(x2

1B −35/6)2

s. t. x2
1A + x2

1B ≤ 10 ,

x2
1A + 3x2

1B − y1 ≥ 25 ,

x2
1A,x2

1B,y1 ≥ 0 ,

(8.28)

which again has an optimal solution, (x2
1A,x2

1B,y2
1) = (10/3,20/3,5/3) . Curiously,

we also have the second subproblem solution of (x2
2A,x2

2B,y2
2) = (10/3,20/3,0) . In

this case, (x̂2
iA, x̂2

iB) = (10/3,20/3) for i = 1,2 .

Step 2. Because the subproblems returned the same solution, ρ2 = ρ1 . We continue
because the x values changed, even though we took no multiplier step.

The full iteration values are given in Table 1. Notice how the method achieves
convergence in the x values before the ρ values have converged. Also, notice how
the convergence appears to be geometric. This type of performance appears to be
typical of PHA. It should be noted again, however, that the iterations are quite simple
and that little overhead is required.

Exercises

1. Show that the basic dual ascent method converges to an optimal solution under
the conditions given.

262 5 Two-Stage Recourse Problems

Table 1 PHA iterations for Example 3.

k x̂k
A x̂k

B ρk
1A ρk

1B xk
1A xk

1B xk
2A xk

2B
= −ρk

2A = −ρk
2B

0 5.0 5.0 0.0 0.0 3.33 6.67 5.0 5.0
1 4.17 5.83 -1.67 1.67 3.33 6.67 3.33 6.67
2 3.33 6.67 -1.67 1.67 3.06 6.94 2.50 7.50
3 2.78 7.22 -1.11 1.11 2.78 7.22 2.41 7.59
4 2.59 7.41 -0.74 0.74 2.65 7.35 2.41 7.59
5 2.53 7.47 -0.49 0.49 2.59 7.41 2.43 7.57
6 2.50 7.50 -0.33 0.33 2.56 7.44 2.45 7.55
7 2.50 7.50 -0.22 0.22 2.54 7.46 2.46 7.54
8 2.50 7.50 -0.15 0.15 2.53 7.48 2.48 7.52
9 2.50 7.50 -0.10 0.10 2.52 7.48 2.48 7.52

10 2.50 7.50 -0.07 0.07 2.51 7.49 2.49 7.51
11 2.50 7.50 -0.04 0.04 2.51 7.49 2.49 7.51
12 2.50 7.50 -0.03 0.03 2.50 7.50 2.50 7.50

2. Show that (8.4) can be reduced to (8.8) when g2(y(ω),ω) = T (ω)x+Wy(ω)−
h(ω) , f 2(y(ω),ω) = q(ω)T y(ω) + 1

2 y(ω)T D(ω)y(ω) , and D is positive
definite.

3. Show that V as defined in (8.13) is a maximal monotone operator.

4. Prove the contraction property in (8.14).

5. Use (8.14) to obtain (8.23).

6. Apply the dual ascent method and the augmented Lagrangian method with prob-
lem (8.9) to the example in (8.25). Start with zero multipliers (ρ), π = 0 or 1,
and positive penalty r . Show that each obtains an optimal solution in at most
one iteration.

5.9 Additional Methods and Complexity Results

In the previous sections, we considered cutting plane methods and Lagrangian meth-
ods for problems with discrete random variables and simple recourse-based tech-
niques for problems with continuous random variables. Other nonlinear program-
ming procedures can also be applied to stochastic programs, although these other
procedures have not received as much attention in stochastic programming prob-
lems. A notable exception is Noël and Smeers’ [1987] multistage combined inner
linearization and augmented Lagrangian procedure, which we will describe in more
detail in the next chapter.

A difficulty with discrete random variables is that Ψ or Q generally loses
differentiability. In this case, derivative-based methods cannot apply. As we saw,

5.9 Additional Methods and Complexity Results 263

the L -shaped method and other cutting plane approaches are a standard approach
that requires only subgradient information. We also saw that augmented Lagrangian
techniques can smooth nondifferentiable functions.

Explicit nondifferentiable methods include the nonmonotonic reduced subgradi-
ent procedure considered by Ermoliev [1983]. Another possibility is to use bundles
of subgradients as in Lemaréchal [1978] and Kiwiel [1983]. Results by Plambeck
et al. [1996], for example, show good performance for bundle methods in practical
stochastic programs.

Nonsmooth generalizations of the Frank-Wolfe procedure are also possible.
These and other options are described in detail in Demyanov and Vasiliev [1981].
With general continuous random variables or with large numbers of discrete ran-
dom vector realizations, direct nonlinear programming procedures generally break
down because of difficulties in evaluating function and derivative values. In these
cases, one must rely on approximation. These approximations either take the form
of bounds on the actual function values or are in some sense statistical estimates of
the actual function values. We present these approaches in Chapters 8 to 10.

While models with discrete random variables inherit the complexity results
of their deterministic equivalent forms with possible improvements due to prob-
lem structure as shown for interior point methods in Section 5.5, general dis-
tributions can present difficulties even in the two-stage case. For the common
mean-variance objective, for example, the two-stage stochastic program is NP-hard
(Ahmed [2006]). While exact solutions to general stochastic programs are difficult
in general, bounds may be obtained efficiently using the methods in Chapter 8 and
other approaches that can achieve a priori bounds on error in special cases. For
example, Dye, Stougie, and Tomasgard [2003] consider a problem of a central re-
source serving facilities with random demands; Gupta, et al. [2007] provide bounds
on the related stochastic Steiner tree problem to connect a source node to termi-
nal nodes that are randomly revealed in the second period; Ravi and Sinha [2006]
provide results for the stochastic shortest path version with generalizations to other
combinatorial problems; and Flaxman, Frieze, and Krivelevich [2005] give a so-
lution for a two-stage stochastic spanning tree problem, where instead of random
demand, uncertainty is in the cost of edges which can be purchased for known costs
in the first period and for random costs in the second period. Swamy and Shmoys
[2006] provide a survey of these and other approaches including sampling methods
which are discussed in Chapter 9.

Chapter 6
Multistage Stochastic Programs

As the Chapter 1 examples demonstrate, many operational and planning problems
involve sequences of decisions over time. The decisions can respond to realizations
of outcomes that are not known a priori. The resulting model for optimal decision
making is then a multistage stochastic program. In Section 3.4, we gave some of the
basic properties of multistage problems. In this chapter, we explore the variety of
solution procedures that have been proposed specifically for multistage stochastic
programs.

In general, the methods for two-stage problems generalize to the multistage case
but include additional complications. Because of these difficulties, we will describe
only those methods that have shown some success for obtaining fully-optimal so-
lutions to problems in high dimension with a given finite set of possible scenarios.
As in previous chapters, the focus here is also on problems with time-separable
objectives (in contrast to the risk-sensitive utility in (10.7) of Chapter 2).

As stated in Section 3.4, the multistage stochastic linear program with a finite
number of possible future scenarios has a deterministic equivalent linear program.
However, as the graph in Figure 5 of Chapter 3 begins to suggest, the structure of
this problem is somewhat more complex than that of the two-stage problem. The
extensive form is not readily accessible to manipulations such as the factorizations
for extreme or interior point methods that were described in Chapter 5, although
some computational efficiencies are again possible as mentioned in Section 5.5.
Generally, some special structure is required for efficient solution in the general
case since these problems are PSPACE-hard (Dyer and Stougie [2006]) and require
exponential effort in the horizon H for provably tight approximations with high
probability (Swamy and Shmoys [2005] and Shmoys and Swamy [2006]).

In general, a variety of approximation approaches to multistage problems are
possible, such as the following:

1. value function approximation: replacing Qt with some simplified representa-
tion, such as an outer or inner linearization;

2. constraint relaxation and dualization: relaxing constraints into a Lagrangian or
looking at dual forms that may not be implementable but may give bounds or
guidelines for implementable policies;

J.R. Birge and F. Louveaux, Introduction to Stochastic Programming, Springer Series 265
in Operations Research and Financial Engineering, DOI 10.1007/978-1-4614-0237-4 6,
c© Springer Science+Business Media, LLC 2011

266 6 Multistage Stochastic Programs

3. policy restriction: restricting the set of alternative actions to a simplified form
that allows for efficient computation;

4. time, state, and path aggregation or scenario generation and reduction: starting
with a large set of possibilities and then combining (or selecting) them to form
more tractable representations;

5. Monte Carlo methods: sampling to obtain smaller, more tractable representa-
tions.

This chapter will focus on approaches to the first two items above while the other
approaches that relate more directly to approximation and sampling methods appear
in Chapters 9 and 10. In Section 6.1, we describe the basic nested decomposition
procedures for multistage stochastic linear programs, which represents value func-
tion approximation with outer (or inner) linearization. Section 6.2 shows how this
approach extends to quadratic problems. Section 6.3 then considers the use of block
separability and special problem structures. Section 6.4 describes approaches for
multistage nonlinear problems based on constraint relaxation and the Lagrangian
approach.

6.1 Nested Decomposition Procedures

Nested decomposition procedures were proposed for deterministic models by Ho
and Manne [1974] and Glassey [1973]. These approaches are essentially inner lin-
earizations that treat all previous periods as subproblems to a current period master
problem. The previous periods generate columns that can be used by the current-
period master problem.

A difficulty with these primal nested decomposition or inner linearization meth-
ods is that the set of inputs may be fundamentally different for different last period
realizations. Because the number of last period realizations is the total number of
scenarios in the problem, these procedures are not well adapted to the bunching
procedures described in Section 5.4. Some success has been achieved, however, by
Noël and Smeers [1987], as we will describe, by applying inner linearization to the
dual, which is again outer linearization of the primal problem.

The general primal approach is, therefore, to use an outer linearization built on
the two-stage L -shaped method. Louveaux [1980] first performed this generaliza-
tion for multistage quadratic problems, as we discuss in Section 6.2. Birge [1985b]
extended the two-stage method in the linear case as in the following description.
The approach also appears in Pereira and Pinto [1985].

The basic idea of the nested L -shaped or Benders decomposition method is to
place cuts on Qt+1(xt) in (3.4.3) and to add other cuts to achieve an xt that has a
feasible completion in all descendant scenarios. The cuts represent successive linear
approximations of Qt+1 . Due to the polyhedral structure of Qt+1 , this process
converges to an optimal solution in a finite number of steps.

6.1 Nested Decomposition Procedures 267

In general, for every stage t = 1, . . . ,H −1 and each scenario at that stage, k =
1, . . . ,K t ,1 we have the following master problem, which generates cuts to stage
t −1 and proposals for stage t + 1 :

min (ct
k)

T xt
k +θ t

k (1.1)

s. t. Wtxt
k = ht

k −Tt−1
k xt−1

a(k) , (1.2)

Dt
k, jx

t
k ≥ dt

k, j , j = 1, . . . ,rt
k , (1.3)

Et
k, jx

t
k +θ t

k ≥ et
k, j , j = 1, . . . ,st

k , (1.4)

xt
k ≥ 0 , (1.5)

where a(k) is the ancestor scenario of k at stage t −1 , xt−1
a(k) is the current solution

from that scenario, and where for t = 1 , we interpret b = h1 − T 0x0 as initial
conditions of the problem. We may refer also to the stage H problem in which θH

k
and constraints (1.3) and (1.4) are not present. To designate the period and scenario
of the problem in (1.1)–(1.5), we also denote this subproblem, NLDS(t,k) .

We first describe a basic algorithm for iterating among these stages. We then dis-
cuss some enhancements of this basic approach. In the following, D t(j) denotes the
period t descendants of a scenario j at period t −1 . We assume that all variables
in (3.4.1) have finite upper bounds to avoid complications presented by unbounded
solutions (although, again, these can be treated as in Van Slyke and Wets [1969]).

Nested L -Shaped Method for Multistage Stochastic Linear Programs

Step 0. Set t = 1 , k = 1 , rt
k = st

k = 0 , add the constraint θ t
k = 0 to (1.1)–(1.5) for

all t and k , and let DIR = FORE . Go to Step 1.

Step 1. Solve the current problem, NLDS(t,k) . If infeasible and t = 1 , then stop;
problem (3.4.1) is infeasible. If infeasible and t > 1 , then let rt−1

a(k) = rt−1
a(k) + 1 and

let DIR = BACK . Let the infeasibility condition (see Exercise 1) be obtained by a
dual basic solution, π t

k,ρ
t
k ≥ 0 , such that (π t

k)
TWt +(ρ t

k)
T Dt

k ≤ 0 but (π t
k)

T (ht
k −

Tt−1
k xt−1

a(k))+(ρ t
k)

T dt
k > 0 . Let Dt−1

a(k),rt−1
a(k)

= (π t
k)

T T t−1
k , dt−1

a(k),rt−1
a(k)

= π t
kht

k +(ρ t
k)

T dt
k .

Let t = t −1 , k = a(k) and return to Step 1.
If feasible, update the values of xt

k , θ t
k , and store the value of the complementary

basic dual multipliers on constraints (1.2)–(1.4) as (π t
k,ρ

t
k,σ

t
k) , respectively. If k <

K t , let k = k+1 , and return to Step 1. Otherwise, (k = K t), if t = 1 , set DIR =
FORE ; if DIR = FORE and t < H , let t = t +1 and return. If t = H , let DIR =
BACK . Go to Step 2.

1 Instead of a fixed number of scenarios K as in the two-stage discussion, we use K t here to
represent the number of distinct scenarios at stage t to avoid confusion with Kt which represents
the feasibility set at stage t . Later in the text, we also use Kt to represent the conditional number
of outcomes at stage t , i.e., the maximum number of branches from a single node at stage t −1 .

268 6 Multistage Stochastic Programs

Step 2. If t = 1 , let t = t + 1 , k = 1 and go to Step 1. Otherwise, for all scenarios
j = 1, . . . ,K t−1 at t −1 , compute

Et−1
j = ∑

k∈D t(j)

pt
k

pt−1
j

(π t
k)

T T t−1
k

and

et−1
j = ∑

k∈D t(j)

pt
k

pt−1
j

[(π t
k)

T ht
k +

rt
k

∑
i=1

(ρ t
ki)

T dt
ki +

st
k

∑
i=1

(σ t
ki)

T et
ki] .

The current conditional expected value of all scenario problems in D t(j) is then
θ̄ t−1

j = et−1
j − Et−1

j xt−1
j . If the constraint θ t−1

j = 0 appears in NLDS(t − 1, j) ,

then remove it, let st−1
j = 1 , and add a constraint (1.4) with Et−1

j and et−1
j to

NLDS(t −1, j) .
If θ̄ t−1

j > θ t−1
j , then let st−1

j = st−1
j + 1 and add a constraint (1.4) with Et−1

j

and et−1
j to NLDS(t − 1, j) . If t = 2 and no constraints are added to NLDS(1)

(j = K 1 = 1), then stop with x1
1 optimal. Otherwise, let t = t − 1 , k = 1 . If

t = 1 , let DIR = FORE . Go to Step 1.

Many alternative strategies are possible in this algorithm in terms of determin-
ing the next subproblem (1.1)–(1.5) to solve. For feasible solutions, the preceding
description explores all scenarios at t before deciding to move to t − 1 or t + 1 .
For feasible iterations, the algorithm proceeds from t in the direction of DIR until
it can proceed no further in that direction. This is the “fast-forward-fast-back” pro-
cedure proposed by Wittrock [1983] for deterministic problems and implemented
with success by Gassmann [1990] for stochastic problems. One may alternatively
enforce a move from t to t −1 (“fast-back”) or from t to t + 1 (“fast-forward”)
whenever it is possible. From various experiments (e.g., Gassmann [1990], Morton
[1996], and Birge et al. [1996]), fast-forward-fast-back sequencing protocol seems
generally more efficient than the alternatives.

For infeasible solutions at some stage, this algorithm immediately returns to the
ancestor problem to see whether a feasible solution can be generated. This alter-
native appears practical because subsequent iterations with a currently infeasible
solution do not seem worthwhile.

We note that much of this algorithm can also run in parallel. We refer to
Ruszczyński [1993a] who describes parallel procedures in detail. Again, one should
pay attention in parallel implementations to the possible additional work for solving
similar subproblems as we mentioned in Chapter 5. The convergence of this method
is relatively straightforward, as given in the following.

Theorem 1. If all Ξ t are finite and all xt have finite upper bounds, then the nested
L -shaped method converges finitely to an optimal solution of (3.4.1).

6.1 Nested Decomposition Procedures 269

Proof: First, we wish to demonstrate that all cuts generated by the algorithm are
valid outer linearizations of the feasible regions and objectives in (3.4.3). By induc-
tion on t , suppose that all feasible cuts (1.3) generated by the algorithm for periods
t or greater are valid. For t = H , no cuts are present so this is true for the last pe-
riod. In this case, for any π t

k,ρ
t
k ≥ 0 such that (π t

k)
TWt +(ρ t

k)
T Dt

k ≤ 0 , we must
have (π t

k)
T (ht

k − Tt−1
k xt−1

a(k))+ (ρ t
k)

T dt
k ≤ 0 to maintain feasibility. Because this is

the cut added, these cuts are valid for t −1 . Thus, the induction is proved.
Now, suppose the cuts in (1.3)-(1.4) are an outer linearization of Qt+1

k (xt
k) for

t or greater and all k . In this case, for any (π t
k,ρ

t
k,σ

t
k) feasible in (1.1)–(1.5) for

t and k , (π t
k)

T (ht
k −Tt

k xt−1
a(k))+∑rk

i=1(ρ
t
ki)

T dt
ki +∑sk

i=1(σ
t
ki)

T et
ki is a lower bound on

Qt
a(k)(x

t−1
a(k),k) for any xt−1

a(k) , each k , and a(k) . Thus, we must have

Qt
a(k)(x

t−1
a(k)) ≥ ∑

k∈D t(a(k))

(
pt

k

pt−1
a(k)

)(
(π t

k)
T (ht

k −Tt
k xt−1

a(k))

+
rk

∑
i=1

(ρ t
ki)

T dt
ki +

sk

∑
i=1

(σ t
ki)

T et
ki

)
, (1.6)

which says that θ t−1
k ≥ −Et−1

a(k)x
t−1
a(k) + et−1

a(k) , as found in the algorithm. Thus, again,

we achieve a valid cut on Qt−1
a(k) for any a(k) , completing the induction.

Now, suppose that the algorithm terminates. This can only happen if (1.1)–(1.5)
is infeasible for t = 1 or if each subproblem for t = 2 has been solved and no cuts
are generated. In the former case, the problem is infeasible, because the cuts (1.3)
are all outer linearizations of the feasible region. In the latter case, we must have
θ 1 = Q2(x1) , the condition for optimality.

For finiteness, proceed by induction. Suppose that at stage t , at most a finite
number of cuts from stage t + 1 to H can be generated for each k at t . For H ,
this is again trivially true. Because at most a finite number of cuts are possible at
each k , at most a finite number of basic solutions, (π t

k,ρ
t
k,σ

t
k) , can be generated to

form cuts for a(k) . Thus, at most a finite number of cuts can be generated for all
a(k) at t −1 , again completing the induction.

The proof is complete by noting that every iteration of Step 1 or 2 produces a
new cut. Because there is only a finite number of possible cuts, the procedure stops
finitely.

The nested L -shaped method has many features in common with the standard
two-stage L -shaped algorithm. There are, however, peculiarities about the multi-
stage method. We consider the following example in some detail to illustrate these
features. In particular, we should note that the two-stage method always produces
cuts that are supports of the function Q if the subproblem is solved to optimality.
In the multistage case, with the sequencing protocol just given, we may not actu-
ally generate a true support so that the cut may lie strictly below the function being
approximated.

270 6 Multistage Stochastic Programs

Example 1

Suppose we are planning production of air conditioners over a three month period.
In each month, we can produce 200 air conditioners at a cost of $100 each. We
may also use overtime workers to produce additional air conditioners if demand is
heavy, but the cost is then $300 per unit. We have a one-month lead time with our
customers, so that we know that in Month 1, we should meet a demand of 100.
Orders for Months 2 and 3 are, however, random, depending heavily on relatively
unpredictable weather patterns. We assume this gives an equal likelihood in each
month of generating orders for 100 or 300 units.

We can store units from one month for delivery in a subsequent month, but we
assume a cost of $50 per unit per month for storage. We assume also that all demand
must be met. Our overall objective is to minimize the expected cost of meeting de-
mand over the next three months. (We assume that the season ends at that point and
that we have no salvage value or disposal cost for any leftover items. This resolves
the end-of-horizon problem here.)

Let xt
k be the regular-time production in scenario k at month t , let yt

k be the
number of units stored from scenario k at month t , let wt

k be the overtime pro-
duction in scenario k at month t , and let dt

k be the demand for month t under
scenario k . The multistage stochastic program in deterministic equivalent form is:

min x1 + 3.0w1 + 0.5y1 +
2

∑
k=1

p2
k(x

2
k + 3.0w2

k + 0.5y2
k)

+
4

∑
k=1

p3
k(x

3
k + 3.0w3

k)

s. t. x1 ≤ 2 ,

x1 + w1 − y1 = 1 ,

y1 + x2
k + w2

k − y2
k = d2

k ,

x2
k ≤ 2 , k = 1,2 ,

y2
a(k) + x3

k + w3
k − y3

k = d3
k ,

x3
k ≤ 2 , k = 1, . . . ,4 ,

xt
k,y

t
k,w

t
k ≥ 0 , k = 1, . . . ,K t , t = 1,2,3 ,

(1.7)

where a(k) = 1 , if k = 1,2 at period 3 , a(k) = 2 if k = 3,4 at period 3 , p2
k =

0.5 , k = 1,2 , p3
k = 0.25 , k = 1, . . . ,4 , d2

1 = 1 , d2
2 = 3 , and d3 = (1,3,1,3)T .

The nested L -shaped method applied to (1.7) follows these steps for the first two
iterations. We list an iteration at each change of DIR .

Step 0. All subproblems NLDS(t,k) have the explicit θ t
k = 0 constraint. DIR =

FORE .

6.1 Nested Decomposition Procedures 271

Iteration 1:

Step 1. Here t = 1 , k = 1 . The subproblem NLDS(1,1) is:

min x1 + 3w1 + 0.5y1 +θ 1

s. t. x1 ≤ 2 ,

x1 + w1 − y1 = 1 ,

x1,w1,y1 ≥ 0 ,

θ 1 = 0 ,

(1.8)

which has the solution x1 = 1 ; other variables are zero.

Step 1. Now, t = 2 , k = 1 , and NLDS(2,1) is

min x2
1 + 3w2

1 + 0.5y2
1 +θ 2

1

s. t. x2
1 ≤ 2 ,

x2
1 + w2

1 − y2
1 = 1 ,

x2
1,w

2
1,y

2
1 ≥ 0 ,

θ 2
1 = 0 ,

(1.9)

which has the solution, x2
1 = 1 ; other variables are zero.

Step 1. Here, t = 2 , k = 2 , and NLDS(2,2) is

min x2
2 + 3w2

2 + 0.5y2
2 +θ 2

2

s. t. x2
2 ≤ 2 ,

x2
2 + w2

2 − y2
2 = 3 ,

x2
2,w

2
2,y

2
2 ≥ 0 ,

θ 2
2 = 0 ,

(1.10)

which has the solution, x2
2 = 2 , w2

2 = 1 ; other variables are zero.

Step 1. Next, t = 3 , k = 1 . NLDS(3,1) is

min x3
1 + 3w3

1 + 0.5y3
1 +θ 3

1

s. t. x3
1 ≤ 2 ,

x3
1 + w3

1 − y3
1 = 1 ,

x3
1,w

3
1,y

3
1 ≥ 0 ,

θ 3
1 = 0 ,

(1.11)

272 6 Multistage Stochastic Programs

which has the solution, x3
1 = 1 ; other primal variables are zero. The complementary

basic dual solution is π3
1 = (0,1)T .

Step 1. Next, t = 3 , k = 2 . NLDS(3,2) has the same form as
NLDS(3,1) , except we replace the second constraint with x3

2 + w3
2 − y3

2 = 3 . It has
the solution, x3

2 = 2 , w3
2 = 1 ; other primal variables are zero. The complementary

basic dual solution is π3
2 = (−2,3)T .

Step 1. For t = 3 , k = 3 , we have the same subproblem and solution as t = 3 ,
k = 1 , so x3

3 = 1 ; other primal variables are zero. The complementary basic dual
solution is π3

3 = (0,1)T .

Step 1. For t = 3 , k = 4 , we have the same subproblem and solution as t = 3 ,
k = 2 , x3

4 = 2 , w3
4 = 1 ; other primal variables are zero. The complementary basic

dual solution is π3
4 = (−2,3)T . Now, DIR = BACK , and we go to Step 2.

Iteration 2:

Step 2. For scenario j = 1 and t −1 = 2 , we have

E2
11 =

(
0.25
0.5

)
(π3

1 T 2
1 +π3

2 T 2
2)

= (0.5)
(
0 1

)(0 0 0
0 0 1

)
+(0.5)

(−2 3
)(0 0 0

0 0 1

)

=
(
0 0 2

)
(1.12)

and

e2
11 =

(
0.25
0.5

)
(π3

1 h3
1 +π3

2 h3
2)

= (0.5)
(
0 1

)(2
1

)
+(0.5)

(−2 3
)(2

3

)

= 3 , (1.13)

which yields the constraint, 2y2
1 +θ 2

1 ≥ 3 , to add to NLDS(2,1) .
For scenario j = 2 at t − 1 = 2 , we have the same, E2

21 =
(
0 0 2

)
, e2

21 = 3 .
Now t = 2 and k = 1 .

Step 1. NLDS(2,1) is now:

min x2
1 + 3w2

1 + 0.5y2
1 +θ 2

1

s. t. x2
1 ≤ 2 ,

x2
1 + w2

1 − y2
1 = 1 ,

2y2
1 +θ 2

1 ≥ 3 ,

x2
1,w

2
1,y

2
1 ≥ 0 ,

(1.14)

6.1 Nested Decomposition Procedures 273

which has an optimal basic feasible solution, x2
1 = 2 , y2

1 = 1 , θ 2
1 = 1 , w2

1 = 0 ,
with complementary dual values, π2

1 = (−0.5,1.5)T , σ2
11 = 1 .

Step 1. NLDS(2,2) has the same form as (1.14) except that the demand constraint
is x2

2 + w2
2 − y2

2 = 3 . The optimal basic feasible solution found to this problem is
x2

2 = 2 , w2
2 = 1 , θ 2

2 = 3 , y2
2 = 0 , with complementary dual values, π2

2 = (−2,3)T ,
σ2

11 = 1 . We continue in DIR = BACK to Step 2.

Step 2. For scenario t −1 = 1 , we have

E1
1 = (0.5)(π2

1 T 2
1 +π2

2 T 2
2)

= (0.5)
(−0.5 1.5

)(0 0 0
0 0 1

)
+(0.5)

(−2 3
)(0 0 0

0 0 1

)

=
(
0 0 2.25

)
(1.15)

and

e1
1 = (0.5)(π2

1 h2
1 +π2

2 h2
2)+ (0.5)(σ2

11e2
11 +σ2

21e2
21)

= (0.5)
(−0.5 1.5

)(2
1

)
+(0.5)

(−2 3
)(2

3

)
+(0.5)((1)(3)+ (1)3)

= (0.5)(0.5 + 5 + 6)= 5.75, (1.16)

which yields the constraint, 2.25y1 +θ 1 ≥ 5.75 , to add to NLDS(1) .

Step 1. NLDS(1) is now:

min x1 + 3w1 + 0.5y1 +θ 1

s. t. x1 ≤ 2 ,

x1 + w1 − y1 = 1 ,

2.25y1 +θ 1 ≥ 5.75 ,

x1,w1,y1 ≥ 0 ,

(1.17)

with optimal basis feasible solution, x1 = 2 , y2 = 1 , w1 = 0 , θ 1 = 3.5 . DIR =
FORE .

This procedure continues through six total iterations to solve the problem. At the
last iteration, we obtain θ̄ 1 = 3.75 = θ 1 , so no new cuts are generated for Period
1 . We stop with a current solution as optimal, x1∗ = 2 , y1∗ = 1 , z∗ = 2.5+3.75 =
6.25 . In Exercise 2, we ask the reader to generate each of the cuts.

Following the nested L -shaped method completely takes many steps in this ex-
ample, six iterations or changes of direction corresponding to three forward passes
and three backward passes. Figure 1 illustrates the process and provides some in-
sight into nested decomposition performance.

274 6 Multistage Stochastic Programs

In Figure 1, the solid line gives the objective value in (1.7) as a function of total
production prod1 = x1 + w1 in the first period. The dashed lines correspond to the
cuts made by the algorithm (Cut 1,2). The first cut was 2.25y1 + θ ≥ 5.75 from
(1.15)–(1.16) on Iteration 2. Because y1 = x1 + w1 − 1 , we can substitute for y1

to obtain, 2.25x1 + 2.25w1 + θ ≥ 8 . The objective in (1.17) is z1 = x1 + 3w1 +
0.5y1 +θ , so, combined with 1 ≤ x1 ≤ 2 , we can substitute θ ≥ 8−2.25(prod1)
to obtain z1(prod1) = 7.5 +(1.5)min{2, prod1}+ 3.5(prod1 − 2)+ − 2.25prod1 ,
where prod1 ≥ 1 . This can also be written as:

z1(prod1) =

{
7.5−0.75prod1 if prod1 ≤ 2 ,

3.5 + 1.25prod1 if prod1 > 2 ,
(1.18)

which corresponds to the wide dashed line (Cut 1) in Figure 1.

Fig. 1 The first period objective function (solid line) for the example and cuts (dashed lines) gen-
erated by the nested L -shaped method.

The second cut occurs on Iteration 4 (verify this in Exercise 2) as 2x1 + 2w1 +θ ≥
7.75 , which yields z1(prod1)= x1 +3w1+0.5y2+θ ≥ 7.25+(1.5)min{2, prod1}+
3.5(prod1 −2)+ −2prod1 or

z1(prod1) ≥
{

7.25−0.5prod1 if prod1 ≤ 2 ,

3.25 + 1.5prod1 if prod1 > 2 .
(1.19)

This cut corresponds to the narrow width dashed line (Cut 2) in Figure 1.

6.1 Nested Decomposition Procedures 275

The optimal value and solution in terms of prod1 can be read from Figure 1 as
each cut is added. With only Cut 1, the lowest value of z1 occurs when prod1 = 2 .
With Cuts 1 and 2, the minimum is also achieved at prod1 = 2 . Note that the first
cut is not, however, a facet of the objective function’s graph. The cuts meet the
objective at prod1 = 1 and prod1 = 2 , respectively, but they need not even do
this, as we mentioned earlier (see Exercise 3). The other parts of the Period 1 cuts
are generated from bounds on Q2

2 .
This example illustrates some of the features of the nested L -shaped method.

Besides our not being guaranteed of obtaining a support of the function at each step,
another possible source of delay in the algorithm’s convergence is degeneracy. As
the example illustrates, the solutions at each step occur at the links of the piecewise
linear pieces generated by the method (Exercises 5 and 5). At these places, many
bases may be optimal so that several bases may be repeated. Some remedies are
possible, as in Birge [1980] and, for deterministic problems, Abrahamson [1983].

As with the standard two-stage L -shaped method, the nested L -shaped method
acquires its greatest gains by combining the solutions of many subproblems through
bunching (or sifting). In addition, multicuts are valuable in multistage as well as
two-stage problems. Infanger [1991, 1994] has also suggested the uses of generat-
ing many cuts simultaneously when future scenarios all have similar structure. This
procedure may make bunching efficient for periods other than H by making ev-
ery constraint matrix identical for all scenarios in a given period. In this way, only
objective and right-hand side constraint coefficients vary among the different sce-
narios.

In terms of primal decomposition, we mentioned the work of Noël and Smeers
at the outset of this chapter. They apply nested Dantzig-Wolfe decomposition to the
dual of the original problem. As we saw in Chapter 5, this is equivalent to applying
outer linearization to the primal problem. The only difference is that they allow for
some nonlinear terms in their constraints, which would correspond to a nonlinear
objective in the primal model. Because the problems are still convex, nonlinearity
does not really alter the algorithm. The only problem may be in the finiteness of
convergence.

The advantage of a primal or dual implementation generally rests in the problem
structure, although primal or dual simplex may be used in either method, making
them indistinguishable. Gassmann [1990] presents some indication that dual iter-
ations may be preferred in bunching. In general, many primal columns and few
rows would tend to favor a primal approach (outer linearization as in the L -shaped
method) while few columns and many rows would tend to favor a dual approach.
In any case, the form of the algorithm and all proofs of convergence apply to either
form.

While nested decomposition (and other linearization methods) are particularly
well-suited for linear problems, the general methods apply equally well for con-
vex nonlinear problems (i.e., problems with convex, time-separable objectives and
convex constraints, see Exercise 8). Birge and Rosa [1996] describe a nested de-
composition of this form applied to global energy-economy-environment interaction

276 6 Multistage Stochastic Programs

models. They use an active set approach for the subproblems, but interior point
methods might also be used.

Exercises

1. Verify that the infeasibility condition is as given in Step 1 of the nested L -
shaped method. (Hint: note that if xt

k satisfies (1.2) and (1.3), then there exists
θ t

k such that (xt
k,θ

t
k) satisfy (1.4).)

2. Continue Example 1 with the nested L -shaped method until you obtain an op-
timal solution.

3. Construct a multistage example in which a cut generated by the second period
in following the nested L -shaped method does not meet Q1(x1) for any value
of x1 , i.e., −E1

1 x1 + e1
1 < Q(x1) .

4. Show that the situation in (1.1) is not possible if the fast-forward protocol is
always followed.

5. Suppose a feasibility cut (1.3) is active for xt
k for any t and k . Show that

every basic feasible solution of NLDS(t +1, j) with input xt
k for some scenario

j ∈ D t+1(k) must be degenerate.

6. Suppose two optimality cuts (1.4) are active for (xt
k,θ

t
k) for any t and k . Show

that either the subproblems generate a new cut with θ̄ t
k > θ t

k or an optimal
solution of NLDS(t +1, j) with input xt

k for some scenario j ∈ D t+1(k) must
be degenerate.

7. Using four processors, what efficiency can be gained by solving the preceding
example in parallel? Find the utilization of each processor and the speed-up of
elapsed time, assuming each subproblem requires the same solution time.

8. Suppose θ 1 is broken into separate components for Q2
1 and Q2

2 as in the two-
stage multicut approach. How does that alter the solution of the example?

9. Suppose that the objective in each period t for each scenario k is a general
convex function f t

k(x
t−1
k ,xt

k) and, in addition to the linear constraints, there is
an additional convex constraint, gt

k(x
t−1
k ,xt

k)≤ 0 . Assuming relatively complete
recourse for simplicity and that your solver can return the primal solution and
dual multipliers for the K-K-T system of equations, describe how you would
modify the nested decomposition steps to accommodate these nonlinear func-
tions.

6.2 Quadratic Nested Decomposition

Decomposition techniques for multistage nonlinear programs are available for the
case in which the objective function is quadratic convex, the constraint set polyhe-

6.2 Quadratic Nested Decomposition 277

dral, and the random variables discrete. For the sake of clarity, we repeat the recur-
sive definition of the deterministic equivalent program, already given in Section 3.4.

(MQSP) min z1(x1) = (c1)T x1 +(x1)T D1x1 +Q2(x1)

s. t. W 1x1 = h1 ,

x1 ≥0 ,

(2.1)

where Qt(xt−1,ξ t(ω)) =

min (ct(ω))T xt(ω)+ (xt(ω))T Dt(ω)xt(ω)+Qt+1(xt+1)

s. t. Wtxt(ω) = ht(ω)−Tt−1(ω)xt−1 ,

xt(ω) ≥ 0 ,

(2.2)

Qt+1(xt) = E ξ t+1Qt+1(xt ,ξ t+1(ω)) , t = 1, . . . ,H −1 , (2.3)

and

QH(xH−1) = 0 . (2.4)

In MQSP , Dt is an nt × nt matrix. All other matrices have the dimensions
defined in the linear case. The random vector, ξ t(ω) , is formed by the elements of
ct(ω) , ht(ω) , Tt−1(ω) , and Dt(ω) . We keep the notation that ξt is an Nt -vector
on (Ω ,Wt ,P) , with support Ξ t . Finally, we again define

Kt = {xt | Qt+1(xt) < ∞} .

We also define zt(xt) = (ct)T xt +(xt)T Dtxt +Qt+1(xt) .

Theorem 2. If the matrices Dt(ω) are positive semi-definite for all ω ∈ Ω
and t = 1, . . . ,H , then the sets Kt and the functions Qt+1(xt) are convex for
t = 1, . . . ,H −1 . If Ξ t is also finite for t = 2, . . . ,H , then Kt is polyhedral. More-
over zt (xt) is either identically −∞ or there exists a decomposition of Kt into a
polyhedral complex such that the tth -stage deterministic equivalent program (2.2)
is a piecewise quadratic program.

Proof: The piecewise quadratic property of (2.2) is obtained by inductively apply-
ing to each cell of the polyhedral complex of Kt the result that if zt (·) is a finite
positive semi-definite quadratic form, there exists a piecewise affine continuous op-
timal decision rule for (2.2). All others results were given in Section 3.4.

We now describe a nested decomposition algorithm for MQSP first presented in
Louveaux [1980]. For simplicity in the presentation of the algorithms, we assume
relatively complete recourse. This means that we skip the step that consists of gener-
ating feasibility cuts. If needed, those cuts are generated exactly as in the multistage
linear case. We keep the notation of a(k) for the ancestor scenario of k at stage

278 6 Multistage Stochastic Programs

t −1 . As in Section 6.1, ct
k , Dt

k , and Qt+1
k represent realizations of ct , Dt , and

Qt+1 for scenario k and xt
k is the corresponding decision vector. In Stage 1, we

use the notations, z1 and z1
1 and x1 and x1

1 , as equivalent.

Nested PQP Algorithm for MQSP

Step 0. Set t = 1 , k = 1 , C1 = S1 = K1 . Choose x1
1 ∈ K1 .

Step 1. If t = H , go to Step 2. For i = t + 1, . . . ,H , let k = 1 , zi
1(x

i
1) = (ci

1)
T xi

1 +
(xi

1)
T Di

1xi
1 and Ci

1(x
i−1
a(1)) = Si

1(x
i−1
a(1)) = Ki(xi−1

a(1)) . Choose xi
1 ∈ Ki(xi−1

a(1)) . Set t =
H .

Step 2. Find v ∈ argmin{zt
k(x

t
k) | xt

k ∈ St
k(x

t−1
a(k))} . Find w ∈ argmin{zt

k(x
t
k) | xt

k ∈
Ct

k(x
t−1
a(k))} . If w is the limiting point on a ray on which zt

k(·) is decreasing to −∞ ,

then (DEP)t
k is unbounded and the algorithm terminates.

Step 3. If ∇T zt
k(w)(v−w) = 0 , go to Step 4. Otherwise, redefine

St
k(x

t−1
a(k)) ← St

k(x
t−1
a(k))∩{xt

k | ∇T zt
k(w)(xt

k −w) ≤ 0} .

Let xt
k = v , zt

k = (ct
k)

T xt
k +(xt

k)
T Dt

kxt
k and Ct

k = Kt(xt−1
a(k)) . Go to Step 1.

Step 4. If t = 1 , stop; w is an optimal first-period decision. Otherwise, find the cell
Gt

k(x
t−1
a(k)) containing w and the corresponding quadratic form Qt

k(x
t−1
a(k)) . Redefine

zt−1
a(k)(x

t−1
a(k)) ← zt−1

a(k)(x
t−1
a(k))+ pt

kQt
k(x

t−1
a(k))

Ct−1
a(k)(x

t−1
a(k)) ← Ct−1

a(k)(x
t−1
a(k))∩Gt

a(k)(x
t−1
k) .

If k = K t , let t ← t−1 , go to Step 2. Otherwise, let k ← k+1 , zt
k(x

t
k)= (ct

k)
T xt

k +
(xt

k)
T Dt

kxt
k , Ct

k = St
k(x

t−1
a(k)) = Kt(xt−1

a(k)) . Choose xt
k ∈ St

k(x
t−1
a(k)) . Go to Step 1.

Theorem 3. The nested PQP algorithm terminates in a finite number of steps by
either detecting an unbounded solution or finding an optimal solution of the multi-
stage quadratic stochastic program with relatively complete recourse.

Proof: The proof of the finite convergence of the PQP algorithm in Section 5.3
amounts to showing that Step 2 of the algorithm can be performed at most a finite
number of times. The same result holds for a given piecewise quadratic program
(2.2) in the nested sequence. The theorem follows from the observations that there
is only a finite number of different problems (2.2) and that all other steps of the
algorithm are finite.

Numerical experiments are reported in Louveaux [1980]. It should be noted that
the MQSP easily extends to the multistage piecewise convex case. The limit there
is that the objective function and the description of the cell are usually much more
difficult to obtain. One simple example is proposed in Exercise 3.

6.2 Quadratic Nested Decomposition 279

It is interesting to observe that the MQSP method has a tendency to require few
iterations when the quadratic terms play a significant role and a good starting point is
chosen. (This probably relates to the good behavior of regularized decomposition.)

Example 1 (continued)

Assume that the cost of overtime is now quadratic (for example, larger increases
of salary are needed to convince more people to work overtime). We replace ev-
erywhere 3.0wt

k by 2.0wt
k +(wt

k)
2 . Assume all other data are unchanged. Take as

the starting point a situation where 0 ≤ y1 ≤ 1 , 0 ≤ y2
k ≤ 1 , k = 1,2 . (It is rela-

tively easy to see what the corresponding values for the other first- and second-stage
variables should be.) We now proceed backward. Let t = 3 .

i) t = 3 , k = 1 . We solve

min x3
1 + 2w3

1 +(w3
1)

2

s. t. y2
1 + x3

1 + w3
1 = 1 , x3

1 ≤ 2 ,

x3
1,w

3
1 ≥ 0 ,

where inventory at the end of Period 3 has been omitted for simplicity. The solution
is easily seen to be x3

1 = 1−y2
1 , w3

1 = 0 and is valid for 0 ≤ y2
1 ≤ 1 . It follows that

Q3
1(y

2
1) = 1− y2

1 .

ii) t = 3 , k = 2 . We solve

min x3
2 + 2w3

2 +(w3
2)

2

s. t. y2
1 + x3

2 + w3
2 = 3 , x3

2 ≤ 2 ,

x3
2,w

3
2 ≥ 0 .

The solution is now x3
2 = 2 , w3

2 = 1−y2
1 , valid for 0 ≤ y2

1 ≤ 1 . It yields Q3
2(y

2
1) =

4−2y2
1 +(1− y2

1)
2 .

Combining (i) and (ii), we obtain

Q2
1(y

2
1) =

1
2
Q3

1(y
2
1)+

1
2
Q3

2(y
2
1) =

5
2
− 3

2
y2

1 +
(1− y2

1)
2

2
and

C2
1(y2

1) = {y2
1 | 0 ≤ y2

1 ≤ 1} .

iii) and iv) Because the randomness is only in the right-hand side, we conclude
that cases (iii) and (iv) are identical to (i) and (ii), respectively. Hence,

Q2
2(y

2
2) =

5
2
− 3

2
y2

2 +
(1− y2

2)
2

2
and C2

2(y2
2) = {y2

2 | 0 ≤ y2
2 ≤ 1} .

280 6 Multistage Stochastic Programs

Next, we have t = 2 .
i) t = 2 , k = 1 . The objective z2

1 is computed as

z2
1 = x2

1 + 2w2
1 +(w2

1)
2 + 0.5y2

1 +
5
2
− 3

2
y2

1 +
(1− y2

1)
2

2
,

i.e.,

z2
1 =

5
2

+ x2
1 + 2w2

1 +(w2
1)

2 − y2
1 +

(1− y2
1)

2

2
.

The constraint sets are

S2
1 = {x2

1,w
2
1,y

2
1 | y1 + x2

1 + w2
1 − y2

1 = 1 , 0 ≤ x2
1 ≤ 2 , x2

1,w
2
1,y

2
1 ≥ 0}

and
C2

1 = S2
1 ∩{0 ≤ y2

1 ≤ 1} .

The solution v of minimizing z2
1(·) over S2

1 is

y2
1 = 1 , x2

1 = 2− y1 .

Because the solution belongs to C2
1 , we can take w = v . (Beware that w without

superscript and subscript corresponds to the optimal solution on a cell defined in
Step 2, while w with superscript and subscript corresponds to overtime.) Thus, this
point satisfies the optimality criterion in Step 3. It yields

Q2
1(y

1) =
5
2

+ 2− y1 −1 =
7
2
− y1

and

C2
1(y1) = {y1 | 0 ≤ y1 ≤ 2} .

ii) t = 2 , k = 2 . The objective z2
2 is similarly computed as

z2
2 =

5
2

+ x2
2 + 2w2

2 +(w2
2)

2 − y2
2 +

(1− y2
2)

2

2
.

The constraint set

S2
2 = {x2

2,w
2
2,y

2
2 | y1 + x2

2 + w2
2 − y2

2 = 3 , 0 ≤ x2
2 ≤ 2 , x2

2,w
2
2,y

2
2 ≥ 0}

only differs in the right-hand side of the inventory constraint with

C2
2 = S2

2 ∩{0 ≤ y2
2 ≤ 1} .

The solution v is now x2
2 = 2 , w2

2 = 1−y1,y2
2 = 0 . Again v ∈C2

2 , so that we have
w = v , which satisfies the optimality criterion in Step 3. It yields

6.2 Quadratic Nested Decomposition 281

Q2
2(y

1) =
5
2

+ 2 + 2(1− y1)+ (1− y1)2 +
1
2

= 7−2y1 +(1− y1)2 and

C2
2(y1) = {y1 | 0 ≤ y1 ≤ 1} .

Next is the case for t = 1 .
The current objective function is computed as

z1 = 21/4− y1 +
(1− y1)2

2
+ x1 + 2w1 +(w1)2 .

The constraint sets are

S1
1 = {x1,w1,y1 | x1 + w1 − y1 = 1 , x1 ≤ 2 , x1,w1,y1 ≥ 0} ,

C1
1 = S1

1 ∩{0 ≤ y1 ≤ 1} .

The solution v of minimizing z1 over S1
1 is

x1 = 2 , y1 = 1 , w1 = 0 ,

with objective value z1 = 25
4 . Because this solution belongs to C1 , it is the optimal

solution of the problem. Thus, no cut was needed to optimize the problem.

Exercises

1. Consider Example 1 with quadratic terms as in this section and take 1 ≤ y1 ≤ 2 ,
1 ≤ y2

1 ≤ 2 , 0 ≤ y2
2 ≤ 1 as a starting point. Show that the following steps are

generated. Obtain 0.5Q3
1(y

2
1)+0.5Q3

2(y
2
1) = 5

4 − 1
4 y2

1 . In t = 2 , k = 1 , solution
v is x2

1 = 0 , y2
1 = y1 −1 while w is y2

1 = 1 , x2
1 = 2− y1 , both with w2

1 = 0 .
A cut x2

1 + 2w2
1 + 1

4 y2
1 ≤ 9

4 − y1 is added. The new starting point is v , which
corresponds to 0 ≤ y2

1 ≤ 1 . Then the case t = 2 , k = 1 is as in the text, yielding

Q2
1(y

1) =
7
2
− y1 and C2

1(y1) = {0 ≤ y1 ≤ 2} .

In t = 2 , k = 2 (see the calculations in the text), we obtain Q2
2(y

1) = 6 − y1

and C2(y1) = {1 ≤ y1 ≤ 3} . Thus, in t = 1 , z1 = x1 +2w1 +(w1)2 + 19
4 −y1/2

and C = {1 ≤ y1 ≤ 2} . Again, the solution v : x1 = 1 , y1 = 0 , w1 = 0 does

not coincide with w : x1 = 2 , y1 = 1 , w1 = 0 . A cut x1 − y1

2 + w1 ≤ 3/2 is
generated. The new starting point now coincides with the one in the text and the
solution is obtained in one more iteration.

282 6 Multistage Stochastic Programs

6.3 Block Separability and Special Structure

The definition of block separability was given in Section 3.4. It permits separate
calculation of the recourse functions for the aggregate level decisions and the de-
tailed level decisions. This is an advantage in terms of the number of variables and
constraints, but often it makes the computation of the recourse functions and of
the cells of the decomposition much easier in the case of a quadratic multistage
program. This has been exploited in Louveaux [1986] and Louveaux and Smeers
[2011].

We will illustrate a further benefit. It also consists of separating the random vec-
tors. Consider the production of a single product. Now, assume the product cannot
be stored (as in the case of a perishable good) or that the policy of the firm is to use
a just-in-time system of production so that only a fixed safety stock is kept at the
end of each period.

Assume that units are such that one worker produces exactly one product per
stage. Two elements are uncertain: labor cost and demand. Labor cost is currently 2
per period. Next period, labor cost may be 2 or 3 , with equal probability. Current
revenue is 5 per product in normal time and 4 in overtime. Overtime is possible
for up to 50% of normal time. Demand is a uniform continuous random variable
within (0,200) and (0,100) , respectively, for the next two periods. The original
workforce is 50 . Hiring and firing is possible once a period, at the cost of one unit
each. Clearly, the labor decision is the aggregate level decision.

To keep notation in line with Section 3.4, we consider a three-stage model. In
Stage 1, the decision about labor is made, say for Year 1. Stage 2 consists of pro-
duction of Year 1 and decision about labor for Year 2. Stage 3 only consists of
production of Year 2. Let ξ t

1 be labor cost in stage t , while ξ t
2 is the demand in

stage t . Let wt be the workforce in stage t . Then,

Qt
w(wt−1,ξt

1) = min |wt −wt−1|+ξt
1wt +Qt+1(wt) , (3.1)

Qt+1(wt) = Eξt+1 [Qt+1
w (wt ,ξt+1

1)+ Qt+1
y (wt ,ξt+1

2)] , (3.2)

and Qt+1
y (wt ,ξt+1

1) is minus the expected revenue of production in stage t + 1

given a workforce wt and a demand scenario ξt+1
2 . It is obtained as follows.

Let Dt represent the maximal demand in stage t (200 for t = 2 , 100 for t =
3). Observe that the expectation of ξt

2 is Dt/2 because ξt
2 is uniformly continuous

over [0,Dt] . If wt ≥ Dt , all demand can be satisfied with normal time. If wt ≤ Dt ≤
1.5wt , demand up to wt is satisfied with normal time, the rest in overtime. Finally,
if Dt ≥ 1.5wt , normal time is possible up to a demand of wt , overtime from wt to
1.5wt , and extra demand is lost. Taking expectations over these cases, we obtain

Qt+1
y (wt) = Eξt+1 [Qt+1

y (wt ,ξ t+1
2)] =

⎧⎪⎨
⎪⎩

−2.5Dt if wt ≥ Dt ,
(wt)2

2Dt −wt −2Dt if wt ≤ Dt ≤ 1.5wt ,
5(wt)2

Dt −7wt if 1.5wt ≤ Dt .

6.3 Block Separability and Special Structure 283

This problem can now be solved with the MQSP algorithm. Assume w0 = 50 ,
w1 ≥ 50 .

Let Stage (2,1) represent the first labor scenario in Stage 2, i.e., ξ 2
1 = 2 . The

problem consists of finding

min |w2 −w1|+ 2w2 +Q3(w2)

s. t. w2 ≥ 0 .

We compute Q3(w2) = Q3
y (w

2) = 5(w2)2

100 −7w2 , for w2 ≤ 200
3 , because D3 = 100 .

We also replace |w2 − w1| by an explicit expression in terms of hiring (h2) and
firing (f 2). The problem in Stage (2,1) now reads:

Q2
w(w1,1) = min h2 + f 2 −5w2 +

5(w2)2

100
s. t. w2 −h2 + f 2 = w1 ,

w2 ≥ 0 , h2 ≥ 0 , f 2 ≥ 0 .

Under this form, the problem is clearly quadratic convex (remember w2 is w in
Stage 2, not the square of w). Classical Karush-Kuhn-Tucker conditions give the
optimal solution w2 = w1 , as long as 40 ≤ w1 ≤ 60 . Then

Q2
w(w1,1) = −5w1 +

5(w1)2

100
.

Similarly, in Scenario (2,2) where ξ 2
1 = 3 , the solution of

min |w2 −w1|+ 3w2 +Q3(w2)

s. t. w2 ≥ 0

is w2 = 50 , f 2 = w1 −50 , as long as w1 ≥ 50 . Then

Q2
w(w1,2) = w1 −125 ,

and

Q2
w(w1) = −125

2
−2w1 +

2.5(w1)2

100
,

which is valid within C2 = {50 ≤ w1 ≤ 60} .
The Stage 1 objective is:

min h1 + f 1 + 2w1 +Q2
y (w

1)+Q2
w(w1),

so that the Stage 1 problem reads:

min h1 + f 1 −7w1 +
(w1)2

20
− 125

2

284 6 Multistage Stochastic Programs

s. t. w1 −h1 + f 1 = 50 ,

w1,h1, f 1 ≥ 0 .

Its optimal solution, w1 = 60 , h1 = 10 , belongs to C2 and is thus also the optimal
solution of the global problem with objective value −292.5 .

Many two-stage methods may also be enhanced for multiple stages using some
form of block separability. One such approach assumes deviations from some mean
value can be corrected by a penalty only relating to the current period. This method
basically applies a simple recourse strategy in every period. For example, in Kall-
berg, White and Ziemba [1982] and Kusy and Ziemba [1986], penalties are imposed
to meet financial requirements in each period of a short-term financial planning
model. With this type of penalty, the various simple recourse methods may be ap-
plied to achieve efficient computation.

Exercises

1. Does the block separable property depend on having a single product? To help
answer this question, take the example in the block separability paragraph and
assume a second product with revenue 0.6 in normal time and 0.3 in overtime.
One worker produces 10 such products in one stage. Obtain Qt+1

y (wt) ,

(a) if demand in Period t is known to be 400 ;
(b) if demand in Period t is uniform continuous within [0,500] and [0,100] ,

respectively, for the two periods.

2. In the case of one product, obtain Qt+1
y (wt) if demand follows a negative ex-

ponential distribution with known parameter λ . Based on Louveaux [1978],
extend the MQSP to the piecewise convex case, then solve the problem with
λ = 0.01 and 0.02 for the two periods.

6.4 Lagrangian-Based Methods for Multiple Stages

The general goal in Lagrangian methods as in Section 5.8 is to relax a difficult
constraint and place it in the objective to obtain a more efficient subproblem to solve.
In stochastic programming, candidate constraints to relax include those that enforce
nonanticipativity when the formulation imposes this restriction explicitly as in the
progressive hedging algorithm (PHA). PHA is easily adapted for multiple stages
by simply defining the projection, Π , to project onto the space of nonanticipative
solutions by defining it as the conditional expectation of all solutions at time t that
correspond to the same history up to t .

6.4 Lagrangian-Based Methods for Multiple Stages 285

The main subproblem for the H -period case is a direct extension of (5.8.10) as
follows.

infz =
K

∑
k=1

pk[f 0(x0,x
1
k)+

H

∑
t=1

f t (xt
k,x

t+1
k ,k)+ρν,T

k (xk − x̂ν)+ r/2‖xk − x̂ν‖2]

s. t. g0
i (x0,x

1
k) ≤ 0 , i = 1, . . . ,m1 , k = 1, . . . ,K ,

gt
i(x

t
k,x

t+1
k ,k) ≤ 0 , i = 1, . . . ,mt ; t = 1, . . . ,H , k = 1, . . . ,K ,

(4.1)

where x0 represents given initial conditions.
This formulation leads then to the PHA for multistage problems.

Multistage Progressive Hedging Algorithm

Step 0. Suppose some nonanticipative x0 = (xt
k,k = 1, . . . ,K; t = 1, . . . ,H) , x̂0 = x0 ,

initial multiplier ρ0 , and r > 0 . Let ν = 0 . Go to Step 1.

Step 1. Let (xν+1
k) for k = 1, . . . ,K solve (4.1). Let x̂ν+1 = Π(xν+1) , so that

x̂ν+1
k (i) = x̂ν+1

k′ (i) in all components i corresponding to decisions xt at time t
whenever k and k′ share the same history until time t .

Step 2. Let ρν+1 = ρν + r(xν+1,k − x̂ν+1) . If x̂ν+1 = x̂ν and ρν+1 = ρν , then,
stop; x̂ν and ρν are optimal. Otherwise, let ν = ν+ 1 and go to Step 1.

To see how the algorithm applies to multiple stages, consider an extended version
of Example 3 in Chapter 5. Suppose a three-stage example with the same returns on
investments A and B in each period as in that example, with a goal of achieving
$55,000 at the start of the third period, and quadratic penalty for missing the goal
as before. Suppose the initial solution corresponds to equal investments in the two
assets without re-balancing after the first period. With four future scenarios possible,
that yields x0 = (x1

1,x
1
2,x

1
3,x

1
4,x

2
1,x

2
2,x

2
3,x

2
4) = ((5,5),(5,5),(5,5),(5,5),(5,10),

(5,10),(20,15),(20,15)) . The first steps appear below.

Iteration 0:

Step 0. Begin with a multiplier vector of ρ0 = 0 , and let x̂0 = ((5,5),(5,5),(5,10),
(20,15)) . Let r = 1 .

Step 1. We wish to solve:

min(1/2)[
4

∑
k=1

y2
k +(x1

kA −5)2 +(x1
kB −5)2 +(x2

kA −5(1 + 3 ·1k=3,4))2+

(x2
kB −5(2 + 1k=3,4))2] (4.2)

286 6 Multistage Stochastic Programs

s. t. x1
kA + x1

kB ≤ 10 ,k = 1, . . . ,4;

(1 + 3 ·1k=3,4)x1
kA +(2 + 1k=3,4))x1

kB − x2
kA − x2

kB = 0 ,k = 1, . . . ,4;

(1 + 3 ·1k=2,4)x2
kA +(2 + 1k=2,4)x2

kB − yk ≥ 55 ,k = 1, . . . ,4;

x1
kA,x1

kB,x2
kA,x2

kB,yk ≥ 0 ,k = 1, . . . ,4,

(4.3)

where 1k=X has value 1 when k is in X and is 0 otherwise.
As in the two-stage case, this problem again separates into subproblems for each

scenario k . The solution in this case is

x1 = ((0,10),(3.91,6.09),(6.25,3.75),(5,5),(0,20),
(5.94,10.16),(19.6,16.7),(20,15)),

which then yields

x̂1 = ((3.79,6.23),(3.79,6.23),(3.79,6.23),(3.79,6.23),
(2.97,15.08),(2.97,15.08),(19.8,15.8),(19.8,15.8)).

Step 2. We then have

ρ1 = 0 + 1(x1 − x̂1)
= ((−3.79,3.79),(0.12,−0.12),(2.46,−2.46),(1.21,−1.21),

(−2.97,4.92),(2.97,−4.92),(−0.21,0.83),(0.21,−0.83)),

(where we use the same groupings of variables to show the relationship to x1) and
return for the next iteration. Exercise 1 asks you to complete the iterations until
convergence to within 0.01 in each component of the iterates.

As discussed in Chapter 5, PHA is particularly well-adapted for problems, such
as networks, where maintaining the original problem structure in each scenario
problem leads to efficiency (see Mulvey and Vladimirou [1991b]). Although PHA is
not necessarily convergent for stochastic integer problems, it and other Lagrangian
methods can be used to solve the convex relaxation with additional branching to ob-
tain integer solutions. This approach has been effective for unit commitment prob-
lems for planning electric power generation (see Takriti and Birge [2000a]). The
structure in these problems also allows for close approximations of the integer pro-
gram with the continuous-relaxation solution for large-scale problems with many
resources (see Takriti and Birge [2000b]).

A different approach for multistage problems that performs well for nonlin-
ear problems is a method from Mulvey and Ruszczyński [1995] called diagonal
quadratic approximation (DQA). This method approximates quadratic penalty terms
in a Lagrangian type of objective so that each subproblem is again easy to solve and
can be spread across a wide array of distributed processors. DQA requires few as-
sumptions on the problem structure and can be competitive also for linear problems.

6.4 Lagrangian-Based Methods for Multiple Stages 287

Exercises

1. Complete the PHA iterations for the three-period version of Example 5.3 until
convergence within 0.01 in every component of x̂ν and ρν .

2. Show how to implement PHA on Example 1. Follow three iterations of the
algorithm.

Chapter 7
Stochastic Integer Programs

As seen in Section 3.3, properties of stochastic integer programs are scarce. The
absence of general efficient methods reflects this difficulty. Several techniques have
been proposed in the recent years. As in deterministic integer programs, many of
them are based on either a branching scheme or a reformulation scheme. The reader
unfamiliar with either concept will find a brief introduction in the Short Reviews,
Section 7.8 of this chapter. Section 7.1 recalls the links with the continuous case.
Sections 7.2 and 7.3 consider two solution procedures that use a branching scheme.
Section 7.4 considers the use of reformulation of the second-stage constraints by
disjunctive cuts. Sections 7.5 to 7.7 consider simple integer recourse, feasibility cuts
and the decomposition of the extensive form. Approximations can also be used, as
indicated at the end of Section 9.5. Note also that Sections 7.2 to 7.7 can be read
independently of each other.

7.1 Stochastic Integer Programs and LP-Relaxation

Consider the definition of a stochastic integer program, as in Section 3.3,

(SIP) min
x∈X

cT x + Eξ min
y

{q(ω)T y | W (ω)y = h(ω)−T(ω)x , y ∈ Y}
s. t. Ax = b , (1.1)

where the definitions of c , b , ξ , A , W , T , q and h are as before.
In this chapter, Y always contains integrality restrictions on y . In some cases,

X also contains integrality restrictions on x . The second-stage program is

Q(x,ξ) = min
y

{q(ω)T y | W (ω)y = h(ω)−T(ω)x , y ∈ Y} , (1.2)

and its expectation Q(x) = EξQ(x,ξ) can be used to obtain a deterministic equiv-
alent program

J.R. Birge and F. Louveaux, Introduction to Stochastic Programming, Springer Series 289
in Operations Research and Financial Engineering, DOI 10.1007/978-1-4614-0237-4 7,
c© Springer Science+Business Media, LLC 2011

290 7 Stochastic Integer Programs

(DEP) min
x∈X

cT x +Q(x)

s. t. Ax = b .

Even if it does look very similar to the deterministic equivalent program in the
continuous case, we know from Section 3.3 that Q(x) does not possess appropriate
properties for an easy solution procedure. Moreover, the computation of Q(x) for a
given x is usually a much more difficult task than in the continuous case. In the case
of a discrete random variable, assuming the solution of (1.2) has been obtained for
one realization of ξ does not help solving the same program for another value of
ξ . Indeed, the integrality restrictions imply that the usual forms of duality are lost.
In the continuous case, a few dual iterations generally suffice to find the solution of
(1.2) from one ξ to the other. In the integer case, (1.2) must typically be restarted
from scratch for each ξ . Thus, finding Q(x) for a given x may be a challenge in
itself. Yet, this evaluation is unavoidable (at least a few times) and the assumption
is made that, for fixed x , Q(x) is computable in a finite number of steps.

Now, let Y be the continuous or LP-relaxation of Y . For instance, if one con-
siders a stochastic program with a binary second-stage, then Y = {y | y ∈ {0,1}m2}
and Y = {y | 0 ≤ y ≤ e} , where eT = (1, . . . ,1) is the unit vector of dimension m2 .
Similarly, let X be the LP- relaxation of X . We introduce the following notation
for the LP-relaxation of the second-stage program

C(x,ξ) = min
y

{q(ω)T y | W (ω)y = h(ω)−T(ω)x , y ∈ Y} , (1.3)

with
C(x) = EξC(x,ξ) . (1.4)

with the usual conventions for infeasible and unbounded cases.

Proposition 1. L -shaped optimality cuts of the form (5.1.4) calculated on the con-
tinuous relaxation (1.3)–(1.4) are valid cuts for (SIP).

Proof: By definition of Y , C(x,ξ) ≤ Q(x,ξ) holds for all x and ξ , where this
result also holds if some problem is unbounded or infeasible. Taking expectations
implies C(x) ≤ Q(x) . Following the proof in Section 5.1, an L -Shaped optimality
cut calculated on (1.3)–(1.4) is an expression of the form Eξ(πν(h − T x)) = el −
Elx ≤ C(x) , where πν represent the optimal simplex multipliers for the second-
stage programs at iteration ν , i.e. for some x = xν . The result then follows from
el −Elx ≤ C(x) ≤ Q(x) ≤ θ .

Based on this observation, solving (SIP) usually starts from solving its LP-
relaxation (the program where X is replaced by X and Y by Y). This can typically
be done by way of the L - Shaped method and results in a program of the form

(CP) min cT x +θ (1.5)

s. t. Ax = b , (1.6)

Dlx ≥ dl , l = 1, . . . ,r , (1.7)

7.2 First-stage Binary Variables 291

Elx +θ ≥ el , l = 1, . . . ,s , (1.8)

x ≥ 0 , θ ∈ℜ . (1.9)

where (CP) stands for “Current Problem.”
Branching schemes typically consist of solving a sequence of (CP), each one

being defined on a different subspace of the first-stage feasibility set. Finiteness of
the procedure comes from the finite number of possible subspaces that are created.
Reformulation means that optimality cuts in (CP) are reformulated to take integrality
restrictions in the second-stage into account. Finiteness of the procedure comes from
the limited number of possible reformulations, combined or not with a second-stage
branching scheme.

7.2 First-stage Binary Variables

When the first-stage variables are binary variables, it is possible to derive specific
optimality cuts in order to obtain a finitely convergent algorithm based on a branch-
ing system. The proposed method easily extends to the case of mixed first-stage
variables, provided the tender variables are binary. We assume the existence of a
lower bound on Q(x) .

Assumption 2. There exists a finite lower bound L satisfying

L ≤ min
x

{Q(x) | Ax = b , x ∈ X}.

In Assumption 2, no requirement is made that the bound L should be tight,
although it is desirable to have L as large as possible. Examples of how to find L
will be given later.

Proposition 3. Let xi = 1 , i ∈ S , and xi = 0 , i �∈ S be some first-stage feasible so-
lution. Let qS = Q(x) be the corresponding recourse function value. The optimality
cut

θ ≥ (qS −L)

(
∑
i∈S

xi −∑
i�∈S

xi

)
− (qS −L)(|S|−1)+ L (2.1)

is valid.

Proof: Define
δ (x,S) =∑

i∈S

xi −∑
i�∈S

xi . (2.2)

Now, δ (x,S) is always less than or equal to |S| . It is equal to |S| only if xi = 1 ,
i ∈ S , and xi = 0 , i �∈ S . In that case, the right-hand side of (2.1) takes the value
qS and the constraint θ ≥ qS is valid as Q(x) = qS . In all other cases, δ (x,S) is
smaller than or equal to |S|−1 , which implies that the right-hand side of (2.1) takes

292 7 Stochastic Integer Programs

a value smaller than or equal to L , which by Assumption 2 is a valid lower bound
on Q(x) for all feasible x .

Readers more familiar with geometrical representations may see (2.1) as a half-
space, in the (δ ,θ) space, situated above a line going through the two points
(|S|,qS) and (|S|−1,L) .

Example 1

Consider a two-stage program, where the second stage is given by

min −2y1 −3y2 ,

s. t. y1 + 2y2 ≤ ξ1 − x1,

y1 ≤ ξ2 − x2 ,

y ≥ 0 , integer.

Assume ξ = (2,2)T or (4,3)T with equal probability 1/2 each. Find a lower
bound L on Q(x) and derive a cut of type (2.1) if the current iterate point is
x = (0,1)T .

1. The second stage is equivalent to: −max 2y1 +3y2 . Because the first-stage de-
cisions are binary, largest values of y are obtained with x = (0,0)T . To obtain
a lower bound L , we simply drop the requirement that y should be integer and
solve

min −2y1 −3y2

s. t. y1 + 2y2 ≤ ξ1 ,

y1 ≤ ξ2 ,

y1,y2 ≥ 0 .

For ξ = (2,2)T , the solution is y = (2,0)T and Q(x,ξ) = −4 , while for ξ =
(4,3)T , the solution is y = (3,0.5)T with Q(x,ξ) = −7.5 . This results in L =
0.5 ∗ (−4)+ 0.5 ∗ (−7.5) = −5.75 . (Alternatively, in this simple example, we
may have maintained the requirement that y is integer and obtained the better
bound L = −5.5 . In general, this approach seems more difficult to implement.
We continue here with L = −5.75 .)

2. Here, δ (x,S) = x2 − x1 because x1 = 0 and x2 = 1 . For ξ = (2,2)T , the
second stage becomes

min −2y1 −3y2

s. t. y1 + 2y2 ≤ 2 ,

y1 ≤ 1 ,

y1,y2 ≥ 0 , integer,

7.2 First-stage Binary Variables 293

with solution y = (0,1)T and Q(x,ξ) = −3 . For ξ = (4,3)T , the second stage
becomes

min −2y1 −3y2

s. t. y1 + 2y2 ≤ 4 ,

y1 ≤ 2 ,

y1,y2 ≥ 0 , integer,

with solution y = (2,1)T and Q(x,ξ) = −7 . We conclude that qS = −5 and
that the optimality cut (3.1) reads

θ ≥ 0.75(x2 − x1)−5.75 .

The integer L -shaped method was first proposed by Laporte and Louveaux
[1993]. We now present a simplified version for the case of relatively complete
recourse. If needed, feasibility cuts may be added at Step 3, using the methods of
Section 7.6 for example.

Integer L -shaped Method

Step 0. Set s = ν = 0 , z̄ = ∞ . The value of θ is set to −∞ or to an appropriate
lower bound and is ignored in the computation. A list is created that contains only a
single pendant node corresponding to the initial subproblem.

Step 1. Set ν = ν+ 1 . Select some pendant node in the list as the current problem;
if none exists, stop.

Step 2. Solve the current problem. If the current problem has no feasible solution,
fathom the current node; go to Step 1. Otherwise, let (xν ,θν) be an optimal solu-
tion.

Step 3. If cT xν +θν > z̄ , fathom the current problem and go to Step 1.

Step 4. Check for integrality restrictions. If a restriction is violated, create two new
branches following the usual branch and cut procedure. Append the new nodes to
the list of pendant nodes, and go to Step 1.

Step 5. Compute Q(xν) and zν = cT xν +Q(xν) . If zν < z̄ , update z̄ = zν .

Step 6. If θν ≥ Q(xν) , then fathom the current node and return to Step 1. Other-
wise, impose one optimality cut (2.1) with qS = Q(xν) , set s = s + 1 , and return
to Step 2.

Proposition 4. Under Assumption 2, the integer L -shaped method yields an op-
timal solution of a (SIP) with relatively complete recourse and first-stage binary
variables (when one exists) in a finite number of steps.

294 7 Stochastic Integer Programs

Proof: Finiteness comes from the fact that there are at most 2n1 different first-
stage solutions. If not eliminated at Step 3, the current solution is eliminated at
Step 6, either by fathoming or by adding the optimality cut (2.1). All other steps are
finite.

In the rest of this section, we first show how the optimality cut (2.1) can be
improved when more information is available on Q(x) . We then illustrate how
the integer L -shaped method can be implemented in a specific application (routing
problems). Both subsections can be considered independently.

a. Improved optimality cuts

Define the set N(s,S) of so-called s-neighbors of S as the set of solutions {x |
Ax = b , x ∈ X , δ (x,S) = |S| − s} , where δ (x,S) is as in (2.2). Let λ (s,S) ≤
minx∈N(s,S) Q(x) , s = 0, . . . , |S| with λ (0,S) = qS .

Proposition 5. Let xi = 1 , i ∈ S , xi = 0 , i �∈ S be some solution with qS = Q(x) .
Define a = max {qS −λ (1,S),(qS −L)/2} . Then

θ ≥ a

(
∑
i∈S

xi −∑
i�∈S

xi

)
+ qS −a|S| (2.3)

is a valid optimality cut .

Proof: For an s -neighbor, the right-hand side of (2.3) is equal to qS − as . This
is a valid lower bound on Q(x) . This is obvious for s = 0 . When s = 1 , qS −
a is, by construction, bounded above by qS − (qS −λ (1,S)) = λ (1,S) , which by
definition is a lower bound on 1 -neighbors. When s = 2 , qS − 2a ≤ qS − 2(qS −
L)/2 = L . Finally, for s ≥ 3 , qS − as ≤ qS − 2a , because a ≥ 0 . Hence, qS −
as ≤ L . Convergence is again guaranteed by θ ≥ qS when δ (x,S) = |S| and (2.3)
improves on (2.1) for all 1 -neighbors. The reader more familiar with geometrical
representations may now see (2.3) as a half-space in the (δ ,θ) space, situated above
a line going through the two points (|S|,qS) and (|S|−1,λ (1,S)) when a = qS −
λ (1,S) , or the two points (|S|,qS) and (|S|−2,L) when a = (qS −L)/2 .

A further improvement for s -neighbors is sometimes possible.

Proposition 6. Let xi = 1 , i ∈ S , xi = 0 , i �∈ S be some solution with qS = Q(x) .
Let 1 ≤ t ≤ |S| be some integer. Then (2.3) holds with

a = max{max
s≤t

(qS −λ (s,S))/s;(qS −L)/(t + 1)} . (2.4)

Proof: As before, for an s -neighbor, the right-hand side of (2.3) is qS − as . By
(2.4), as ≥ qS −λ (s,S) , for all s ≤ t . Thus, qS −as ≤ λ (s,S) , which, by definition,

7.2 First-stage Binary Variables 295

is a lower bound on Q(x) for all s -neighbors. When s ≥ t + 1,qS − as ≤ L , and
(2.3) remains valid.

As computing λ (s,S) for s ≤ t with t large may prove difficult, the following
proposition is sometimes useful.

Proposition 7. Define λ (0,S) = qS . Assume qS > λ (1,S) . Then, if λ (s−1,S)−
λ (s,S) is nonincreasing in s for all 1 ≤ s ≤ �(qS −L)/(qS −λ (1,S))� , (2.3) holds
with a = qS −λ (1,S) .

Proof: We have to show that in applying Proposition 6, the maximum in (2.4) is
obtained for qS − λ (1,S) . Let t = �(qS − L)/(qS − λ (1,S))� . For s ≤ t , qS −
λ (s,S) = ∑s

i=1 (λ (i − 1,S) − λ (i,S)) . By assumption, each term of the sum is
smaller than the first term of the sum, i.e., λ (0,S) − λ (1,S) = qS − λ (1,S) so
the total is less than s times this first term. By definition of t , we have t + 1 ≥
(qS −L)/(qS −λ (1,S)) , or qS −λ (1,S) ≥ (qS −L)/(t + 1) .

Clearly, much of the implementation is problem-dependent. We illustrate here the
use of these propositions in one example.

Example 2

Let i = 1, . . . ,n denote n inputs and j = 1, . . . ,m denote m outputs. Each input
can be used to produce various outputs. First-stage decisions are represented by
binary variables xi j with costs ci j and are equal to 1 if i is used to produce j and
equal to 0 otherwise. If input i is used for at least one output, some fixed cost fi

is paid. To this end, the auxiliary variable zi is defined equal to 1 if input i is used
and 0 otherwise. The level of output j obtained when xi j = 1 is a non-negative
random variable ξi j . A penalty r j is incurred whenever the level of output j falls

below a required threshold d j . This is represented by the second-stage variable yξj
taking the value 1 .

The problem can be defined as:

min
n

∑
i=1

fizi +
n

∑
i=1

m

∑
j=1

ci jxi j + Eξ

(
m

∑
j=1

r jy
ξ
j

)
(2.5)

s. t. xi j ≤ zi , i = 1, . . . ,n , j = 1, . . .m , (2.6)
n

∑
i=1

ξi jxi j + d jy
ξ
j ≥ d j , j = 1, . . . ,m , (2.7)

xi j,zi,y
ξ
j ∈ {0,1} , i = 1, . . . ,n , j = 1, . . . ,m , (2.8)

where, in practice, the xi j variables are only defined for the possible combinations
of inputs and outputs. In this problem, the second-stage recourse function only de-
pends on the x decisions so that the z variables may be left over in our analysis of

296 7 Stochastic Integer Programs

optimality cuts. Moreover, the second stage is easily computed as

Q(x) =
m

∑
j=1

r jP

(
∑

i∈S(j)
ξi j < d j

)
, (2.9)

where
S(j) = {i | xi j = 1} .

Let S = ∪m
j=1{(i, j) | i ∈ S(j)} . To apply the propositions, we search for lower

bounds, λ (s,S) , on the recourse function for all s -neighbors. To bound qS −
λ (1,S) , observe that 1 -neighbors can be obtained in two distinct ways. The first
way is to have one xi j , with (i, j) ∈ S , going from one to zero and all other xi j be-
ing unchanged. This implies for that particular j that, in (2.9), P

(
∑i∈S(j) ξi j < d j

)
increases in the neighboring solution, as S(j) would contain one fewer term. Thus,
for this type of 1 -neighbor, Q(x) is increased.

The second way is to have one xi j , with (i, j) not in S , going from zero to one,
all other xi j being unchanged. For that particular j ,
P
(
∑i∈S(j) ξi j < d j

)
decreases in the neighboring solution. To bound the decrease

of Q(x) , we simply assume P
(
∑i∈S(j) ξi j < d j

)
vanishes so that

qS −λ (1,S) ≤ max
j

{
r jP

(
∑

i∈S(j)
ξi j < d j

)}
. (2.10)

Also observe that in this example, Proposition 7 applies. Indeed, qS −λ (s,S) can be
taken as the sum of the s largest values of{

r jP
(
∑i∈S(j) ξi j < d j

)}
. It follows that λ (s − 1,S)− λ (s,S) is nonincreasing in

s .
Moreover, in this example, we can also find lower bounding functionals. By look-

ing at (2.7), the optimal solution of the continuous relaxation of the second stage is
easily seen to be

yξ
j = r j

(
d j −

n

∑
i=1

ξi jxi j

)+/
d j , j = 1, . . . ,m ,

and therefore,

C(x) = Eξ

[
∑

j

r j

(
d j −

n

∑
i=1

ξi jxi j

)+/
d j

]
. (2.11)

In fact, we just need to compute

C(x) = Eξ∑
j

r j

(
d j − ∑

i∈S(j)
ξi j

)+/
d j . (2.12)

From (2.11), we may immediately apply Proposition 1 as

7.2 First-stage Binary Variables 297

θ ≥ qS + ∑
i j∈S

ai j(xi j −1)+ ∑
i j �∈S

ai jxi j (2.13)

with

ai j = −r j
/

d jEξ

⎡
⎢⎣ξi jP

⎛
⎜⎝ ∑

l∈S(j)
l �=i

ξl j ≤ d j − ξi j

⎞
⎟⎠
⎤
⎥⎦ , i ∈ S(j) ,

ai j = −r j
/

d jEξ

[
ξi jP

(
∑

l∈S(j)
ξl j < d j

)]
, i �∈ S(j)

and

qS = C(x) as in (2.12).

Example 2 (continued)

We take Example 2 and consider the following numerical data. Let n = 4 , m = 6 ,
fi = 10 , for all i , r j = 40 for all j . Let the ci j coefficients take values between
5 and 15 as follows:

j = 1 2 3 4 5 6
i = 1 10 12 8 6 5 14

2 8 5 10 15 9 12
3 7 14 4 11 15 8
4 5 8 12 10 10 10.

Assume the ξi j are independent Poisson random variables with parameters

j = 1 2 3 4 5 6
i = 1 4 4 5 3 3 8

2 5 2 4 8 5 6
3 2 8 3 4 7 5
4 3 5 6 4 6 5

and, finally, let the demands d j be given by

j = 1 2 3 4 5 6
d j 8 4 6 3 5 8 .

As already said, we may apply Proposition 7 to this example. A second possibility
is to use the separability of Q(x) as

Q(x) =
m

∑
j=1

Q j(x) (2.14)

298 7 Stochastic Integer Programs

with

(2.15)

Q j(x) = r jP

(
∑

i∈S(j)
ξi j < d j

)
. (2.16)

Bounding each Q j(x) separately, we define

θ =
m

∑
j=1

θ j (2.17)

and use Propositions 6 or 7 to define a valid set of cuts for each θ j separately.
Indeed, for one particular j , we have

θ j = r jP

(
∑

i∈S(j)
ξi j < d j

)
(2.18)

and

λ j(1,S) = r j min
t �∈S(j)

P

(
∑

i∈S(j)
ξi j + ξt j < d j

)
, (2.19)

where λ j(1,S) denotes a lower bound on Q j(x) for 1 -neighbors of the current
solution obtained by changing xi j s for that particular j only. Note that in prac-
tice finding t is rather easy. Indeed, because all random variables are independent
Poisson, t is simply given by the random variable ξt j , t �∈ S(j) , with the largest
parameter value.

We illustrate the generation of cuts for j = 1 . First, a lower bound is obtained
by letting xi1 = 1 , for all i . This gives L1 = 1.265 .

Assume a starting solution xi j = 0 , all i, j . For j = 1 , the probability in the
right-hand side of (2.16) is 1 . Thus, Q1(x) = r1 = 40 . Cut (2.3) becomes θ1 ≥
40 − 19.368(x11 + x21 + x31 + x41) with the coefficient a = 19.368 obtained from
(qS,1 − L1)/2 , where qS,1 is the notation for the value of Q1(x) . The continuous
cut (2.13) is

θ1 ≥ 40−20x11−25x21 −10x31 −15x41 .

The next iterate point is, e.g., x11 = 1 , x21 = 0 , x31 = 0 , x41 = 1 . Cut (2.3)
becomes θ1 ≥ −16.788+ 20.368(x11 − x21 − x31 + x41) with the coefficient a =
20.368 now obtained from (qS,1 −λ1(1,S)) while the continuous cut (2.13) is

θ1 ≥ 29.164−11.974x11−14.968x21 −5.987x31 −8.981x41 .

Cut (2.3) is stronger than (2.13) at the current iterate point with value 23.948 in-
stead of 8.309 . Also, as the coefficient a comes from (qS,1 −λ1(1,S) and λ1(1,S)
is obtained when x21 becomes 1 , (2.3) gives an exact bound on the solution
x11 = 1 , x21 = 1 , x31 = 0 , x41 = 1 . It provides a nontrivial but nonbinding bound
for other cases, such as x11 = 0 , x21 = x31 = x41 = 1 . On the other hand, (2.13)

7.2 First-stage Binary Variables 299

provides a nontrivial (but nonbinding) bound for some cases such as x11 = 0 ,
x21 = 1 , x31 = 1 , x41 = 0 , where (2.3) does not.

The algorithm for the full example with six outputs was simulated by adding
cuts each time a new iterate point was found, then restarting the branch and bound.
Cuts (2.3) and (2.13) were added each time the amount of violation exceeded 0.1 .
The number of iterate points is dependent on the strategies used in the branch and
bound. For this example, the largest number of iterate points was 21 . In that case,
the mean number of cuts per output was 6.833 cuts of type (2.13) and 2.5 cuts (2.3).
As extreme cases, 10 improved optimality cuts were imposed for Output 1 and only
4 for Output 2 , while 4 continuous cuts were imposed for Output 3 and only 1 for
Output 5 .

The optimal solution is x11 = x13 = x15 = x16 = x21 = x22 = x24 = x41 = x42 =
x43 = x45 = x46 = 1 ; all other xi j s are zero with first-stage cost 140 and penalty
13.26 , for a total of 153.26 . It strongly differs from the solution of the deterministic
problem where outputs equal expected values: x11 = x12 = x13 = x14 = x16 = x21 =
x23 = x25 = 1 with first-stage cost 97 . The reason is that in the stochastic case, even
if the expected output exceeds demand, the probability that the demand is not met
is nonzero. In fact, the solution of the deterministic problem has a penalty of 87.59
for a total cost of 184.59 and a VSS of 31.33 .

b. Example with continuous random variables

Consider the vehicle routing problem of Section 1.6. Assume now there are n
clients, each having an unknown demand. We are given a graph G = (V,E) which
consists of a set V of vertices (or nodes) and a set E of edges (or arcs). Here, the
nodes correspond to the set of clients plus the depot V = {0,1,2, . . . ,n,0} where 0
is the depot. Arc (i, j) corresponds to traveling from node i to node j . Arcs may
be traveled in either direction, with a cost ci j = c ji . The graph is complete (the
vehicle can travel from any point, client or depot, to another).

Each client i has a random demand ξi . This demand is not known when the tour
starts. It becomes known only when the vehicle arrives at the client. The sum of the
demands of a group of clients is a random variable. It is assumed that the cumulative
distribution function of the sum is computable. This is the case for discrete random
variables with a very small number of realizations or for demands following such
distributions as Poisson or normal. The vehicle has a known capacity D . Given
that the demands are random, the cumulative demand may at some point exceed the
vehicle capacity. This situation is called a failure.

The simplest version of the stochastic TSP with random demands consists of
finding, in the first-stage, a so-called a priori route. This route must be a Hamil-
tonian tour, in the sense that it starts from the depot, visits all clients exactly once,
then returns to the depot. In the second- stage, the route is followed in the prescribed
order. In case of failure, the vehicle returns to the depot, unloads and resumes its trip
where the failure occurred. We have seen already in Section 1.6 that they are other

300 7 Stochastic Integer Programs

strategies, such as preventive returns, that may be more efficient. For simplicity in
the presentation, we do not discuss these strategies here.

An a priori route can be represented by a sequence of clients, e.g., {0,v1,v2, . . . ,
vn,0} . Alternatively, let xi j be a binary variable taking the value 1 if arc (i, j) is
in the a priori route and 0 otherwise. Then x = (xi j) is an a priori route. It is
a vector of values for the xi j ’s that satisfy the conditions of a Hamiltonian tour.
These conditions include the well-known subtour elimination constraints (see, for
instance, Wolsey [1998]). We simply represent these conditions as x ∈ X , as we do
not explicitly need them in this section. Thus, an a priori route can be represented
either as a sequence of clients or as a vector of binary variables. It is easy to go from
one representation to the other.

Define Q(x) to be the expected cost of failures. The problem then consists of
finding an a priori route which minimizes cT x +Q(x) .

To apply the integer L -shaped method to this problem, we need to calculate
Q(x) for a given x . Assume an a priori route x = {0,v1,v2, . . . ,vn,0} is given. It
can be traveled in two orientations (starting at v1 and ending at vn , or the opposite.)
We represent by Qλ (x) the expected penalty for traveling in orientation λ , λ =
1,2 . Thus, Q(x) = min{Q1(x),Q2(x)} . Consider orientation 1, starting at v1 and
ending at vn . Then,

Q1(x) =
n

∑
j=1

P{a failure occurs at v j} ·2c j0,

where, by abuse of notation, 2c j0 represents the cost of the return trip from v j to
the depot.

For the sake of simplicity, assume that the probability of exact stockout is negli-
gible. (Exact stockout means that the sum of the demands at a given point exactly
coincides with the vehicle capacity.) This is always the case with a continuous ran-
dom variable. Also assume that the probability of having two failures is negligible.
This assumption is reasonable if the vehicle capacity is not too small compared with
the total demand.

For a given tour, define the event

E j = {the sum of demands up to v j exceeds the vehicle capacity} .

The event {a failure occurs at v j} corresponds to E j ∩E j−1 . Now,

P(E j) = P(E j ∩E j−1)+ P(E j ∩E j−1) = P(E j ∩E j−1)+ P(E j−1) ,

since E j−1 implies E j . Thus,

P (E j ∩E j−1) = P(E j)−P(E j−1)

and

7.2 First-stage Binary Variables 301

Q1(x) =
n

∑
j=1

[
P

(
j

∑
k=1

ξk > D

)
−P

(
j−1

∑
k=1

ξk > D

)]
2c j0

=
n

∑
j=1

[
P

(
j−1

∑
k=1

ξk ≤ D

)
−P

(
j

∑
k=1

ξk ≤ D

)]
2c j0.

This expression can be calculated for summable distributions. These include con-
tinuous distributions such as normal distributions which are often easier to use than
discrete distributions.

Two other aspects may be stressed. First, while Q(x) can be calculated for a
given x as we have seen, expressing Q(x) as a mathematical program in terms
of second stage variables representing the failures is much more difficult. Thus, the
methods that we present in Sections 7.3 or 7.4 would be ineffective. Second, a lower
bound on Q(x) is needed for the integer L -shaped method. One such lower bound
is proposed as Exercise 4.

This problem has stimulated a stream of research. A first implementation is due to
Gendreau, Laporte and Séguin[1995]. Hjörring and Holt [1999] have proposed im-
proved optimality cuts which are valid at fractional solutions. Laporte, Louveaux,
and Vanhamme [2002] have extended this approach for the VRP problem with m
vehicles of limited capacity. Rei et al. [2009] show how to accelerate Benders de-
composition and the integer L -shaped method by local branching techniques. Re-
optimization approaches have been studied by Secomandi and Margot [2009]. For
specific problem structures, such as in crew scheduling problems, Yen and Birge
[2006] show that alternative branching schemes, in that case based on the crews’
plane changes, can also lead to efficiencies.

Besides these computational examples, a full characterization of the integer L-
shaped method based on general duality theory can be found in Carøe and Tind
[1998]. A stochastic version of the branch and cut method based on statistical esti-
mation of the recourse function can be found in Norkin, Ermoliev and Ruszczyński
[1998] and Norkin , Pflug and Ruszczyński [1998]. A simple description of the sam-
ple average approximation method for the stochastic integer programs is given at the
end of Section 9.5.

Exercises

1. Construct the cuts from the integer L -shaped method for Example 1, associated
with the point (0,1)T .
Compare the results by checking the bound on θ1 +θ2 by the integer L -shaped
method and the bound in Example 1 on θ by (2.1) for the four possible points,
(0,0) , (0,1) , (1,0) , (1,1) and, for some continuous points, (1/2,1/2) ,
(1.2,0) , (0,1.2) , for example.

2. Extending (2.19), we obtain

302 7 Stochastic Integer Programs

λ j(s,S) = r jP

(
∑

i∈S(j)
ξi j +∑

t∈J

ξt j < d j

)
, (2.20)

where J contains the indices of the s pairs i j , i �∈ S(j) , with largest parameter
values. Show that the assumptions of Proposition 6 hold.

3. Indicate why the wait-and-see solution cannot be reasonably computed in Ex-
ample 2.

4. Consider the TSP with stochastic demands of Section 7.2b. Order the clients in
increasing distance from the depot. Examine whether

L =
n

∑
j=1

q j · c j0

is a valid lower bound if q j is the probability of having at least/exactly j fail-
ures.

5. Consider the TSP with stochastic demands of Section 7.2b. Show that, if the
demand of the client can be split, having at most one failure corresponds to the
total demand being less than or equal to 2D ; then, obtain a condition on D if
the demands of the clients are independently distributed according to N(μi,σ2

i)
in order to obtain a 1−α probability that the total demand is less than 2D .

7.3 Second-stage Integer Variables

We consider the case where the second-stage decisions are integer, the random vari-
able has a discrete distribution, the technology matrix T is fixed and the recourse
matrices Wk have integer coefficients. The latter can always be achieved by rescal-
ing the second-stage constraints if the initial coefficients are rational.

The value of the second-stage program for one realization ξk reads as

Q(x,ξk) = min
y

{qT
k y | Wky ≥ hk −Tx , y ∈ Zn2· } . (3.1)

The corresponding value function based on the tenders is

ψ(χ ,ξk) = min
y

{qT
k y | Wky ≥ hk + χ , y ∈ Zn2· } (3.2)

(where, for the sake of presentation in this section, the usual sign of the tender is
reversed).

As usual, Q(x) = EξQ(x,ξ) = ∑K
k=1 pkQ(x,ξk) . Similarly,

ψ(χ) = Eξψ(χ ,ξ) =
K

∑
k=1

pkψ(χ ,ξk) . (3.3)

7.3 Second-stage Integer Variables 303

For any x , Q(x) = ψ(−Tx) . The classical problem minx{cT x +Q(x) | x ∈ X} is
thus equivalent to

z∗ = min
x,χ

{cT x +ψ(χ) | x ∈ X , χ = −Tx} . (3.4)

The idea of branching on tenders is to partition the space of tenders χ = −Tx in
an orthogonal partition and to use the non-decreasing property of the value function
as a function of one component of the tender.

a. Looking in the space of tenders

We first show in an example why it is fruitful to look at the tender space instead of
the x space.

Example 3

Consider the following second-stage program for one particular value of ξ

Q(x,ξ) = min 5y1 + 3y2

s. t. 2y1 + 3y2 ≥ −3 + x1 + 2x2 ,

4y1 + y2 ≥ −2.4 + x1 + x2 ,

y1,y2 ≥ 0 , integer.

Due to the integer y , Q(x,ξ) can only take finitely many different values. In
such a small example, it is easy to describe the regions where Q(x,ξ) takes a given
value.

• Q(x,ξ) takes the value 0 whenever y = (0,0)T is optimal, i.e. in region R1 =
{x | x1 + 2x2 ≤ 3 , x1 + x2 ≤ 2.4} . This is a convex polyhedron.

• It takes the value 3 whenever y = (0,1)T is optimal, i.e. in region R2 = {x |
x1 +2x2 ≤ 6 , x1 +x2 ≤ 3.4}\R1 . This is a nonconvex region, due to the x /∈ R1

condition.
• Next values are 5 , 6 and 8 in regions R3 = {x | x1 + 2x2 ≤ 5} \ R1 \ R2 ,

R4 = {x | x1 + x2 ≤ 4.4} \ R1 \ R2 \ R3 and R5 = {x | x1 + 2x2 ≤ 8 , x1 + x2 ≤
7.4}\R1 \R2 \R3 \R4 , respectively. And so on. It turns out that R3 and R5 are
convex but R4 is not. This is easily seen on a graph of these regions. Figure 1
illustrates the above regions, which are identified by the value taken by Q(x,ξ) .

Some of the regions being nonconvex is already a problem. Describing the inter-
section of the regions for several realizations of ξ is clearly another one. Now, let
us look at the same description in the χ space

304 7 Stochastic Integer Programs

0 1 2 3 4 5 6 7
0

1

2

3

4

x1

x2

0

3

5
8

6

Fig. 1 Value of the second-stage solution in Example 3 in the x -space.

Ψ(χ ,ξ) = min 5y1 + 3y2

s. t. 2y1 + 3y2 ≥ −3 + χ1 ,

4y1 + y2 ≥ −2.4 + χ2 ,

y1,y2 ≥ 0 , integer,

with χ1 = x1 + 2x2 and χ2 = x1 + x2 .
The corresponding regions become R1 = {χ | χ1 ≤ 3 , χ2 ≤ 2.4} , R2 = {x |

χ1 ≤ 6 , χ2 ≤ 3.4} \ R1 , R3 = {χ | χ1 ≤ 5 , χ2 ≤ 6.4} \ R1 \ R2 , R4 = {x | χ1 ≤
9 , χ2 ≤ 4.4} \ R1 \ R2 \ R3 and R5 = {χ | χ1 ≤ 8 , χ2 ≤ 7.4} \ R1 \ R2 \ R3 \ R4 .
Figure 2 shows the regions in the χ space, each region being identified by the value
of Ψ(·) . Here, R4 and R5 are nonconvex. But now, all regions have orthogonal
boundaries.

0 3 6 9
0

2

4

6

χ1

χ2

0 3

5

8

6

Fig. 2 Value of the second-stage solution in Example 3 in the space of tenders.

To obtain orthogonal boundaries and convex regions, the branching on tenders
method constructs hypercubes of the form H = ∏m2

j=1(l j,u j] . Here l j is either a

7.3 Second-stage Integer Variables 305

point of discontinuity of Ψ(·) as a function of χ j or a lower bound on χ j . Simi-
larly, u j is either a point of discontinuity of Ψ(·) as a function of χ j or an upper
bound on χ j .

In Example 3 with m2 = 2 , hypercubes are rectangles. For instance, (0,6]×
(2.4,6.4] is a hypercube since Ψ (χ ,ξ) has a discontinuity point at χ1 = 6 , at χ2 =
2.4 and at χ2 = 6.4 . Note that this hypercube contains several other discontinuity
points of Ψ(χ ,ξ) . The smallest hypercubes are those where, for all j , l j and
u j are successive discontinuity points. One such hypercube is (3,5]× (2.4,3.4] for
example. The hypercubes based on discontinuity points of Ψ (χ ,ξ) lead themselves
to easy intersections for different realizations of ξ and are also a good way to
exploit the property of Ψ(χ) being nondecreasing as a function of one particular
component χ j .

b. Discontinuity points

Let Ψ(χ j,ξk) denote Ψ(χ ,ξk) as a function of the j -th component of χ , j =
1, . . . ,m2 .

Proposition 8. For any k = 1, . . . ,K and j = 1, . . . ,m2 , Ψ(χ j,ξk) is lower semi-
continuous and nondecreasing in χ j . For any a ∈ Z , Ψ(χ j,ξk) is constant over
(a − hk j − 1,a − hk j] , for any k = 1, . . . ,K and j = 1, . . . ,m2 where hk j denotes
the j -th component of hk .

Proof: The first part of the proposition comes from Proposition 3.20. Now, consider
the j -th constraint (Wky) j ≥ hk j + χ j . As Wk is integral, it implies (Wky) j ≥
�hk j +χ j� . Thus Ψ(χ j,ξk) is constant for all χ j s.t. hk j +χ j = �hk j +χ j� . Taking
a = �hk j + χ j� provides the desired result.

Consider now Ψ(χ) = EξΨ(χ ,ξ) and, as above, let Ψ(χ j) denote Ψ(χ) as a
function of the j -th component of χ , j = 1, . . . ,m2 .

Proposition 9. There exists a finite number S ≥ 1 of distinct values fs , s = 1, . . . ,S
s.t. for any a ∈ Z , Ψ(χ j) is constant over (a + fs,a + fs+1] , s = 1, . . . ,S , where
fS+1 = f1 + 1 .

Proof: Consider a given j . For any a ∈ Z , Ψ(χ j,ξk) is constant over (a−hk j −
1,a − hk j] , for any k = 1, . . . ,K . Let fk = a − hk j −�(a − hk j)� be the fractional
part of a − hk j . Let S be the number of different such fractional parts. Clearly
1 ≤ S ≤ K . Reordering the fk ’s in increased order yields the desired result.

Thus, all discontinuity points of Ψ(χ j) are of the form a + fs j , s j = 1, . . . ,S j ,
a ∈ Z . A special case is S j = 1 when, for instance, h j only takes on integer values.

306 7 Stochastic Integer Programs

Example 3 (continued)

Assume h take the values (−3,−2.4)T , (−3.8,−2.5)T and (−2.6,−4.4)T with
equal probability 1/3 . For j = 1 , the fractional values in increasing order are 0 ,
0.6 and 0.8 . For any a ∈ Z , successive discontinuity points exist at a , a + 0.6 ,
a + 0.8 , a + 1 , and so on. For j = 2 , the fractional values in increasing order are
0.4 and 0.5 and successive discontinuity points are of the form a + 0.4 , a + 0.5 ,
a + 1.4 and so on, for a ∈ Z .

Now consider some particular discontinuity point of Ψ(χ j) , say l j . Ψ(χ j) is
constant over (l j, l′j] where l′j is the next discontinuity point. To know Ψ(χ j) over
this interval, it suffices to calculate Ψ(l j + ε) for some ε . The chosen ε must be
large enough to avoid numerical problems but smaller than l′j − l j . The smallest
interval where Ψ(χ j) is constant for any j is min{ fs j+1 − fs j , s j = 1, . . . ,S j , j =
1, . . . ,m2} . Thus ε can be any nonzero value strictly smaller than this minimum
(for instance half the minimum). In Example 3, the smallest interval is 0.1 between
a + 0.4 and a + 0.5 (for s2 = 1). Thus ε = 0.05 does the job.

c. Algorithm

Current problem

Consider a hypercube H =∏m2
j=1(l j,u j] , where for each j , l j is a point of discon-

tinuity of Ψ(χ) as a function of χ j . Define the current problem as

CP(l,u) = min cT x +θ (3.5)

s. t. x ∈ X ,χ = −Tx , l ≤ χ ≤ u ,

θ ≥Ψ(l + εe) .

CP(l,u) is a lower bound on minx,χ{cT x +Ψ(χ) | x ∈ X , χ = −Tx , l ≤ χ ≤
u} . Indeed, Ψ (χ) =Ψ(l + εe) for all l ≤ χ ≤ u , if Ψ(·) has no discontinuity
points within H . And Ψ (χ) ≥Ψ(l + εe) otherwise (with the inequality being
strict if χ j is larger than at least one discontinuity point of Ψ (·) within H , for at
least one j).

The CP(l,u) problem can be strengthened by any lower bounding functionals,
such as the Bender’s cuts. We now present the branching on tenders algorithm,
assuming relatively complete recourse. If needed, feasibility cuts may be added at
Step 3, using the technique of Section 7.6.

7.3 Second-stage Integer Variables 307

Branching on Tenders Algorithm

Step 0. Set ν = 0 and z̄ = ∞ . Set (l,u] to any relevant values s.t. {χ | l < χ ≤
u} ⊃ {χ | x ∈ X , χ = −T x} . A list is created that contains the single hypercube
∏m2

j=1(l j,u j] , with a dummy lower bound. There is no incumbent solution.

Step 1. Set ν = ν+1 . Select one hypercube in the list (one with the smallest lower
bound for example). Remove it from the list. Denote it Hν =∏m2

j=1(l
ν
j ,u

ν
j] . If none

exists, stop: the incumbent solution is the optimal solution.

Step 2. Solve the current problem CP(lν ,uν) . If it has no feasible solution, go to
Step 1.

Step 3. Let xν ,χν be a solution to CP(lν ,uν) . Calculate zν = z(xν ,χν) .

Step 4. (Update and fathom) If zν < z̄ , update z̄ = zν , let (xν ,χν) be the incumbent
solution and remove from the list all the hypercubes having a lower bound larger
than z̄ .

Step 5. (Fathom or Branch) If CP(lν ,uν) ≥ z̄ , go to Step 1. Find some component
j having a discontinuity point of Ψ(·) , say δ j , within (l j,u j). If none exists, go
to Step 1. Otherwise, partition Hν in two hypercubes, one having interval (l j,δ j]
in the j -th component, the other having interval (δ j,u j] in the j -th component
(with the intervals for the other components unchanged). Insert the two hypercubes
in the list with a lower bound of CP(lν ,uν) each. Go to Step 1.

Proposition 10. The branching on tenders algorithm terminates with a global min-
imum (when one exits) in a finite number of steps.

Proof: Assume X contains at least one solution. Partitioning (or branching) occurs
at Step 5. This operation is finite if X is compact. Indeed, there can only be a finite
number of discontinuity points for each component, thus a finite number of parti-
tions. At each iteration, at least one hypercube is fathomed. Thus, there can only
be a finite number of iterations. Now, consider an optimal solution, say x∗,χ∗ with
objective value z∗ and let H∗ be the smallest hypercube containing χ∗ . This is a
hypercube such that Ψ(·) does not contain any discontinuity. Thus, Ψ(·) is con-
stant on H∗ and the solution of the LB problem on H∗ must be χ∗ (or another χ
with equal z∗ value). Otherwise there would be another χ within H∗ with strictly
smaller cT x +Ψ(χ) value, contradicting the optimality of χ∗ . Within the list of
hypercubes, there will always be one hypercube containing H∗ , unless the optimum
is found at step 4, in which case the proposition holds. Along the iterations, the hy-
percube containing H∗ will be partitioned (at most a finite number of times) up to
the point where H∗ enters the list. When H∗ is selected in Step 1, the optimum is
found in Step 4.

308 7 Stochastic Integer Programs

Example 4

Consider the following stochastic integer program

min
x≥0

−2.5x1 −2x2 + Eξ min{4.4y1 + 3y2}
s. t. 4x1 + 5x2 ≤ 15 , 2y1 + 3y2 ≥ h1 + χ1 ,

x1 + x2 ≥ 1.5 , 4y1 + y2 ≥ h2 + χ2 ,

χ1 = x1 + 2x2 , y ≥ 0 , integer,

χ2 = 2x1 + x2,

where hT = (−2.8,−1.2) and (−2,−3) with equal probability 1
2 .

We use the following notation. The list of remaining hypercubes is denoted by
Λ . An upper index on a hypercube represents the iteration number, while a lower
index represents its place in the list. βi represents the lower bound associated to a
particular hypercube. Thus,

Hν = hypercube selected at iteration ν ;

Hi = i-th hypercube in the list, with lower bound βi.

Given the possible values of h , ε can take any value 0 < ε < 0.2 . We choose
ε = 0.1 . We use the first-stage feasibility set to find the feasibility intervals 1.5 ≤
χ1 ≤ 6 , 1.5 ≤ χ2 ≤ 7.5 . As the left intervals of hypercubes are open, we subtract
ε on the left part to make sure no feasible point is omitted. The initial hypercube is
H0 = (1.4,6]× (1.4,7.5] . Set z̄ = 0 and ν = 0 .

Iteration 1:

Step 1. ν = 1 . Select H1 = H0 . Λ is empty.

Step 2. l1 = (1.4,1.4)T and u1 = (6,7.5)T .
Compute Ψ (l1 + εe) =Ψ(1.5,1.5) : for h = (−2.8,−1.2)T , the second-stage so-
lution is y = (0,1)T and Ψ(χ ,ξ) = 3 , for h = (−2,−3)T , it is y = (0,0)T with
Ψ(χ ,ξ) = 0 . Taking the expectation, we obtain Ψ(1.5,1.5) = 1.5 . The current
problem reads as follows:

CP(l1,u1) = min −2.5x1 −2x2 +θ
s. t. 4x1 + 5x2 ≤ 15 , x1 + x2 ≥ 1.5 ,

χ1 = x1 + 2x2 , χ2 = 2x1 + x2 ,

1.5 ≤ χ1 ≤ 6 , 1.5 ≤ χ2 ≤ 7.5 , x1,x2 ≥ 0 ,

θ ≥ 1.5 , θ ≥ −4.62 + 2.2χ2 ,

θ ≥ −2.32 + 0.5χ1 + 1.1χ2 , θ ≥ −2.64 + 0.7χ1 + 0.9 .

7.3 Second-stage Integer Variables 309

The last three constraints are Benders’ cuts expressed in terms of χ1 and χ2 . The
reader may check that the solution of the current problem with these three cuts is also
the solution of the continuous LP-relaxation of the problem. The current problems
in the next iterations only differ by the bounds on χ and the corresponding θ ≥
Ψ(lν +εe) bound. Some of the current problems have multiple solutions.A different
selection than ours would alter the course of the iterations.

Step 3. The solution of the current problem is x1 = (0.096,1.696)T , χ1 = (3.488,
1.887)T and CP(l1,u1) = −2.131 . Compute the value of Ψ (χ1) =Ψ(3.8,2) . For
h = (−2.8,−1.2)T , h + χ = (1,0.8)T . The second-stage solution is y = (0,1)T

and Ψ(χ ,ξ) = 3 . For h = (−2,−3)T , h + χ = (1.8,0)T , y = (0,1)T with
Ψ(χ ,ξ)= 3 . Taking the expectation, we obtain Ψ(χ1) = 3 . Thus, z1 = z(x1,χ1) =
cT x1 +Ψ(χ1) = −3.631 + 3 = −0.631 .

Step 4. Set z̄ = z1 = −0.631 .

Step 5. Find discontinuity points of Ψ(·) . For χ1 , discontinuity points are all in-
tegers and all integers +0.8 . Thus, from χ1 = 3.488 , we may branch at 3 or
3.8 . For χ2 , discontinuity points are all integers and all integers +0.2 . Thus, from
ψ2 = 1.887 , we may only branch at 2 (since 1.2 is outside the bounds). Say, we
branch at χ1 = 3 . Create two new hypercubes, both having the same lower bound:
H1 = (3,6]× (1.4,7.5] , with β1 = −2.131 and H2 = (1.4,3]× (1.4,7.5] , with
β2 = −2.131 . Λ = {H1,H2} .

Iteration 2:

Step 1. ν = 2 . Select H2 = H1 and remove it from the list.

Step 2. l2 = (3,1.4)T u2 = (6,7.5)T . Ψ(l2 + εe) = Ψ (3.1,1.5) = Ψ(3.8,2)
=Ψ (χ1) = 3 .

Step 3. Create a new current problem, with a lower bound of 3.1 for
χ1 (instead of 1.5) and a lower bound 3 for θ . The solution of the current prob-
lem is x2 = (0.408,2.008)T , χ2 = (4.425,2.825)T and CP(l2,u2) = −2.037 .
Compute the value of Ψ(χ2)=Ψ(4.425,2.825)=Ψ(4.8,3) . For h = (−2.8,−1.2)T ,
h+χ = (2,1.8)T . The second-stage solution is y = (1,0)T and Ψ(χ ,ξ) = 4.4 . For
h = (−2,−3)T , h+χ = (2.8,0)T , y = (1,0)T with Ψ(χ ,ξ) = 3 . Taking expecta-
tion, we get Ψ(χ2) = 3.7 . Thus, z2 = z(x2,χ2) = cT x2+Ψ(χ2) = −5.037+3.7 =
−1.337 .

Step 4. Set z̄ = z2 = −1.337 .

Step 5. Find discontinuity points of Ψ(·) . From χ1 = 4.425 , we may branch at 4 or
4.8 . From χ2 = 2.825 , we may branch at 2.2 or 3 . Say, we branch at χ2 = 2.2 .
Create two new hypercubes H3 = (3,6]× (2.2,7.5] and H4 = (3,6]× (1.4,2.2] ,
with β3 = β4 = −2.037 . Λ = {H2,H3,H4} .

Iteration 3:

310 7 Stochastic Integer Programs

Step 1. ν = 3 . Select H3 = H2 and remove it from the list.

Step 2. l3 = (1.4,1.4)T u3 = (3,7.5)T . Ψ(l3 + εe) =Ψ(1.5,1.5) = 1.5 .

Step 3. The solution of the current problem is x3 = (0.406,1.297)T , χ3 =
(3,2.109)T and CP(l3,u3) = −2.109 . Ψ(χ3) =Ψ (3,2.2)=3 and z3=z(x3,χ3)=
−0.609 .

Step 4. z̄ is unchanged.

Step 5. Find discontinuity points of Ψ(·) . From χ2 = 2.109 , we may branch at
2 or 2.2 . Say we branch on χ2 = 2 . Create two new hypercubes H5 = (1.4,3]×
(2,7.5] and H6 = (1.4,3]×(1.4,2] , with β5 = β6 = −3.25 . Λ = {H3,H4,H5,H6} .

Iteration 4:

Step 1. ν = 4 . Select H4 = H3 and remove it from the list.

Step 2. l4 = (3,2.2)T u4 = (6,7.5)T . Ψ (l4 + εe) =Ψ (3.1,2.3) = 3.7 .

Step 3. The solution of the current problem is x4 = (0.554,2.154)T , χ4 = (4.863,
3.262)T and CP(l4,u4) = −1.994 .
Ψ(χ4) =Ψ(5,4) = 5.2 and z4 = z(x4,χ4) = −5.694 + 5.2 = −0.494 .

Step 4. z̄ is unchanged.

Step 5. From χ1 = 4.863 , we may branch at 4.8 or 5 . From χ2 = 3.262 , we
may branch at 3.2 or 4 . Say, we branch at χ1 = 4.8 . Create two new hypercubes
H7 = (4.8,6]× (2.2,7.5] and H8 = (3,4.8]× (2.2,7.5] , with β7 = β8 = −1.994 .
Λ = {H4,H5,H6,H7,H8} .

Iteration 5:

Step 1. ν = 5 . Select H5 = H4 and remove it from the list.

Step 2. l5 = (3,1.4)T u5 = (6,2.2)T . Ψ (l5 + εe) =Ψ (3.1,1.5) = 3 .

Step 3. The solution of the current problem is x5 = (0,2.2)T , χ5 = (4.4,2.2)T and
CP(l5,u5) = −1.4 . Ψ(χ5) =Ψ(4.8,2.2) = 3 and z5 = z(x5,χ5) = −4.4 + 3 =
−1.4

Step 4. Set z̄ = z5 = −1.4 .

Step 5. CP(l5,u5) ≥ z̄ . Fathom. This is the situation described in Exercice 1 below.
Λ = {H5,H6,H7,H8} .

Iteration 6:

Step 1. ν = 6 . To speed up things, select H6 = H8 and remove it from the list.

Step 2. l6 = (3,2.2)T u6 = (4.8,7.5)T . Ψ(l6 + εe) =Ψ(3.1,2.3) = 3.7 .

7.3 Second-stage Integer Variables 311

Step 3. The solution of the current problem is x6 = (0.594,2.103)T , χ6 =
(4.8,3.291)T and CP(l6,u6) = −1.991 . Ψ (χ6) = Ψ(4.8,4) = 5.2 and z6 =
z(x6,χ6) = −5.691 + 5.2 = −0.491 .

Step 4. z̄ is unchanged.

Step 5. Find discontinuity points of Ψ (·) . From χ2 = 3.291 , we branch at χ2 =
3.2 . Create two new hypercubes H9 = (3,4.8]× (3.2,7.5] and H10 = (3,4.8]×
(2.2,3.2] , with β9 = β10 = −1.993 . Λ = {H5,H6,H7,H9,H10} .

Iteration 7:

Step 1. ν = 7 . To speed up things, select H7 = H10 and remove it from the list.

Step 2. l7 = (3,2.2)T u7 = (4.8,3.2)T . Ψ(l7 + εe) =Ψ(3.1,2.3) = 3.7

Step 3. The solution of the current problem is x7 = (0.533,2.133)T , χ7 = (4.8,3.2)T

and CP(l7,u7) = −1.9 . Ψ (χ7) =Ψ(4.8,3.2) = 3.2 and z7 = z(x7,χ7) = −5.6 +
3.7 = −1.9 .

Step 4. Set z̄ = z7 = −1.9 .

Step 5. CP(l7,u7) ≥ z̄ . Fathom. Λ = {H5,H6,H7,H9} .

Subsequent iterations.

The current solution χ7 = (4.8,3.2)T with z7 = −1.9 is in fact the optimal one.
(In a small problem like this one, this can be checked by solving the full determinis-
tic equivalent.) Of the remaining hypercubes, only H9 will be fathomed directly by
the value of the current problem (−1.664) . The other three hypercubes will need
extra branchings. Note that the lower bounds βi s have not been used for the selec-
tion of the hypercubes in Step 1, as this would have yet augmented the number of
iterations. Also, they could not be used to fathom hypercubes, as all lower bounds
were smaller than the optimum.

Faster fathoming is expected if better bounds can be obtained. One way to get
those would be to have a full description of the second-stage continuous recourse
function, for instance by sending all possible Benders cuts. In the current example,
the value of the current problem would have been improved only on H9 .

A number of implementation aspects have been omitted in the presentation as
well as in the example. They can be found in Ahmed, Tawarmalani and Sahinidis
[2004]. This includes how to find the smallest initial hypercube or how to choose an
effective partitioning component. Earlier work on integer second-stage includes de-
composition of test sets (Hemmecke and Schultz [2003]) or Gröbner basis reduction
techniques (Schultz, Stougie, van der Vlerk [1998]). For the case of integer first- and
second-stage and random right-hand side only, Kong, Schaefer and Hunsaker [2006]
develop a superadditive dual approach.

312 7 Stochastic Integer Programs

Exercises

1. In the branching-on-tenders algorithm, show that if Ψ(χν) =Ψ(lν + εe) , then
no branching occurs in Step 5.

2. Consider the second-stage constraints as in Example 3. Compare two situations:

• h is a random vector with two independent components, each taking all
integer values between −1 and −6 independently;

• h can take four values: (−2,−2.4)T , (−3.8,−3.5)T ,
(−4.6,−4.1)T and (−5.2,−5.3)T .

Which one is likely to create more discontinuity points in Ψ(·) ?

7.4 Reformulation

To illustrate reformulation, assume a discrete random variable and a fixed re-
course matrix. Also assume binary second-stage decision variables. The value of
the second-stage program for one realization ξk reads as

Q(x,ξk) = min
y

{qT
k y | Wy ≥ hk −Tkx , y ∈ {0,1}n2} (4.1)

where, as usual, the index k = 1, . . . ,K is used for the K realizations of ξ . The
LP-relaxation of this program is

C(x,ξk) = min
y

{qT
k y | Wy ≥ hk −Tkx , 0 ≤ y ≤ e} . (4.2)

The idea of reformulation is to modify the original formulation of {y | Wy ≥ hk −
Tkx , 0 ≤ y ≤ e} by adding a number of so-called valid inequalities or cuts that will
reduce the number of fractional solutions. A large variety of valid inequalities have
been proposed in integer programming. The choice of an appropriate class of valid
inequalities depends on the structure of the LP-relaxation. Valid inequalities are
routinely used in so-called branch-and-cut systems. Section 7.8b. provides simple
examples of valid inequalities in deterministic models. We use these examples to
illustrate the extra difficulties in stochastic integer programs.

a. Difficulties of reformulation in stochastic integer programs

Example 5

Consider the following second-stage program:

7.4 Reformulation 313

Q(x,ξ) = min 3y1 + 7y2 + 9y3 + 6y4

s. t. 2y1 + 4y2 + 5y3 + 3y4 ≥ h−Tx ,

y1, . . . ,y4 ∈ {0,1} .

Assume two realizations of ξ = (h,T) , h − Tx = 10 − 2x1 − 4x2 and 11 − 4x1 −
3x2 for k = 1,2 , with probability 0.25 and 0.75 , respectively. Consider a current
iterate xν = (0.3,0.6)T . The second-stage program for x = xν and ξ = ξ1 is

Q(xν ,ξ1) = min 3y1 + 7y2 + 9y3 + 6y4 (4.3)

s. t. 2y1 + 4y2 + 5y3 + 3y4 ≥ 7 ,

y1, . . . ,y4 ∈ {0,1} .

The LP-relaxation of (4.3) has a fractional solution y = (1,1,0.2,0)T . The cover
inequality y3 +y4 ≥ 1 is a valid inequality and, as shown in Section 7.8b., it suffices
to provide an extended LP-relaxation

C(xν ,ξ1) = min 3y1 + 7y2 + 9y3 + 6y4 (4.4)

s. t. 2y1 + 4y2 + 5y3 + 3y4 ≥ 7 ,

y3 + y4 ≥ 1 ,

0 ≤ y1, . . . ,y4 ≤ 1 ,

having an integer optimal solution y = (1,0,1,0)T .
If we consider ξ = ξ2 , the r.h.s. of the initial constraint becomes 8 . The LP-

relaxation has a fractional solution y = (1,1,0.4,0)T and two cuts are needed to
obtain the extended LP- relaxation:

C(xν ,ξ2) = min 3y1 + 7y2 + 9y3 + 6y4 (4.5)

s. t. 2y1 + 4y2 + 5y3 + 3y4 ≥ 8 ,

y2 + y3 + y4 ≥ 2 ,

y1 + y3 ≥ 1 ,

0 ≤ y1, . . . ,y4 ≤ 1 ,

having an integer optimal solution y = (0,0,1,1)T .
The extra difficulty in stochastic integer program is that the second stage pro-

gram is dependent on x . For ξ = ξ1 , we have obtained reformulation (4.4) for
x = (0.3,0.6)T . If we consider another iterate point, say xν = (0.5,0.25)T , then
the knapsack constraint in Q(xν ,ξ1) obtains a r.h.s. of 8 and the appropriate refor-
mulation is the same as in (4.5).

Thus, the reformulation of the second-stage of a stochastic integer program is
faced with two difficulties: a reformulation is needed for each realization of the
random vector and the reformulation must be made dependent on the value of the
first-stage variables.

314 7 Stochastic Integer Programs

b. Disjunctive cuts

One way to overcome these difficulties is through the use of disjunctive cuts, as
we now explain. Section 7.8c. provides a short reminder of disjunctive cuts, with a
proof and some examples.

Proposition 11. If Pi = {x ∈ℜn
+ | Aix ≥ bi} for i = 0,1 are two nonempty polyhe-

dra, then πT x ≥ π0 is a valid inequality for co(P0 ∪P1) if and only if there exists
u0,u1 ≥ 0 such that π ≥ (ui)T Ai and π0 ≤ (ui)T bi for i = 0,1 .

This proposition provides a way of convexifying the union of two sets. It will be
used in this form at the end of this section. It is also used to realize the disjunction
for a fractional variable.

Let P = {y ∈ℜn2
+ | Wy ≥ d , y ≤ e} be a particular second stage LP-relaxation

(i.e. for one particular ξk and one particular h − T xν = d). Assume that, at the
solution of the second-stage LP-relaxation, some second-stage binary variable y j

takes a fractional value. Instead of a classical branching y j ≤ 0 versus y j ≥ 1 , one
can consider the disjunction P0 = P∩{y ∈ℜn2

+ | y j ≤ 0} and P1 = P∩{y ∈ℜn2
+ |

y j ≥ 1} . Specializing Proposition 11 (with specific dual variables for each type of
constraint and with each constraint under the ≥ format), one obtains the following.

Proposition 12. The inequality πT y ≥ π0 is valid if and only if there exists
ui,vi,wi ≥ 0 for i = 0,1 such that

π ≥ (u0)TW − v0 −w0e j ,

π ≥ (u1)TW − v1 + w1e j ,

π0 ≤ (u0)T d − eT v0 ,

π0 ≤ (u1)T d − eT v1 + w1 .

A disjunctive cut is obtained by solving an LP consisting of maximizing the
violation π0 −πT yν , under the constraints defined in Proposition 12, where yν is
the current solution of the second stage LP. To be bounded, this LP needs some
normalizing. One possibility is to take −1 ≤ π0 ≤ 1 , −e ≤ π ≤ e .

Proposition 12 is used in deterministic integer programs to generate one disjunc-
tive cut. It is desired now to find one such cut for each realization ξk . The idea of
the so-called common cut coefficient technique consists of obtaining an inequality
πT y ≥ πk

0 where the coefficients π for the variables remain the same independently
of k and only the r.h.s.’s are dependent on k .

Proposition 13 (Common Cut Coefficient or C3). The inequality πT y ≥ πk
0 is

valid for k = 1, . . . ,K if and only if there exists ui,vi,wi ≥ 0 for i = 0,1 such that

π ≥ (u0)TW − v0 −w0e j ,

π ≥ (u1)TW − v1 + w1e j ,

7.4 Reformulation 315

πk
0 ≤ (u0)T dk − eT v0 ,

πk
0 ≤ (u1)T dk − eT v1 + w1

where dk = hk −T kxν .

In practice, the cut is obtained by solving an LP consisting of maximizing the
expected violation ∑K

k=1 pk(πk
0 − πT yk) under the constraints defined in Proposi-

tion 13, where yk is the second-stage solution associated to dk . As above, we may
use the normalization −1 ≤ πk

0 ≤ 1 , −e ≤ π ≤ e . This LP is called the C3 − LP
or C3 −LP(W,dk) if one needs to specify the problem data.

Example 5 (continued)

Consider again the second-stage program:

Q(x,ξ) = min 3y1 + 7y2 + 9y3 + 6y4

s. t. 2y1 + 4y2 + 5y3 + 3y4 ≥ h−Tx ,

y1, . . . ,y4 ∈ {0,1} ,

with the two realizations h−T.x = 10−2x1−4x2 and 11−4x1−3x2 for k = 1,2 ,
with probability 0.25 and 0.75 , respectively.

Consider the current iterate xν = (0.3,0.6)T . The corresponding second-stage
r.h.s. values dk = hk −T kxν are 7 and 8 , respectively for k = 1,2 . The solutions
of the second-stage LP relaxations are y = (1,1,0.2,0)T and y = (1,1,0.4,0)T for
the two realizations. The disjunction is made on y3 as it is fractional in both cases.
Taking the objective of maximizing the expected violation ∑K

k=1 pk(πk
0 −πT yk) and

the normalization as above, the (C3-LP) problem reads as follows:

(C3-LP) z =max 0.25π1
0 + 0.75π2

0 −π1 −π2 −0.35π3

s. t. π1 ≥ 2u0 − v0
1 , π1 ≥ 2u1 − v1

1 ,

π2 ≥ 4u0 − v0
2 , π2 ≥ 4u1 − v1

2 ,

π3 ≥ 5u0 − v0
3 −w0 , π3 ≥ 5u1 − v1

3 + w1 ,

π4 ≥ 3u0 − v0
4 , π4 ≥ 3u1 − v1

4 ,

π1
0 ≤ 7u0 − v0

1 − v0
2 − v0

3 − v0
4 ,

π1
0 ≤ 7u1 − v1

1 − v1
2 − v1

3 − v1
4 + w1 ,

π2
0 ≤ 8u0 − v0

1 − v0
2 − v0

3 − v0
4 ,

π2
0 ≤ 8u1 − v1

1 − v1
2 − v1

3 − v1
4 + w1 ,

−e ≤ π ≤ e , −1 ≤ π1
0 , π2

0 ≤ 1 , u,v,w ≥ 0 .

316 7 Stochastic Integer Programs

Its optimal solution is z = 0.35 , u0 = 1/3 , v0 = (2/3,4/3,0,0)T , u1 = 0 , v1 =
(0,0,0,0)T , w0 = 1 , w1 = 2/3 , π = (0,0,2/3,1)T , π1

0 = 1/3 , π2
0 = 2/3 . The

two cuts are 2/3y3 + y4 ≥ 1/3 , 2/3y3 + y4 ≥ 2/3 , for k = 1,2 , respectively.

At the current second-stage solutions, the two cuts are violated by an amount
of 0.6/3 and 1.2/3 , respectively. The expected violation corresponds to the value
0.35 of the objective of C3 − LP . Given the u , v , w values, one can check that
π1

0 ≤ min{1/3,2/3} and π2
0 ≤ min{2/3,2/3} .

We now look of how to make these values dependent on the first-stage decision
variables.

c. First-stage dependence

Consider the C3 cut for a given k . We have seen that πT y ≥ πk
0 is valid for

πk
0 ≤ (u0)T dk − eT v0 ,

πk
0 ≤ (u1)T dk − eT v1 + w1 ,

where dk = hk −T kxν .
If instead of considering a fixed dk , we let x vary, we obtain a cut πT y ≥ πk

0(x)
whose r.h.s depends on x . This cut remains valid for

πk
0(x) ≤ (u0)T (hk −T kx)− eT v0 ,

πk
0(x) ≤ (u1)T (hk −T kx)− eT v1 + w1 .

With π , u , v and w unchanged, it suffices indeed to take a sufficiently small value
of πk

0(x) to obtain a valid cut.
To simplify notations, let α0 = (u0)T hk − eT v0 , α1 = (u1)T hk − eT v1 +w1 and

β i = (ui)T T k for i = 0,1 . Thus,

πT y ≥ min{α0 −β 0x,α1 −β 1x}

where the index k is omitted in the r.h.s. even if the data are dependent on k .
Due to the min operation, the cut is nonlinear and needs convexification. This

can be achieved through a disjunction with the two sets

P0 = {x ∈ℜn
+ , γ ≥ 0 | Ax ≥ b , γ ≥ α0 −β 0x} ,

P1 = {x ∈ℜn
+ , γ ≥ 0 | Ax ≥ b , γ ≥ α1 −β 1x} ,

where γ is an extra variable representing the minimum of the two expressions.
The RHS(k) problem consists of finding ri,si ≥ 0 for i = 0,1 and (ρ ,ρ0) s.t.

ρ ≥ (r0)T A +β 0s0 ,

7.4 Reformulation 317

ρ ≥ (r1)T A +β 1s1 ,

ρ0 ≤ (r0)T b +α0s0 ,

ρ0 ≤ (r1)T b +α1s1 ,

s0, s1 ≤ 1 .

These inequalities are written down assuming a value of 1 for the coefficient of
γ , to form a cut γ ≥ ρ0 −ρT x . This is an appropriate form of normalization. The
solution is obtained from an LP with the objective of maximizing maxρ0 −ρT xν .
The final cut is πT y ≥ ρ0 −ρT x .

The notation RHS(k) is a reminder that the r.h.s. of the resulting cut is valid for
one given k . When needed, the notation πT y ≥ ρ0k −ρT

k x is then used to represent
the cut obtained for one specific k .

Example 5 (continued)

Assume a single first stage constraint 4x1 + 6x2 ≤ 5 and, as above, a current it-
erate xν = (0.3,0.6)T . The solution of the C3 − LP includes u0 = 1/3 , v0 =
(2/3,4/3,0,0)T , u1 = 0 , v1 = (0,0,0,0)T , w0 = 1 , w1 = 2/3 .

Consider k = 1 . Thus, h − Tx = 10 − 2x1 − 4x2 . We obtain α0 = 1/3p10−
6/3 = 4/3 and β 0 = (2/3,4/3)T for i = 0 and α1 = 2/3 and β 1 = (0,0)T for
i = 1 . RHS(1) consists in convexifying min{4/3 − 2/3x1 − 4/3x2,2/3} under
4x1 + 6x2 ≤ 5 , x1,x2 ≥ 0 . Using the objective maxρ0 − ρT xv and the proposed
normalization of the coefficient of γ , we obtain:

RHS(1) z = max ρ0 −0.3ρ1 −0.6ρ2

s. t. ρ1 ≥ −4r0 + 2/3s0 , ρ1 ≥ −4r1 ,

ρ2 ≥ −6r0 + 4/3s0 , ρ2 ≥ −6r1 ,

ρ0 ≤ −5r0 + 4/3s0 , ρ0 ≤ −5r1 + 2/3s1 ,

0 ≤ r0,r1 , 0 ≤ s0,s1 ≤ 1 .

The optimal solution is z = 0.92/3 , ρ0 = 2/3 , ρ1 = 0.4/3 , ρ2 = 1.6/3 . The
disjunctive cut for k = 1 is thus 2/3y3 + y4 ≥ 2/3−0.4/3x1−1.6/3x2 .

d. An algorithm

For simplicity, we present an algorithm with second-stage reformulation for the
case when the first-stage variables are continuous and assuming relatively com-
plete recourse. Such an algorithm is a direct extension of the L -shaped method
of Chapter 5, with an extended Step 3 for the construction of the Benders cuts.

318 7 Stochastic Integer Programs

L -Shaped Algorithm with Second-stage Reformulation

Step 0. Set s = ν = 0 . Set W1 = W , h1 = h , T1 = T .

Step 1 and Step 2: unchanged.

Step 3.

(a) Solve the LP-relaxation C(x,ξk) = miny{qT
k y | Wνy ≥ hνk −Tνkxν , 0 ≤ y ≤ e}

for k = 1, . . . ,K .
(b) Select some component j s.t. y j is fractional for at least one k . (If none ex-

ists, let Wν+1 = Wν , hν+1 = hν , Tν+1 = Tν and go to (f) with unchanged
multipliers).

(c) Solve C3 −LP(Wν ,dk
ν) with dk

ν = hνk −Tνkxν . Append the solution πT to the
matrix Wν to form Wν+1 .

(d) Solve RHS(k) for k = 1, . . . ,K . For each k , append ρ0k to hνk to form hν+1,k

and append ρT
k to the matrix Tνk to form Tν+1,k .

(e) Solve the LP-relaxation C(x,ξk) = miny{qT
k y |Wν+1y ≥ hν+1,k −Tν+1,kxν , 0 ≤

y ≤ e} for k = 1, . . . ,K .
(f) Use the dual multipliers to generate an L -Shaped cut as in (5.1.6) and (5.1.7),

based on hν+1,k and Tν+1,k .
(g) Test of optimality or addition of the cut (as in the end of Step 3 in the L -shaped

method).

If one compare the above steps with those of the L -shaped method, the extra
work consists of solving one C3 −LP , solving K times a RHS(k) and reoptimiz-
ing the K second-stage relaxations with one extra constraint each. The C3 − LP
has 2m2 + 2n2 + 2K + 2 variables and 2n1 + 2K constraints. Each RHS(k) has
2m1 + 2 variables and 2n1 + 2 constraints. The alternative of finding one possibly
different disjunctive cut for each k not only in the r.h.s. but also in the l.h.s. would
request the solution of K successive LP’s, each having 2m2 + 2n2 + 2 variables
and 2n1 + 2 constraints. The convexification of the r.h.s.’s would still require the
solution of K RHS(k) programs having the same dimension as above.

The above algorithm was developed by Sen and Higle [2005]. It can be seen as
an integer L -shaped type of method, with more elaborate steps for the construc-
tion of the cuts. The case of continuous first-stage may present some technicalities
that are studied in Ntaimo and Sen [2006a]. The second stage reformulation may
fail to produce natural integer solutions in the second-stage for all k = 1, . . . ,K in
a sufficiently fast manner. In such a case, an extra branch-and-bound step in the
second-stage may be needed. A description of this extra feature can be found in Sen
and Sherali [2002]. Reports on computational experiments can be found in Ntaimo
and Sen [2006b].

7.5 Simple Integer Recourse 319

Exercises

1. Take Example 5 and problem RHS(1) . For the current iterate point with y3 =
0.2 , y4 = 0 and xν = (0.3,0.6)T , compare the violation of the disjunctive cut
after convexification and the one in the C3 −LP solution.

2. Take Example 5. Solve RHS(2) and obtain the cut 2/3y3+y4 ≥ 2/3−1.6/3x1 .

3. Take Example 5. Suppose that the first-stage constraints are x1 ≤ 1 , x2 ≤ 1
(instead of the single constraint 4x1 + 6x2 ≤ 5). Solve RHS(1) and RHS(2)
to obtain the r.h.s. of the disjunctive cuts. What are the violations at the current
iterate point xν = (0.3,0.6)T ?

7.5 Simple Integer Recourse

As seen in Section 3.3, a two-stage stochastic program with simple integer recourse
can be transformed into

min cT x +
m

∑
i=1

Ψi(χi)

s. t. Ax = b , T x = χ , x ∈ X ⊂ Zn1
+ , (5.1)

where
Ψi(χi) = q+

i ui(χi)+ q−
i vi(χi) (5.2)

with
ui(χi) = E�ξi − χi�+ , (5.3)

defined as the expected shortage, and

vi(χi) = E�χi − ξi�+ , (5.4)

defined as the expected surplus. As before, we assume

q+
i ≥ 0,q−

i ≥ 0 .

Also from Section 3.3, we know that the values of the expected shortage and sur-
plus can be computed in finitely many steps, either exactly or within a prespecified
tolerance ε .

Before turning to algorithms, we still need some results concerning the functions
Ψi ; for simplicity in the exposition we omit the index i . As we also know from
Section 3.3, the function Ψ is generally not convex and is even discontinuous when
ξ has a discrete distribution. It turns out, however, that some form of convexity
exists between function values evaluated in (not necessarily integer) points that are

320 7 Stochastic Integer Programs

integer length apart. Thus, let x0 ∈ ℜ be an arbitrary point. Let i ∈ Z be some
integer.

Define x1 = x0 + i , and for any j ∈ Z , j ≤ i , xλ = x0 + j . Equivalently, we
may define

xλ = λx0 +(1−λ)x1 ,

λ = (i− j)/i .

In the following, we will use x as an argument for Ψ as if T x = Ix = χ without
losing generality. We make T explicit again when we speak of a general problem
and not just the second stage.

Proposition 14. Let x0 ∈ℜ , i, j ∈ Z with j ≤ i , x1 = x0 + i , xλ = x0 + j . Then

Ψ(xλ) ≤ λΨ(x0)+ (1−λ)Ψ(x1) (5.5)

with λ = (i− j)/i .

Proof: We prove that Ψ(x+1)−Ψ(x) is a nondecreasing function of x . We leave
it as an exercise to infer that this is a sufficient condition for (5.5) to hold. Using
(3.3.16) and (3.3.17), we respectively obtain u(x + 1)− u(x) = −(1 − F(x)) and
v(x + 1)− v(x) = F̂(x + 1) , where F is again the cumulative distribution function
of ξ and F̂ is defined as in Section 3.3. With this,

Ψ(x + 1)−Ψ(x) = q−F̂(x + 1)−q+(1−F(x)) .

The result follows as q+ ≥ 0 , q− ≥ 0 and F̂ and F are nondecreasing.

This means that we can draw a piecewise linear convex function through points
that are integer length apart. Such a convex function is called a ρ -approximation
rooted at x if it is drawn at points x±κ , κ integer. In Figures 3 and 4, we provide
the ρ -approximations rooted at x = 0 and x = 0.5 , respectively, for the case in
Example 3.1.

Fig. 3 The ρ -approximation rooted at x = 0 .

7.5 Simple Integer Recourse 321

Fig. 4 The ρ -approximation rooted at x = 0.5 .

If we now turn to discrete random variables, we are interested in the different pos-
sible fractional values associated with a random variable. As an example, if ξ can
take on the values 0.0 , 1.0 , 1.2 , 1.6 , 2.0 , 2.2 , 2.6 , and 3.2 with some given
probability, then the only possible fractional values are 0.0 , 0.2 , and 0.6 . Let
f1 < f2 < · · · < fS denote the S ordered possible fractional values of ξ . Define
fS+1 = 1 . Let the extended list of fractionals be all points of the form a + fs ,
a ∈ Z , 1 ≤ s ≤ S . This extended list is a countable list that contains many more
elements than the possible values of ξ . In the example, 0.2 , 0.6 , 3.0 , 3.6 , 4.0 ,
4.2 , . . . are in the extended list of fractionals but are not possible values of ξ .

Lemma 15. Let ξ be a discrete random variable. Assume that S is finite. Let
a ∈ Z . Then

Ψ(x) is constant within the open interval (a + s j,a + s j+1) ,

Ψ(x) ≥ max {Ψ(a + s j),Ψ(a + s j+1)} ,

for all x ∈ (a + s j,a + s j+1) .

Proof: The proof can be found in Louveaux and van der Vlerk [1993].

The lemma states that Ψ(x) is piecewise constant in the open interval between
two consecutive elements of the extended list of fractionals and that the values in
points between two consecutive elements of that list are always greater than or equal
to the values of Ψ (·) at these two consecutive elements in the extended list. The
reader can easily observe this property in the examples that have already been given.

Corollary 16. Let ξ be a random variable with S = 1 . Let ρ(·) be a ρ -
approximation of Ψ (·) rooted at some point in the support of ξ . Then

ρ(x) ≤Ψ(x), ∀ x ∈ℜ.

Moreover, ρ is the convex hull of the function Ψ .

322 7 Stochastic Integer Programs

Proof: By Lemma 15,

∀ x ∈ (a,a + 1) ,

ρ(x) ≤ max{ρ(a),ρ(a + 1)}= max{Ψ(a),Ψ(a + 1)} ≤Ψ(x) .

Thus, ρ is a lower bound for Ψ . It is the convex hull of Ψ because it is convex,
piecewise linear, and it coincides with Ψ in all points at integer distance from the
root.

Among the cases where S = 1 , the most natural one in the context of simple
integer recourse is when ξ only takes on integer values. A well-known such case
is the Poisson distribution. Then the ρ -approximation rooted at any integer point is
the piecewise linear convex hull of Ψ that coincides with Ψ at all integer points.

We use Proposition 14 and Corollary 16 to derive finite algorithms for two classes
of stochastic programs with simple integer recourse.

a. χ restricted to be integer

Integral χ is a natural assumption, because one would typically expect first-stage
variables to be integer when second-stage variables are integer. It suffices then for T
to have integer coefficients. By definition of a ρ -approxima-
tion rooted at an integer point, solving (5.1) is thus equivalent to solving

min{cT x +
m2

∑
i=1

ρi(χi) | Ax = b , χ = T x , x ∈ X} , (5.6)

where T is such that x ∈ X implies χ is integer, and ρi is a ρ -approximation of
Ψi rooted at an integer point.

Because the objective in (5.6) is piecewise linear and convex, problem (5.6) can
typically be solved by a dual decomposition method such as the L -shaped method.
We recommend using the multicut version because we are especially concerned with
generating individual cut information for each subproblem that may require many
cuts. This amounts to solving a sequence of current problems of the form

min
x∈X ,θ∈ℜm2

{
cT x +

m2

∑
i=1

θi | Ax = b , χ = T x ,

Eilχi +θi ≥ eil , i = 1, . . . ,m2 , l = 1, . . . ,si

}
. (5.7)

In this problem, the last set of constraints consists of optimality cuts. They are used
to define the epigraph of Ψi , i = 1, . . . ,m2 . Optimality cuts are generated only
as needed. If χνi is a current iterate point with θνi <Ψi(χνi) , then an additional

7.5 Simple Integer Recourse 323

optimality cut is generated by defining

Eik =Ψi(χνi)−Ψi(χνi + 1) (5.8)

and
eik = (χνi + 1)Ψi(χνi)− χνi Ψi(χνi + 1), (5.9)

which follows immediately by looking at a linear piece of the graph of Ψi . The
algorithm iteratively solves the current problem (5.7) and generates optimality cuts
until an iterate point (χν ,θν) is found such that θνi =Ψi(χνi) , i = 1, . . . ,m2 . It is
important to observe that the algorithm is applicable for any type of random variable
for which Ψi s can be computed.

Example 6

Consider two products, i = 1,2 , which can be produced by two machines j =
1,2 . Demand for both goods follows a Poisson distribution with expectation 3 .
Production costs (in dollars) and times (in minutes) of the two products on the two
machines are as follows:

Machine:
1 2

Product: 1 3 2
2 4 5

Cost/Unit

Machine: Finishing:
1 2 1 2

Product: 1 20 25 4 7
2 30 25 6 5

Time/Unit

The total time for each machine is limited to 100 minutes. After machining, the
products must be finished. Finishing time is a function of the machine used, with
total available finishing time limited to 36 minutes. Production and demand corre-
spond to an integer number of products. Product 1 sells at $4 per unit. Product 2
sells at $6 per unit. Unsold goods are lost.

Define xi j = number of units of product i produced on machine j and yi(ξ) =
amount of product i sold in state ξ . The problem reads as follows:

min 3x11 + 2x12 + 4x21 + 5x22 + Eξ{−4y1(ξ)−6y2(ξ)}

324 7 Stochastic Integer Programs

s. t. 20x11 + 30x21 ≤ 100 , y1(ξ) ≤ ξ1

25x12 + 25x22 ≤ 100 , y2(ξ) ≤ ξ2 ,

4x11 + 7x12 + 6x21 + 5x22 ≤ 36 , y1(ξ) ≤ x11 + x12 ,

xi j ≥ 0 integer, y2(ξ) ≤ x21 + x22 ,

y1(ξ),y2(ξ) ≥ 0 integer.

Letting y+
i (ξ) = ξi − yi(ξ) , one obtains an equivalent formulation,

min 3x11 + 2x12 + 4x21 + 5x22 + Eξ{4y+
1 (ξ)+ 6y+

2 (ξ)}−30

s. t. 20x11 + 30x21 ≤ 100 , y+
1 (ξ) ≥ ξ1 − χ1 ,

25x12 + 25x22 ≤ 100 , y+
2 (ξ) ≥ ξ2 − χ2 ,

4x11 + 7x12 + 6x21 + 5x22 ≤ 36 ,

y+
1 (ξ),y+

2 (ξ) ≥ 0 and integer,

x11 + x12 = χ1 , x21 + x22 = χ2 ,

xi j ≥ 0 and integer.

This representation puts the problem under the form of a simple recourse model
with expected shortage only.

Let us start with the null solution, xi j = 0 , χi = 0 , i, j = 1,2 with θi =−∞ , i =
1,2 . We compute u(0)= E�ξ�+ = μ+ = 3 ; hence Ψ1(0)= 12 , Ψ2(0)= 18 , where
we have dropped the constant, −30 , from the objective for these computations.
To construct the first optimality cuts, we also compute u(1) = u(0)− 1 + F(0) =
2 + .05 = 2.05 . Thus, E11 = 4(3 − 2.05) = 3.8 , e11 = 4(1 ∗ 3 − 0 ∗ 2.05) = 12 ,
defining the optimality cut θ1 +3.8χ1 ≥ 12 . As χ2 = χ1 , E21 and e21 are just 1.5
times E11 and e1 , respectively, yielding the optimality cut θ2 + 5.7χ2 ≥ 18 .

The current problem becomes

min 3x11 + 2x12 + 4x21 + 5x22 −30 +θ1 +θ2

s. t. 20x11 + 30x21 ≤ 100 , 25x12 + 25x22 ≤ 100,

4x11 + 7x12 + 6x21 + 5x22 ≤ 36 ,

x11 + x12 =χ1 , x21 + x22 = χ2 ,

θ1 + 3.8χ1 ≥ 12 , θ2 + 5.7χ2 ≥ 18 ,

xi j ≥ 0 , integer.

We obtain the solution x11 = 0 , x12 = 4 , x21 = 1 , x22 = 0 , θ1 = −3.2 , θ2 =
12.3 . We compute u(4) = u(0)+∑3

l=0(F(l)−1) = 0.31936 and Ψ1(4) = 1.277 >
θ1 . A new optimality cut is needed for Ψ1(·) . Because Ψ(5) = 0.5385 , the cut is
0.739χ1 + θ1 ≥ 4.233 . We also have u(1) = 2.05 , hence Ψ2(1) = 12.3 = θ2 , so
no new cut is generated for Ψ2(·) .

At the next iteration, with the extra optimality cut on θ1 , we obtain a new so-
lution of the current problem as x11 = 0 , x12 = 2 , x21 = 3 , x22 = 0 , θ1 = 4.4 ,
θ2 = 0.9 . Here, two new optimality cuts are needed:

7.5 Simple Integer Recourse 325

2.312χ1 +θ1 ≥ 9.623

and

2.117χ2 +θ2 ≥ 10.383 .

The next iteration gives x11 = 0 , x12 = 3 , x21 = 2 , x22 = 0 , θ1 = 2.688 , θ2 =
6.6 as a solution of the current problem. Because Ψ2(2) = 7.5 > θ2 , a new cut is
generated, i.e., 3.467χ2 +θ2 ≥ 14.435 . The next iteration point is x11 = 0 , x12 =
3 , x21 = 2 , x22 = 0 , θ1 = 2.688 , θ2 = 7.5 , which is the optimal solution with
total objective value −5.812 .

b. The case where S = 1 , χ not integral

Details can again be found in Louveaux and van der Vlerk [1993]; we illustrate
the results with an example. Consider Example 6 but with the xi j ’s continuous.
Because we still assume the random variables follow a Poisson distribution, the
example indeed falls into the category S = 1 ; only integer realizations are possible.

For a given component i , the ρi -approximation rooted at an integer defines the
convex hull of the function Ψi(·) . All optimality cuts defined at integer points are
thus valid inequalities. If we take Example 6 again and impose all optimality cuts at
integer points, the continuous solution is x11 = 0 , x12 = 3 , x21 = 2 , x22 = 0 , and
no extra cuts are needed here. Now assume the objective coefficients of x12 and x21

are 1 and 4.5 (instead of 2 and 4). The solution of the stochastic program with
continuous first-stage decisions and all optimality cuts imposed at integer points
becomes x11 = 0 , x12 = 4 , x21 = 1.33 , x22 = 0 , and thus, χ1 = 4 , χ2 = 1.33 .

We now illustrate how to deal with a noninteger value of some χi . Now,
u(1.33) = 3−1 + F(0) = 2.05 and therefore Ψ2(1.33) = 12.3 > θ2 . This requires
imposing a new optimality cut . By Lemma 15, we know Ψ2(.) is constant within
(1,2) with value 12.3 . Let

δa = 1 if χ2 > 1 and 0 otherwise,

δb = 1 if χ2 < 2 and 0 otherwise.

The cut imposes that θ2 ≥ 12.3 if 1 < χ2 < 2 , i.e., if δa = δb = 1 . This is realized
by the following constraints:

χ2 ≤ 1 + 10δa , χ2 ≥ (1 + ε)δa ,

χ2 ≤ 10− (8 + ε)δb , χ2 ≥ 2−2δb,

θ2 ≥ 12.3−100(2−δa− δb) ,

where 10 and 100 are sufficiently large numbers to serve as bounds on χ2 and
−θ2 , respectively, and ε is a very small number. Thus, defining a function Ψi(·)
to be constant in some interval requires two extra binary variables and three extra

326 7 Stochastic Integer Programs

constraints. It is thus reasonable to first consider optimality cuts that define the con-
vex hull.

Continuing the example, we solve the current problem with the three additional
constraints. The solution is x11 = 0 , x12 = 3.43 , x21 = 2 , x22 = 0 with χ1 = 3.43 ,
χ2 = 2 , θ1 = 2.08 , θ2 = 7.5 . Thus, one more set of cuts is needed to define Ψ1

in the interval (3,4) . The final solution is x11 = 0 , x12 = 3 , x21 = 1 , x22 = 0 ,
θ1 = 2.689 , θ2 = 12.3 , and z = −7.51 .

Exercises

1. The definition (3.3.5) of a two-stage stochastic program with simple recourse
shows that it is a particular case of a two-stage stochastic program with integer
second-stage. Explain why Lemma 15 is not identical to Propositions 8 and 9.

2. Similarly, for case where S = 1 and χ is not integral, explain why the branch-
ing on tenders algorithm of Section 7.3 does not apply directly.

7.6 Cuts Based on Branching in the Second Stage

We now show how branching on the second-stage variables may create feasibility
or optimality cuts.

a. Feasibility cuts

As usual, let K2(ξ) denote the second-stage feasibility set for a given ξ and K2 =
∩ξ∈ΞK2(ξ) . Let also C2(ξ) denote the set of first-stage decisions that are feasible
for the continuous relaxation of the second stage, i.e.,

C2(ξ) = {x | ∃ y s. t. Wy = h(ω)−T(ω)x , y ≥ 0} .

Clearly, K2(ξ) ⊂ C2(ξ) , and any induced constraint valid for C2(ξ) is also valid
for K2(ξ) . Also, detecting that some point x ∈ C2(ξ) does not belong to K2(ξ)
amunts to solving a phase one problem:

(P1) w(x,ξ) = min eT v+ + eT v−

s. t. Wy + v+ − v− = h(ω)−T(ω)x ,

y ∈ Zn2
+ , v+,v− ≥ 0 . (6.1)

As usual, x ∈ K2(ξ) if and only if w(x,ξ) = 0 . If x �∈ K2(ξ) , we would like
to generate a feasibility cut . Let (y,v+,v−) be a solution to (P1), and because

7.6 Cuts Based on Branching in the Second Stage 327

x �∈ K2(ξ) , we have w(x,ξ) = eT v+ +eT v− > 0 . If y ∈ Zn2
+ , then a cut of the form:

(5.1.3) can be generated. If y �∈ Zn2
+ , then some of the components of y are not

integer. A branch and bound algorithm can be applied to (P1). This will generate
a branching tree where, at each node, additional simple upper or lower bounds are
imposed on some variables.

Let ρ = 1, . . . ,R index all terminal nodes, i.e., nodes that have no successors,
of the second-stage branching tree. Let Yρ be the corresponding subregions. They
form a partition of ℜn2

+ , i.e., ℜn2
+ = ∪ρ=1,...,RY ρ and Y ρ ∩Yσ = /0 , ρ �= σ . Now,

x ∈ K2(ξ) if and only if x ∈ ∪ρ=1,...,RKρ
2 (ξ) , where

Kρ
2 (ξ) = {x | ∃y ∈ Yρ s. t. Wy ≤ h(ω)−T(ω)x , y ≥ 0} .

However, because Yρ is obtained from ℜn2
+ by some branching process, it is de-

fined by adding a number of bounds to some components of y . Thus, Kρ
2 (ξ) is a

polyhedron for which linear cuts are obtained through a classical separation or du-
ality argument. It follows that x ∈ K2(ξ) if and only if at least one among R sets
of cuts is satisfied.

In practice, one constructs the branching tree of the second stage associated with
one particular x̄ and generates one cut per terminal node of the restricted tree. This
means that one first-stage feasibility cut (8.1.3) corresponds to the requirement that
one out of R cuts is satisfied. As expected, this takes the form of a Gomory function.
It can be embedded in a linear programming scheme by the addition of extra binary
variables, one for each of the R cuts, as follows. Assume the ρ th cut is represented
by uT

ρ x ≤ dρ . One introduces R binary variables, δ1, . . . ,δR . The requirement that
at least one of the R cuts is satisfied is equivalent to

uT
ρ x ≤ dρ + Mρ(1− δρ) , ρ = 1, . . . ,R ,

R

∑
ρ=1

δρ ≥ 1 ,

δρ ∈ {0,1} , ρ = 1, . . . ,R ,

where Mρ is a large number such that uT
ρ x ≤ dρ + Mρ , ∀x ∈ K1 .

Finally, observe that x ∈ K2 if and only x ∈ K2(ξ) , ∀ξ ∈ Ξ . As in the con-
tinuous case (Section 5b.), it is sometimes enough to consider x ∈ K2(ξ) for one
particular ξ .

Example 7

Consider again Example 3.3, when the second stage is defined as

−y1 + y2 ≤ ξ− x1 ,

y1 + y2 ≤ 2− x2 , y1,y2 ≥ 0 and integer,

328 7 Stochastic Integer Programs

where ξ takes on the values 1 and 2 with equal probability 0.5 . It suffices here
to consider x ∈ K2(1) because K2(1) ⊂ K2(2) . First, consider x = (2,2)T . From
Section 5.1, we find a violated continuous induced constraint:

x1 + x2 ≤ 3 .

Next, consider x = (1.4,1.6)T . Problem (P1) is

min v1 + v2

s. t. −y1 + y2 − v1 ≤ −0.4 ,

y1 + y2 − v2 ≤ 0.4,

y1,y2 ≥ 0 and integer,

where v1 and v2 correspond to v− in (6.1) and v+ is not needed due to the
inequality form of the constraints. The optimal solution of the continuous relaxation
of (P1) is given by the following dictionary:

w = v1 + v2 ,

y1 = 0.4 + y2 + s1 − v1 ,

s2 = 0−2y2 − s1 + v1 + v2 .

Its solution is w = 0 , which implies x ∈C2(1) . However, y1 is not integer. Branch-
ing creates two nodes, y1 ≤ 0 and y1 ≥ 1 , respectively. In the first branch, the
bound y1 ≤ 0 creates the additional constraint y1 + s3 = 0 . After one dual itera-
tion, the following optimal dictionary is obtained:

w = 0.4 + y2 + s1 + s3 + v2 ,

y1 = 0− s3 ,

s2 = 0.4− y2 + s3 + v2 ,

v1 = 0.4 + y2 + s1 + s3 .

Associating the dual variables (−1,0,−1) with the right-hand sides (1− x1 , 2−
x2 , 0), one obtains the feasibility cut , x1 −1 ≤ 0 , for this branch.

Similarly, in the second branch, the bound y1 ≥ 1 creates a constraint y1 − s3 =
1 . After two dual iterations, the optimal dictionary is:

w = 0.6 + y2 + s2 + s3 + v1 ,

y1 = 1 + s3 ,

v2 = 0.6 + y2 + s2 + s3 ,

s1 = 0.6− y2 + s3 + v1 .

Associating the dual variables (0,−1,1) to the right-hand sides (1− x1,2− x2,1),
one obtains the feasibility cut , x2 − 1 ≤ 0 , for the second branch. Thus, R = 2 ,
as the solutions in the two nodes satisfy the integrality requirement and are thus

7.6 Cuts Based on Branching in the Second Stage 329

terminal. The feasibility cut is thus that either x1 − 1 ≤ 0 or x2 − 1 ≤ 0 must be
satisfied. Because we also have x1 ≤ 2 and x2 ≤ 2 , we may take M1 = M2 = 1 so
that we have to impose the following set of conditions:

x1 ≤ 2− δ1 ,

x2 ≤ 2− δ2 ,

δ1 + δ2 ≥ 1 ,

δ1,δ2 ∈ {0,1} .

b. Optimality cuts

We consider here a multicut approach,

θ =
K

∑
k=1

θk ,

where, as usual, K denotes the cardinality of Ξ . We search for optimality cuts on a
given θk . Based on branching on the second-stage problem, one obtains a partition
of ℜn2

+ into R terminal nodes Yρ = {y | aρ ≤ y ≤ bρ} , ρ = 1, . . . ,R . The objective
value of the second-stage program over Y ρ is

Qρ(xν ,ξk) = min{qT y | Wy = h(ξ k)−T(ξ k)xν , aρ ≤ y ≤ bρ} .

It is the solution of a linear program that by classical duality theory is also

Qρ(xν ,ξk) = (πρ)T (h(ξ k)−T (ξ k)xν)+ (πρ)T aρ +(π̄ρ)T bρ} ,

where πρ , πρ , and π̄ρ are the dual variables associated with the original con-
straints, lower and upper bounds on y ∈ Y ρ , respectively.

To simplify notation, we represent this expression as:

Qρ(xν ,ξk) = (σρ
k)T xν + τρk ,

with (σρ
k)T = −(πρ)T T (ξ k) and τρk = (πρ)T h(ξ k) + (πρ)T aρ + (π̄ρ)T bρ . By

duality theory, we know that Qρ(x,ξ k) ≥ (σρ
k)T xν + τρk . Moreover, Q(x,ξ k) =

minρ=1,...,R Qρ(x,ξ k) . Thus,

θk ≥ pk(min
ρ=1,...,R

(σρ
k)T xν + τρk) . (6.2)

Note that some of the terminal nodes may be infeasible, in which case their dual
solutions contain unbounded rays with dual objective values going to ∞ so that the
minimum is in practice restricted to the feasible terminal nodes.

330 7 Stochastic Integer Programs

This expression takes the form of a Gomory function, as expected. Again, it un-
fortunately requires R extra binary variables to be included in a mixed integer linear
representation. This makes the branching on the second-stage very often computa-
tionaly unattractive.

Example 8

Consider the second-stage program

Eξ min{−8y1 −9y2 s. t. 3y1 + 2y2 ≤ ξ,−y1 + y2 ≤ x1,y2 ≤ x2,y ≥ 0, integer}.

Consider the value ξ1 = 8 and x̄ = (0,6)T . The optimal dictionary of the continu-
ous relaxation of the second-stage program is:

z = −136/5 + 17s1/5 + 11s2/5 ,

y1 = 8/5− s1/5 + 2s2/5 ,

y2 = 8/5− s1/5−3s2/5 ,

s3 = 22/5 + s1/5 + 3s2/5 ,

where s1 , s2 , and s3 are the slack variables of the three constraints. Branching on
y1 gives two nodes, y1 ≤ 1 and y1 ≥ 2 , which turn out to be the only two terminal
nodes. For the first node, adding the constraint y1 + s4 = 1 yields the following
dictionary after one dual iteration:

z = −17 + 9s2 + 17s4 ,

s1 = 3 + 2s2 + 5s4 ,

y2 = 1− s2 − s4 ,

s3 = 5 + s2 + s4 ,

y1 = 1− s4 .

We thus have dual variables (0,−9,0) associated with the right-hand side (8,x1,x2)
of the constraints and −17 associated with the bound 1 on y1 . Hence, Q1(x̄,8) =
−9x1 −17 .

Similarly, we add y1 − s4 = 2 for the second node. We obtain:

z = −25 + 9/2s1 + 11/2s4 ,

y1 = 2 + s4 ,

y2 = 1− s1/2−3/2s4 ,

s3 = 5 + s1/2 + 3/2s4 ,

s2 = 1 + s1/2 + 5/2s4 .

7.7 Extensive Forms and Decomposition 331

We now have dual variables, (−9/2,0,0) , associated with the right-hand side
(8,x1,x2) of the constraints and 11/2 associated with the lower bound 2 on y1 .
Hence, Q2(x̄,8) = −25 . Applying (6.2), we conclude that

θ1 ≥ p1 min(−9x1 −17,−25) , (6.3)

where p1 is the probability of ξ = ξ1 .

Exercises

1. Consider Example 7. We have see that x ∈ K2(1) if x1 ≤ 2 , x2 ≤ 2 and either
x1 ≤ 1 or x2 ≤ 1 . Thus, the feasibility set is the union of two sets.
Apply Proposition 11 in two cases:

(a) if x = (2,2)T ;
(b) if x = (1.4,1.6)T .

• Show that the disjunctive cut formed in (a) is the same as the continuous
induced cut: x1 + x2 ≤ 3 . (This example can be found in Section 7.8b.)

• Show that no violated disjunctive cut is obtained in (b).

2. Consider Example 8.

(a) Compare the cut (6.3) with the one obtained by L -shaped cut for ξ1 = 8 .
Show that (6.3) is stronger for x1 ≤ 1.5 .

(b) Assume 2x1 + x2 ≤ 6 . Convexifying (6.3) over 2x1 + x2 ≤ 6 , x1 ≥ 0 ,
x2 ≥ 0 gives a line passing by (0,−25p1) and (3,−44p1) in the (x1,θ1)
space, namely θ1 ≥ p1(−25− 19

3 x1) . This convexification is stronger that
the L -shaped cut only for x1 ≤ 33/62 .

7.7 Extensive Forms and Decomposition

Problems with mixed integer second-stage can sometimes be solved by decom-
posing the second-stage variables into their discrete parts and continuous parts.
Assuming a mixed second stage with binary variables, one can divide y(ω)T =
(yB(ω)T ,yC(ω)T) where yB(ω) is the vector of binary variables and yC(ω) the
vector of continuous variables. Partitioning q and W in a similar fashion, the clas-
sical two-stage program becomes

min z = cT x + EξqT
B(ω)yB(ω)+ EξQ(x,yB(ω),ω)

s. t. Ax = b ,

x ∈ X , yB(ω) ∈ YB(ω) ,

332 7 Stochastic Integer Programs

where

Q(x,yB(ω),ω) = min{qT
C(ω)yC(ω)

s. t. WCyC(ω) ≤ h(ω)−T(ω)x−WByB(ω),yC(ω) ∈ YC(ω)} .

When ξ is a discrete random variable, this amounts to writing down the extensive
form for the second-stage binary variables. When the number of realizations of ξ
remains low, such a program is still solvable by the ordinary L -shaped method. An
extension of this idea to a three-stage problem in the case of acquisition of resources
can be found in Bienstock and Shapiro [1988].

The same idea applies for multistage stochastic programs having the block sepa-
rable property defined in Section 3.4, provided the discrete variables correspond to
the aggregate level decisions and the continuous variables correspond to the detailed
level decisions. Then the multistage program is equivalent to a two-stage stochastic
program, where the first stage is the extensive form of the aggregate level problems
and the value function of the second stage for one realization of the random vector
is the sum, weighted by the appropriate probabilities of the detailed level recourse
functions for that realization and all its successors. This result is detailed in Lou-
veaux [1986], where examples are provided.

Example 9

As an illustration, consider the warehouse location problem similar to those studied
in Section 2.4. As usual, let

x j =

{
1 if plant j is open,

0 otherwise,

with fixed-cost c j , and v j , the size of plant j , with unit investment cost g j , be
the first-stage decision variables. Assume k = 1, . . . ,K realizations of the demands
dk

i in the second stage. Let yk
i j be the fraction of demand dk

i served from j , with
unit revenue qi j (see Section 2.4c. Now, assume the possibility exists in the second
stage to extend open plants by an extra capacity (size) of fixed value e j at cost
r j . For simplicity, assume this extension can be made immediately available (zero
construction delay).

To this end, let

wk
j =

⎧⎪⎨
⎪⎩

1 if extra capacity is added to j

when the second-stage realization is k,

0 otherwise.

The two-stage stochastic program would normally read as

7.7 Extensive Forms and Decomposition 333

max−
n

∑
j=1

c jx j −
n

∑
j=1

g jv j +
K

∑
k=1

pk

(
max

m

∑
i=1

n

∑
j=1

qi jy
k
i j −

n

∑
j=1

r jw
k
j

)

s. t.
n

∑
j=1

yk
i j ≤ 1 , k = 1, . . . ,K , i = 1, . . . ,m ,

x j ∈ {0,1} , v j ≥ 0 , j = 1, . . . ,n ,
m

∑
i=1

dk
i yk

i j − e jw
k
j ≤ v j , k = 1, . . . ,K , j = 1, . . . ,n ,

0 ≤ yk
i j ≤ x j , i = 1, . . . ,m , j = 1 . . . ,n ,

k = 1, . . . ,K ,

wk
j ≤ x j , j = 1, . . . ,n , k = 1, . . . ,K ,

wk
j ∈ {0,1} , j = 1, . . . ,n , k = 1, . . . ,K .

Using the extensive form for the binary variables, wk
j s transforms it into

max−
n

∑
j=1

c jx j −
n

∑
j=1

g jv j −
n

∑
j=1

K

∑
k=1

pkr jw
k
j +

K

∑
k=1

pk max
n

∑
i=1

n

∑
j=1

qi jy
k
i j

s. t. x j ∈ {0,1} , v j ≥ 0 , j = 1, . . . ,n ,
n

∑
j=1

yk
i j ≤ 1 , i = 1, . . . ,m , k = 1, . . . ,K ,

wk
j ≤ x j ,

m

∑
i=1

dk
i yk

i j ≤ v j + e jw
k
j , j = 1, . . . ,n ,

k = 1, . . . ,K ,

wk
j ∈ {0,1} , 0 ≤ yk

i j ≤ x j , i = 1, . . . ,m ,

j = 1, . . . ,n , k = 1, . . . ,K .

Thus, at the price of expanding the first-stage program, one obtains a second stage
that enjoys the good properties of continuous programs.

When the stochastic programs with mixed-integer second-stage cannot be effi-
ciently decomposed as above, then it can be solved through a scenario decompo-
sition approach. In this method, the nonanticipativity constraints are subjected to
Lagrangian relaxation to create mixed-integer programs which are separable in the
realizations of the random vector. Details on the method can be found in Carøe and
Schultz [1999].

334 7 Stochastic Integer Programs

Exercises

1. In Example 9, assume a given construction delay for the warehouses in the sec-
ond stage. Is it still possible to decompose the second stage?

7.8 Short Reviews

a. Branch-and-bound

Consider the following integer program

z = min 3y1 + 2y2

s. t. 2y1 + 3y2 ≥ 9 ,

−3y1 + 3y2 ≤ 5 ,

y1,y2 ≥ 0 , integer

Optimize: First consider the LP-relaxation, i.e. the same problem where the
requirement “ y integer” is removed. Its solution is easily obtained through
your favorite LP-solver or through a graphical method. It is z = 7.333 , y =
(0.8,2.467)T . Let Y denote the second-stage polyhedron for this relaxation.

Bounding: On any polyhedron, the integer solution is no better than the contin-
uous one. The objective value of the LP-relaxation is thus a lower bound on the
solution of the integer program. It can be rounded down as the objective must be
integer, so z = 8 . We may take z̄ = ∞ , where z and z̄ denote lower and upper
bounds on the optimal solution.

Branching: as y is fractional, we may branch on either component. Say we
branch on y2 . The current value is y2 = 2.467 . Any integer solution must sat-
isfy either y2 ≤ 2 or y2 ≥ 3 . This dichotomy excludes the current solution.
It does not eliminate any integer point. Branching consists of considering two
nodes: Y1 = Y ∩{y2 ≤ 2} and Y2 = Y ∩{y2 ≥ 3} . The list of nodes is denoted
by Λ = {Y1,Y2} .

Select a Node and Reoptimize: We (arbitrarily) select Y1 and reoptimize the
LP-relaxation on Y1 . Its solution is z = 8.5 , y = (1.5,2)T .

Branching: as y1 = 1.5 is fractional, we create two new nodes: Y3 = Y1 ∩{y1 ≤
1} and Y4 = Y1 ∩{y1 ≥ 2} . Y1 is removed from the list. Λ = {Y2,Y3,Y4} .
Select a Node and Reoptimize: We select Y3 and reoptimize the LP-relaxation
on Y1 . It has no feasible solution. Y3 is fathomed. This means it is removed
from the list and does not need any further branching (which would not help in
creating a feasible solution). Λ = {Y2,Y4} .

Select a Node and Reoptimize: We select Y4 and reoptimize the LP-relaxation.
Its solution is z = 9.333 , y = (2,1.667)T .

7.8 Short Reviews 335

Branching: as y2 = 1.667 is fractional, we create two new nodes: Y5 =Y4∩{y2 ≤
1} and Y6 = Y4 ∩{y2 ≥ 2} . Y4 is removed from the list. Λ = {Y2,Y5,Y6} .

Select a Node and Reoptimize: We select Y5 and reoptimize the LP-relaxation.
Its solution is z = 11 , y = (3,1)T .

Updating the Incumbent: As y is integer and z < z̄ , the best feasible solution
becomes y = (3,1)T and z̄ = 11 . Y5 is fathomed (as they are no better integer
solutions in Y5). Λ = {Y2,Y6} .

Select a Node and Reoptimize : We select Y6 and reoptimize the LP-relaxation.
Its solution is z = 10 , y = (2,2)T .

Updating the Incumbent: As y is integer and z < z̄ , the best feasible solution
becomes y = (2,2)T and z̄ = 10 . Node Y6 is fathomed. Λ = {Y2} .

Select a Node and Reoptimize: We select Y2 and reoptimize the LP-relaxation.
Its solution is z = 10 , y = (1.333,1)T . Y2 is fathomed: no solution in Y2 can be
better than 10 , which is the value of the current best solution. The list is empty.
The algorithm terminates with optimal solution y = (2,2)T and z = 10 .

To summarize, branching occurs at nodes having a fractional solution. Fathom-
ing occurs when the LP-relaxation of a node is infeasible, has an integer solution or
has a solution whose value is worse than the current incumbent. Branch-and-bound
is only a part of the techniques used for solving large MIP’s. It is combined with cut
generation, reduced cost fixing, preprocessing, special-ordered set (SOS) or gener-
alized upper bound (GUB) branching, and primal heuristics to cite some of the most
important.

b. A simple example of valid inequalities

Consider the following binary program

min 3y1 + 7y2 + 9y3 + 6y4

s. t. 2y1 + 4y2 + 5y3 + 3y4 ≥ 7 ,

y1, . . . ,y4 ∈ {0,1} .

The so-called cover inequalities can be found by a simple reasoning. If we con-
sider a solution s.t. y3 = y4 = 0 , the constraint cannot be satisfied. Thus, at least
one of the two variables must be 1 . This can be expressed as

y3 + y4 ≥ 1,

which is a cover inequality. It is said to be valid as it must be satisfied by any binary
solution. At the same time, it cannot replace the original constraint.

Similarly, the original constraint cannot be satisfied if y2 = y3 = 0 , or if y1 =
y2 = y4 = 0 implying

336 7 Stochastic Integer Programs

y2 + y3 ≥ 1 ,

y1 + y2 + y4 ≥ 1 .

respectively.
Three comments are in line here. First, there are more valid inequalities than the

above three. For instance, y1 + y2 + y3 ≥ 1 is also valid. However, it is implied by
y2 + y3 ≥ 1 . Second, reformulation of an integer program with several constraints
may lead to a very large number of valid inequalities. In practice, the idea is to only
add those which are violated at the current iterate point. Going back to our example,
its LP solution is y = (1,1,0.2,0)T . (This is easily checked as the variables in
the example are put in increasing order (3/2 ≤ 7/4 ≤ 9/5 ≤ 6/3) of the ratio
between the objective coefficient and the constraint coefficient.) Of the four valid
inequalities, only the first one y3 + y4 ≥ 1 is violated, as y3 + y4 = 0.2 . Adding
y3 + y4 ≥ 1 reduces the number of fractional solutions without changing the binary
solutions. It turns out that the LP with the addition of the cut y3 + y4 ≥ 1 has a
spontaneous optimal integer solution y = (1,0,1,0)T which is thus the optimal
solution of the integer program.

Third, the valid inequalities depend on the r.h.s. Consider the solution of the same
problem where the right-hand side is 8 :

min 3y1 + 7y2 + 9y3 + 6y4

s. t. 2y1 + 4y2 + 5y3 + 3y4 ≥ 8 ,

y1, . . . ,y4 ∈ {0,1} .

The non-dominated valid inequalities become: y2 + y3 + y4 ≥ 2 and y1 + y3 ≥ 1 .
The first inequality can be justified as follows: if y1 = 1 , then 4y2 + 5y3 + 3y4 ≥ 6
must hold, which requires at least two variables to be 1 . Note that this inequality
is not valid when the r.h.s. is 7 . A constraint like y3 + y4 ≥ 1 is still valid but
dominated by y2 + y3 + y4 ≥ 2 .

The solution of the LP relaxation is y = (1,1,0.4,0)T . It violates the cut y2 +
y3 + y4 ≥ 2 . The LP relaxation with the addition of this single cut gives a fractional
solution. The LP relaxation with the addition of y2 + y3 + y4 ≥ 2 and y1 + y3 ≥ 1
gives the optimal solution y = (0,0,1,1)T .

c. Disjunctive cuts

c.1 Union of Sets

Proposition 17. If Pi = {x ∈ℜn
+ | Aix ≥ bi} for i = 0,1 are two nonempty polyhe-

dra, then πT x ≥ π0 is a valid inequality for co(P0 ∪P1) if and only if there exists
u0,u1 ≥ 0 such that π ≥ (ui)T Ai and π0 ≤ (ui)T bi for i = 0,1 .

7.8 Short Reviews 337

Proof: Let Pi = {x ∈ℜn
+ | Aix ≥ bi} for i = 0,1 be two nonempty polyhedra. We

search for a valid inequality for co(P0 ∪P1) . Any nonnegative combination of the
constraints in one of the Pi ’s gives a valid constraint for that Pi . Let ui ≥ 0 be the
vector representing this combination. Thus (ui)T Aix ≥ (ui)T bi is valid for Pi . If
we do the same in both sets, we may construct a valid inequality for co(P0 ∪P1) of
the form πT x ≥ π0 by taking π ≥ (ui)T Ai and π0 ≤ (ui)T bi for i = 0,1 . Indeed,
if x ∈ co(P0 ∪P1) , it must belong to one of the two polyhedra. Say it belongs to
Pi . Then, πT x ≥ (ui)T Aix ≥ (ui)T bi ≥ π0 which proves the validity of the cut.

Example: Let P0 = {x ∈ℜ2
+ | x1 ≤ 1 , x2 ≤ 3} and P1 = {x ∈ℜ2

+ | 4x1 + 2.5x2 ≤
10} .

Say, we want a disjunctive cut that separates the current point xν = (1.8,2.4)T .
Then, the cut is obtained by solving an LP consisting of maximizing the violation
π0 −πT xν , under the constraints of Proposition 11. To be bounded, this LP needs
some normalizing. One possibility is to take −1 ≤ π0 ≤ 1 , −e ≤ π ≤ e . We obtain:

z = max π0 −1.8π1 −2.4π2

s. t. π1 ≥ −u0
1 , π1 ≥ −4u1 ,

π2 ≥ −u0
2 , π2 ≥ −2.5u1 ,

π0 ≤ −u0
1 −3u0

2 , π0 ≤ −10u1 ,

u ≥ 0 , −e ≤ π ≤ e , −1 ≤ π0 ≤ 1 .

The solution is z = 0.2 , u0
1 = 0.4 , u0

2 = 0.2 , u1 = 0.1 , π = (−0.4,−0.2)T ,
π0 = −1 . The disjunctive cut is −0.4x1 − 0.2x2 ≥ −1 . At xν = (1.8,2.4)T , the
cut is violated by 0.2 which is the value of z . The cut can also be written as
2x1 + x2 ≤ 5 . The line 2x1 + x2 = 5 passes through (1,3)T and (2.5,0)T , which
are extreme points of P0 and P1 , respectively.

c.2 Disjunction on a binary variable

We consider the disjunction P0 = Y ∩{y ∈ℜn2
+ | y j ≤ 0} and P1 = Y ∩{y ∈ℜn2

+ |
y j ≥ 1} for some fractional variable.

Proposition 18. The inequality πT y ≥ π0 is valid if and only if there exists
ui,vi,wi ≥ 0 for i = 0,1 such that

π ≥ (u0)TW − v0 −w0e j ,

π ≥ (u1)TW − v1 + w1e j ,

π0 ≥ (u0)T d − eT v0 ,

π0 ≥ (u1)T d − eT v1 + w1 .

338 7 Stochastic Integer Programs

The cut is obtained by solving an LP consisting of maximizing the violation
π0 −πT yν , under the constraints defined in Proposition 12, where yν is the current
fractional solution. To be bounded, this LP needs some normalizing. One possibility
is to take −1 ≤ π0 ≤ 1 , −e ≤ π ≤ e .

Example: Consider again the program:

min 3y1 + 7y2 + 9y3 + 6y4

s. t. 2y1 + 4y2 + 5y3 + 3y4 ≥ 7 ,

y1, . . . ,y4 ∈ {0,1} .

Its LP relaxation has solution y = (1,1,0.2,0)T (see Section 7.8b.). y3 is the only
fractional variable and is thus used for the disjunction:

P0 = {y ≥ 0 | 2y1 + 4y2 + 5y3 + 3y4 ≥ 7 ,

y1 ≤ 1 , y2 ≤ 1, y3 ≤ 1 , y4 ≤ 1 , y3 ≤ 0}
and P1 = {y ≥ 0 | 2y1 + 4y2 + 5y3 + 3y4 ≥ 7 ,

y1 ≤ 1, y2 ≤ 1 , y3 ≤ 1 , y4 ≤ 1 , y3 ≥ 1}
or

P0 = {y ≥ 0 | 2y1 + 4y2 + 5y3 + 3y4 ≥ 7 ,

− y1 ≥ −1 , −y2 ≥ −1 , −y3 ≥ −1 , −y4 ≥ −1 ,−y3 ≥ 0}
and P1 = {y ≥ 0 | 2y1 + 4y2 + 5y3 + 3y4 ≥ 7 ,

− y1 ≥ −1 , −y2 ≥ −1 , −y3 ≥ −1 , −y4 ≥ −1 , y3 ≥ 1} .

The disjunctive cut is obtained through the solution of:

z = max π0 −π1 −π2 −0.2π3

s. t. π1 ≥ 2u0 − v0
1 , π1 ≥ 2u1 − v1

1 ,

π2 ≥ 4u0 − v0
2, π2 ≥ 4u1 − v1

2 ,

π3 ≥ 5u0 − v0
3 −w0 , π3 ≥ 5u1 − v1

3 + w1 ,

π4 ≥ 3u0 − v0
4 , π4 ≥ 3u1 − v1

4 ,

π0 ≤ 7u0 − v0
1 − v0

2 − v0
3 − v0

4 ,

π0 ≤ 7u1 − v1
1 − v1

2 − v1
3 − v1

4 + w1 ,

u,v,w ≤ 0 , −e ≤ π ≤ e , −1 ≤ π0 ≤ 1 .

The solution is z = 0.8/3 , u0 = 1/3 , v0 = (2/3,4/3,0,0)T , w0 = 4/3 , u1 = 0 ,
v1 = (0,0,0,0)T , w1 = 1/3 , π = (0,0,1/3,1)T , π0 = 1/3 . The disjunctive cut
is 1/3y3 + y4 ≥ 1/3 , which is currently violated by 0.8/3 . Note however that it is
dominated by the cut y3 + y4 ≥ 1 (the cover inequality in Section 7.8b.).

Part IV
Approximation and Sampling Methods

Chapter 8
Evaluating and Approximating Expectations

The evaluation of the recourse function or the probability of satisfying a set of con-
straints can be quite complicated. This problem is basically one of numerical in-
tegration in high dimensions corresponding to the random variables. The general
problem requires some form of approximation, such as quadrature formulas, which
typically apply to smooth functions in low dimensions without using known con-
vexity properties. In Section 8.1 of this chapter, we review some of these basic
procedures, but note that stochastic programs often do not have differentiability as
assumed in many numerical schemes but generally do have useful convexity prop-
erties.

In the remaining sections of this chapter, we consider approximations that give
lower and upper bounds on the expected recourse function value in two-stage prob-
lems. The intent of these procedures is to provide progressively tighter bounds until
some a priori tolerance has been achieved. This chapter focuses on such determin-
istic approximation results for two-stage problems. In Chapter 9, we describe ap-
proximations for two-stage problems built on Monte Carlo sampling. Chapter 10
discusses both deterministic and random approximation methods for the multistage
case.

Section 8.2 in this chapter discusses the most common type of approximations
built on discretizations of the probability distribution. The lower bounds are exten-
sions of midpoint approximations, while the upper bounds are extensions of trape-
zoidal approximations. The bounds are refined using partitions of the region. Other
improvements are possible using more tightly constrained moment problem models
of the approximation, as described in Section 8.5.

Section 8.3 discusses computational uses for bounds. The goal is to place the
bounds effectively into computational methods. We present uses of the bounds in
the L -shaped method, inner linearizations, and separable nonlinear programming
procedures. Section 8.4 discusses some basic bounding approaches for probabilis-
tic constraints. General forms are presented briefly. These methods are based on
fundamental inequalities from probability.

Section 8.5 presents a variety of extensions of the previous bounding approaches.
It presents bounds based on approximations of the recourse function. The basic idea

J.R. Birge and F. Louveaux, Introduction to Stochastic Programming, Springer Series 341
in Operations Research and Financial Engineering, DOI 10.1007/978-1-4614-0237-4 8,
c© Springer Science+Business Media, LLC 2011

342 8 Evaluating and Approximating Expectations

is to bound the objective function above and below by functions that are simply inte-
grated, such as separable functions. We present the basic separable piecewise linear
upper bounding function and various methods based on this approach. We also dis-
cuss results for particular moment problem solutions. We consider bounds based on
second moment information and allowances for unbounded support regions. Finally,
Section 8.6 concludes this chapter with basic results on convergence of approxima-
tions and bounding procedures. Most of the following results are based on these
convergence ideas.

8.1 Direct Solutions with Multiple Integration

In this section, we again consider the basic stochastic program in the form

min
x

{cT x +Q(x) | Ax = b , x ≥ 0} , (1.1)

where Q is the expected recourse function,
∫
Ω [Q(x,ω)]P(dω) , where we use

P(dω) in place of dF(ω) to allow for general probability measure convergence.
We again have

Q(x,ω) = min
y(ω)

{q(ω)T y(ω) | Wy(ω) = h(ω) − T (ω)x , y(ω) ≥ 0} , (1.2)

where we assume two stages and no probabilistic constraints for now.
As we mentioned previously, we can always treat (1.1) as a standard nonlinear

program if we can evaluate Q(x) and perhaps its derivatives. The major difficulty
of stochastic programming is, of course, just such an evaluation. These function
evaluations all involve multiple integration with potentially large numbers (on the
order of 1000 or more) of random variables. This section considers some of the
basic techniques from numerical integration that have been attempted in the context
of stochastic programming. Remaining sections consider various approximations
that lead to computable problems.

Numerical integration procedures are generally built around formulas that ap-
ply only in small dimensions (see, e.g., Stroud [1971]). For some special functions
defined over specific regions, efficient computations are possible, but these results
do not generally carry over to the more general setting of the integrand, Q(x,ω) .
This function is piecewise linear in (1.2) as a function of ω and, hence, has many
nondifferentiable points. The error analysis from standard smooth integrations (built
on Peano’s rule) cannot apply. In fact, quadrature formulas built on low-order poly-
nomials may produce poor results when other simple calculations are exact (Exer-
cise 1).

Generalizations of the basic trapezoid and midpoint approaches in numerical in-
tegration obtain bounds, however, when convexity properties of Q are exploited.
Problem structure is in fact a key to obtaining computable approximations of the
multiple integral.

8.1 Direct Solutions with Multiple Integration 343

The simple recourse example is the best case for exploitation of problem struc-
ture. In this case, Q(x,ω) becomes separable into functions of each component
of h(ω) , the right-hand side vector in (1.2). We obtain Q(x) = ∑m2

i=1 Qi(x) as in
(3.1.9), which only requires integration with respect to each hi separately. As we
described in Chapter 5, this allows the use of general nonlinear programming algo-
rithms.

In general, the stochastic linear program recourse function can also be written in
terms of bases in W . Suppose the set of bases in W is {Bi, i ∈ I} . Let πi(ω)T =
qT

Bi
B−1

i . Then

Q(x,ω) = max
i

{πi(ω)T (h(ω)−T (ω)x) | πi(ω)TW ≤ q(ω)T} , (1.3)

where, if q(ω) is constant (i.e., not random), the evaluation reduces to finding the
maximum value of the inner product over the same feasible set for all ω . With
q(ω) constant,

Q(x) =∑
i∈I

∫
Ωi

{πT
i (h(ω)−T(ω)x)}P(dω) , (1.4)

where Ωi = {ω | πT
i (h(ω)−T (ω)x) ≥ πT

j (h(ω)−T (ω)x), j �= i} . The integrand
in (1.4) is linear; so, we have

Q(x) =∑
i

πT
i (h̄i − T̄ix) , (1.5)

where h̄i =
∫
Ωi

hiP(dω) and T̄i =
∫
Ωi

TiP(dω) . Thus, if each Ωi can be found,
then the numerical integration reduces to finding the expectations of the random
parameters over the regions Ωi , i.e., the conditional expectation on Ωi . In this
case, we can also define a basis Bi from W so that BT

i πi = q and then Ωi = {ω |
qT (B−1

i (h(ω)− T (ω)x)) ≥ qT (B−1
j (h(ω)− T (ω)x)),∀ j �= i} . If integration over

the regions Ωi defined by Bi is sufficiently straightforward, then (1.5) can be used
directly. We illustrate this with the following example, which we will also use for
bounding approximations in the following sections.

Example 1

Consider the following recourse problem with only h random:

Q(x,ξ) = min y+
1 + y−

1 + y+
2 + y−

2 + y3

s. t. y+
1 −y−

1 + y3 = h1 − x1 ,

y+
2 −y−

2 + y3 = h2 − x2 ,

y+
1 ,y−

1 , y+
2 , y−

2 , y3 ≥ 0 ,

344 8 Evaluating and Approximating Expectations

where hi is independently uniformly distributed on [0,1] for i = 1,2 .

Fig. 1 Optimal basis regions of Example 1.

The optimal basis regions for the solution of this problem are illustrated in Figure 1.
Here, the optimal bases are B1 corresponding to (y+

1 ,y3) , B2 corresponding to
(y+

2 ,y3) , B3 corresponding to (y+
1 ,y−

2) , B4 corresponding to (y−
1 ,y+

2) , and B5

corresponding to (y−
1 ,y−

2) with dual multipliers π1 = (1,0)T , π2 = (0,1)T , π3 =
(1,−1)T , π4 = (−1,1)T , and π5 = (−1,−1)T , respectively. Figure 1 shows the
regions in which each of these bases is optimal.

We let pi = P (Ωi) for i = 3,4,5 . To make the calculations somewhat sim-
pler, we divide Ω1 and Ω2 into two sections each depending on x as Ω1 =
Ω10(x) +Ω11(x) and Ω2 = Ω20(x) +Ω21(x) where Ω10(x) = {ω |ω ∈ Ω1,x1 ≤
h1(ω)≤ x1 +min(1−x1,1−x2)} , Ω11(x) = {ω |ω ∈Ω1,x1 +min(1−x1,1−x2) <
h1(ω) ≤ 1} , Ω20(x) = {ω |ω ∈ Ω1,x2 ≤ h2(ω) ≤ x2 + min(1 − x1,1 − x2)} , and
Ω21(x) = {ω |ω ∈ Ω1,x2 + min(1 − x1,1 − x2) < h2(ω) ≤ 1} with corresponding
integrals of h over each of these regions given by h̄10(x) , h̄11(x) , h̄20(x) , and
h̄21(x) respectively. In this way, Ω10(x) and Ω20(x) are symmetric around the di-
agonal x1 = x2 with one of Ω11(x) and Ω21(x) corresponding to a rectangular
region of positive probability if 1 ≥ x2 > x1 or 1 ≥ x1 > x2 .

With these definitions, we can then write Q(x) for Example 1 as

Q(x) =
2

∑
i=1

1

∑
j=0

πT
i (h̄i j(x)−Tx)+

5

∑
i=3

πT
i (h̄i(x)−Tx). (1.6)

Finding the value of h̄ for each region then yields the following expression
(Exercise 2):

8.1 Direct Solutions with Multiple Integration 345

Q(x) =
1
2
(x1 + x2

1 + x2 −4x1x2 + x2
1x2 + x2

2 + x1x2
2 + 2(1− x2)2 max[0,−x1 + x2]

+max[0,x1 − x2](2(1− x1)2)+
4
3
(min[1− x1,1− x2])3),

for any x ∈ [0,1]2 .
The regions Ωi are polyhedral (Exercise 4) in general, which, as in Example

1, yields direct integration procedures when these regions are simple enough to
have explicit integration formulas. Unfortunately, this is not often the case for the
Ωi regions that are common in stochastic programs with recourse. As Exercise 2
demonstrates, even in the simple cases of uniform distributions, the expectations
over different regions depends on the relative values of the components of x and
may require significant computation to find exactly.

In problems with probabilistic constraints, however, there are possibilities for
creating deterministic equivalents when the data are, for example, normal as in
Theorem 3.18. In general, however, efficient computation requires some form of
approximation.

In the following sections, we explore several methods for approximating the
value function and its subgradient in stochastic programming. The basic approaches
are either approximations with known error bounds or approximations based on
Monte Carlo procedures that may have associated confidence intervals. In the re-
mainder of this chapter and Chapter 10, we explore bounding approaches, while in
Chapter 9 we also consider methods based on sampling.

Exercises

1. The principle of Gaussian quadrature is to find points and weights on those
points that yield the correct integral over all polynomials of a certain degree.
For example, we can solve for points, ξ1 , ξ2 , and weights, p1 , p2 , so that
we have a probability (p1 + p2 = 1) and distribution that matches the mean,
(p1ξ1 + p2ξ2 = ξ̄), the second moment, (p1ξ 2

1 + p2ξ 2
2 = ξ̄ (2)), and the third

moment, (p1ξ 3
1 + p2ξ 3

2 = ξ̄ (3)). Solve this for a uniform distribution on [0,1]
to yield the two points, 0.211 and 0.788 , each with probability 0.5 .

(a) Verify that this distribution matches the expectation of any polynomial up
to degree three over [0,1] .

(b) Consider a piecewise linear function, f , with two linear pieces and 0 ≤
f (ξ) ≤ 1 for 0 ≤ ξ ≤ 1 . How large a relative error can the Gaussian
quadrature points give? Can you use two other points that are better?

2. Derive the expression of Q(x) for Example 1 in (1.7) using (1.6).

3. Verify that Q(x) for Example 1 is convex on [0,1]2 using (1.7).

4. Show that each region Ωi is polyhedral.

346 8 Evaluating and Approximating Expectations

8.2 Discrete Bounding Approximations

The most common procedures in stochastic programming approximations are to find
some relatively low cardinality discrete set of realizations that somehow represents
a good approximation of the true underlying distribution or whatever is known about
this distribution. The basic procedures are extensions of Jensen’s inequality ([1906],
generalization of the midpoint approximation) and an inequality due to Edmundson
[1956] and Madansky [1959], the Edmundson-Madansky inequality, a generaliza-
tion of the trapezoidal approximation. For convex functions in ξ , Jensen provides
a lower bound while Edmundson-Madansky provides an upper bound. Significant
refinements of these bounds appear in Huang, Ziemba, and Ben-Tal [1977], Kall
and Stoyan [1982] and Frauendorfer [1988b].

We refer to a general integrand g(x,ξ) . Our goal is to bound E(g(x)) =
Eξ[g(x,ξ)] =

∫
Ξ g(x,ξ)P(dξ) . The basic ideas are to partition the support Ξ into

a number of different regions (analogous to intervals in one-dimensional integra-
tion) and to apply bounds in each of those regions. We let the partition of Ξ be
S ν = {Sl, l = 1, . . . ,ν} . Define ξ l = E [ξ | Sl] and pl = P [ξ ∈ Sl] . The basic
lower bounding result is the following.

Theorem 1. Suppose that g(x, ·) is convex for all x ∈ D . Then

E(g(x)) ≥
ν

∑
l=1

plg(x,ξ l) . (2.1)

Proof: Write E(g(x)) as

E(g(x)) =
ν

∑
l=1

∫
Sl

g(x,ξ)P(dξ)

=
ν

∑
l=1

plE [g(x,ξ) | Sl]

≥
ν

∑
l=1

plg(x,E [ξ | Sl]) , (2.2)

where the last inequality follows from Jensen’s inequality that the expectation of a
convex function of some argument is always greater than or equal to the function
evaluated at the expectation of its argument, i.e., E(g(ξ)) ≥ g(E(ξ)) (see Exer-
cise 1).

This result applies directly to approximating Q(x) by Qν (x) =
∑ν

l=1 plQ(x,ξ l) . The approximating distribution Pν is the discrete distribution with
atoms, i.e., points ξ l of probability pl > 0 for l = 1, . . . ,ν . By choosing S ν+1

so that each Sl ∈ S ν+1 is completely contained in some Sl′ ∈ S ν , the approxi-
mations actually improve, i.e.,

8.2 Discrete Bounding Approximations 347

E(g(x)) ≥ Eν+1(g(x)) ≥ Eν(g(x)) . (2.3)

Various methods can achieve convergence in distribution of the Pν to P . An ex-
ample is given in Exercise 2.

In general, the goal of refining the partition from ν to ν + 1 is to achieve as
great an improvement as possible. We will describe the basic approaches; more
details appear in Birge and Wets [1986], Frauendorfer and Kall [1988], and Birge
and Wallace [1986]. Three basic decisions are to choose the cell, Sν

∗ ∈ S ν , in
which to make the partition, to choose the direction in which to split Sν

∗
, and to

choose the point at which to make the split.
The reader should note that this section contains notation specific to bounding

procedures. To keep the notation manageable, we reuse some from previous sec-
tions, including a and b for endpoints of rectangular regions and c for points
within these intervals at which to subdivide the region. For ease of exposition,
suppose that the sets Sl are all rectangular, defined by [al

1,b
l
1] × ·· · × [al

N ,bl
N] .

The most basic refinement scheme for l = ν∗ is to find i∗ and cl
i∗ so that

Sl(ν) splits into Sl(ν + 1) = [al
1,b

l
1]× . . . [al

i∗ ,c
l
i∗]× [al

N ,bl
N] and Sν+1(ν+ 1) =

[al
1,b

l
1]× . . . [cl

i∗ ,b
l
i∗]× [al

N,bl
N] .

If we also have an upper bound UB(Sl) ≥ E [g(x,ξ) | ξ ∈ Sνl] for each cell
Sl , then the most likely choice for Sν

∗
is the cell that maximizes pl(UB(Sl) −

g(x,ξ l)) , which bounds the error attributable to the approximation on Sl . Reduc-
ing this greatest partition error appears to offer the most hope in reducing the error
on the ν+ 1 approximation.

The direction choice is less clear. The general idea is to choose a direction in
which the function g is “most nonlinear”. The use of subgradient (dual price)
information for this process was discussed in Birge and Wets [1986]. Frauendor-
fer and Kall [1988] improved on this and reported good results by considering
all 2m+1 pairs, (α j,β j) , of vertices of Sl , where α j = (γ l

1, . . . ,a
l
i, . . . ,γ l

N) and
β j = (γ l

1, . . . ,b
l
i, . . . ,γ l

N) with γ l
i = al

i or bl
i . Given x , they assume a dual vector,

πα j , at Q(x,α j) and πβ j
at Q(x,β j) . Because these represent subgradients of the

recourse function Q(x, ·) , we have Q(x,β j)− (Q(x,α j)+πT
α j

(β j −α j)) = ε1
j ≥ 0

and Q(x,α j)−(Q(x,β j)+πT
β j

(α j −β j)) = ε2
j ≥ 0 . They then choose k∗ that max-

imizes min{ε1
k ,ε2

k } over k . They let i∗ be i such that αk∗ and βk∗ differ in the
i th coordinate. The position ci∗ is then chosen so that Q(x,β k∗

)+πT
βk∗

(ci∗ −bi∗) =

Q(x,αk∗
)+πT

αk∗ (ci∗ − ai∗) . (See Figure 2, where we use π for the subgradient at
(a1,b2) and ρ for the subgradient at (a1,a2) .) The general idea is then to choose
the direction that yields the maximum of the minimum of linearization errors in each
direction.

Refinement schemes clearly depend on having upper bounds available. These
bounds are generally based on convexity properties of g and the ability to obtain
each ξ in terms of the extreme points. The fundamental result is the following
theorem that also appears in Birge and Wets [1986]. In the following, we use P as
the measure on Ω instead of Ξ because we wish to obtain a different measure
derived from this domain. In context, this change should not cause confusion. We

348 8 Evaluating and Approximating Expectations

Fig. 2 Choosing the direction according to the maximum of the minimum linearization errors.

also let extΞ be the set of extreme points of coΞ and E is a Borel field of extΞ ,
in this case, the collections of all subsets of extΞ .

Theorem 2. Suppose that ξ "→ g(x,ξ) is convex and Ξ is compact. For all ξ ∈Ξ ,
let φ(ξ, ·) be a probability measure on (extΞ ,E) , such that

∫
e∈extΞ

eφ(ξ,de) = ξ , (2.4)

and ω "→ φ(ξ (ω),A) is measurable for all A ∈ E . Then

E(g(x)) ≤
∫

e∈extΞ
g(x,e)λ (de) , (2.5)

where λ is the probability measure on E defined by

λ (A) =
∫
Ω
φ(ξ (ω),A)P(dω) . (2.6)

Proof: Because g is convex in ξ , for φ ,

g(x,ξ) ≤
∫

e∈extΞ
g(x,e)φ(ξ ,de) . (2.7)

Substituting ξ (ω) for ξ and integrating with respect to P , the result in (2.5) is
obtained.

This result states that if we can choose the appropriate φ and find λ , we can
produce an upper bound. The key is to make the calculation of λ as simple as pos-
sible. Of course, the cardinality of extΞ may also play a role in the computability
of the bound.

8.2 Discrete Bounding Approximations 349

One way to reduce the cardinality of the supporting extreme points is simply to
choose the extreme point that has the highest value as an upper bound. Let this up-
per bound be UBmax(x) = supe∈extΞ g(x,e) ≥ ∫

e∈extΞ g(x,e)λ (de) ≥ E(g(x)) from
Theorem 2, regardless of the particular λ . While UBmax may only involve a single
extreme point, it is often a poor bound (see the result from Exercise 3). Its calcu-
lation also often involves evaluating all the extreme points to maximize the convex
function g(x, ·) .

In general, bounds built on the result in Theorem 2 construct the probability
measure λ so that each extreme point e j of Ξ has some weight, p j = λ (e j) .
The following bounds, described in more detail in Birge and Wets [1986], find these
weights in various cases. The first is general but involves some optimization. The
second involves simplicial regions, and the third uses rectangular regions.

Because λ is constructed to be consistent with the distribution of ξ , we must
have that

∫
Ω
ξ (ω)P(dω) =

∫
Ω

∫
e∈extΞ

eφ(ξ (ω),de)P(dω)

=
∫

e∈extΞ
e
∫
Ω
φ(ξ (ω),de)P(dω)

=
∫

e∈extΞ
eλ (de) . (2.8)

Hence, λ ∈ P = {μ | μ is a probability measure on E , and E μ [e] = ξ̄} . The next
upper bound, originally suggested by Madansky [1960] and extended by Gassmann
and Ziemba [1986], builds on this idea by finding an upper bound through a linear
program to maximize the objective expectation over all probability measures in P .
We write this bound as UBmean , where

UBmean(x) = max
p1,...,pK

K

∑
k=1

pkg(x,ek)

s. t.
K

∑
k=1

pkek = ξ̄ ,

K

∑
k=1

pk = 1 , pk ≥ 0 , k = 1, . . . ,K .

(2.9)

As we shall see in Section 8.5, the probability measure that optimizes the linear pro-
gram in (2.9) is the solution of a moment problem in which only the first moment
is known. Another interpretation of this bound is that it represents the worst pos-
sible outcome if only the mean of the random variable is known. Optimizing with
this bound, therefore, brings some form of risk avoidance if no other distribution
information is available.

Assuming that the dimension of co Ξ is N , Carathéodory’s theorem states that
ξ̄ must be expressable as a convex combination of at most N + 1 points in extΞ .
Finding these N +1 points may, however, again involve computations for the values

350 8 Evaluating and Approximating Expectations

at all extreme points. The number of extreme point representations may be much
higher than N + 1 if Ξ is, for example, rectangular, but lower if, for example, Ξ
is a simplex, i.e., a convex combination of N +1 points, ξ i , i = 1, . . . ,N +1 , such
that ξ i−ξ 1 are linearly independent for i > 1 . The representation of interior points
is, in fact, unique. Indeed, the p j in this case are called the barycentric coordinates
of ξ̄ .

Although Ξ may not be simplicial itself, it is often possible to extend Q(x, ·)
from Ξ to some simplex Σ including Ξ . The bound obtained with this approach
is written UBΣ . In this bound, the number of points used in the evaluation remains
one more than the dimension of the affine hull of Ξ . Frauendorfer [1989, 1992]
gives more details about this form of approximation and various methods for its
refinement.

Often, Ξ is given as a rectangular region. In this case, the number of extreme
points is 2N . The number of simplices containing ξ̄ may also be exponential in
N . With relatively complete information about the correlations among random vari-
ables, however, bounds can be obtained that assign the same weight to each extreme
point of Ξ (or a rectangular enclosing region), regardless of the value of x . This
attribute is quite beneficial in algorithms where x may change frequently as an
optimal solution is sought.

The basic bounds for rectangular regions follow Edmundson and Madansky, for
which, the name Edmundson-Madansky (E-M) bound is used. They begin with the
trapezoidal type of approximation on an interval. Here, if Ξ = [a,b] , we can easily
construct φ(ξ , ·) in Theorem 2 as φ(ξ ,a) = π(ξ) and φ(ξ ,b) = 1−π(ξ) , where
π(ξ) = b−ξ

b−a . Integrating over ω , we obtain

λ (a) =
∫
Ω
φ(ξ (ω),a)P(dω)

=
∫
Ω

b− ξ (ω)
b−a

P(dω)

=
b− ξ̄
b−a

. (2.10)

We then also have λ (b) = ξ̄−a
b−a . The bound obtained is UBEM(x) = λ (a)g(x,a)+

λ (b)g(x,b) ≥ E(g(x)) . Observe in Figure 3 that this bound represents approximat-
ing the integrand g(x, ·) with the values formed as convex combinations of extreme
point values. This is the same procedure as in trapezoidal approximation for nu-
merical integration except that the endpoint weights may change for nonuniform
probability distributions.

The E − M bound on an interval extends easily to multiple dimensions, where
Ξ = [a1,b1]×·· ·× [aN ,bN] if either g(x, ·) is separable in the components of ξ , in
which case, the bound is applied in each component separately, or the components
of ξ are stochastically independent. In this case, the bound is developed in each
component i = 1 to N in order so that the full independent ξi bound contains the
product of all combinations of each interval bound, i.e.,

8.2 Discrete Bounding Approximations 351

Fig. 3 Example of the Edmundson-Madansky bound on an interval.

UBEM−I(x) = ∑
e∈extΞ

(
N

∏
i=1

|ξ̄i − ei|
bi −ai

)
g(x,e) , (2.11)

where Ξ is again assumed polyhedral.

Example 1 (continued)

We return again to Example 1 and suppose an initial solution, x̄ = (0.3,0.3)T . From
(1.7), Q(x̄) = 0.466 . Our initial lower bound using the mean of the random vector
is then the Jensen lower bound, LB1 = Q(x̄,ξ = h̄ = (0.5,0.5)T) = 0.2 .

The upper bounds can be found using the values at the extreme points of
the support of h . These values are Q(x̄,(0,0)T) = 0.6 , Q(x̄,(0,1)T) = 1.0 ,
Q(x̄,(1,0)T) = 1.0 , and Q(x̄,(1,1)T) = 0.7 . For UBmax

1 (x̄) , we must take the
highest of these values; hence, UBmax

1 (x̄) = 1.0 . For UBmean
1 , notice that h̄ =

(1/2)(1,0)T +(1/2)(0,1)T ; so, UBmean
1 (x̄) = UBmax

1 (x̄) = 1.0 . For UBEM
1 , each

extreme point is weighted equally, so UBEM
1 (x̄) = (1/4)(1 + 1 + .7 + .6) = 0.825 .

For the simplicial approximation, let Σ = co{(0,0),(2,0),(0,2)} , which includes
the support of h . In this case, the weights on the extreme points are λ (0,0) = 0.5
and λ (2,0) = λ (0,2) = 0.25 . The resulting upper bound is UBΣ(x̄) = 0.5(.6)+
0.25(2)(2) = 1.3 .

To refine the bounds, we consider the dual multipliers at each extreme point.
At (0,0) , they are (−1,−1) . At (1,0) , they are (1,−1) . At (0,1) , they are
(−1,1) . At (1,1) , both bases B1 and B2 are optimal, so the multipliers are (0,1) ,
(1,0) , or any convex combination. The linearization along the line segment from

352 8 Evaluating and Approximating Expectations

(0,0) to (1,0) is the minimum of Q(x̄,(1,0)T)−Q(x̄,(0,0)T)+(−1,−1)T (1,0)=
1−(0.6−1)= 1.4 and Q(x̄,(0,0)T)−Q(x̄,(1,0)T)+(1,−1)T (−1,0)= 0.6−(1−
1) = 0.6 . Hence, the minimum error on (0,0) to (1,0) is 0.6 . Similarly, for (0,0)
to (0,1) , the error is 0.6 . From (1,0) to (1,1) , the minimum error is 0.3 if the
(0,1) subgradient is used at (1,1) ; however, the minimum error on (0,1) to (1,1)
is then min{1− (0.7−1),0.7− (1−1)}= 0.7 . Thus, the maximum of these errors
over each edge of the region is 0.7 for the edge (0,1) to (1,1) .

To find the value of c∗
1 to split the interval [a1 = 0,b1 = 1] , we need to find

where Q(x̄,(0,1)T)−c∗
1 = Q(x̄,(1,1)T)+(c∗

1 −1) or where 1−c∗
1 = 0.7−1+c∗

1 ,
i.e., where c∗

1 = 0.65 . We obtain two regions, S1 = [0,0.65]× [0,1] and S2 =
[0.65,1]× [0,1] , with p1 = 0.65 and p2 = 0.35 .

The Jensen lower bound is now LB2 = 0.65(Q(x̄,(0.325,0.5)T))+
(0.35)(Q(x̄,(0.825,0.5)T)) = 0.65(0.2) + 0.35(0.525) = 0.31375 . The
upper bounds are UBmax

2 (x̄) = 0.65(1)+0.35(1) = 1 , UBmean
2 (x̄) = 0.65(0.5)(1+

0.65) +0.35(0.5)(1 + 0.7) = 0.83375 , and UBEM
2 (x̄) = 0.65(0.25)(1 + 0.7 +

0.65 + 0.6) + 0.35(0.25)(0.7 + 0.7 + 1 + .65) = 0.74625 . (The simplicial bound
is not given because we have split the region into rectangular parts.) Exercise 3 asks
for these computations to continue until the lower and upper bounds are within 10%
of each other.

Exercises

1. For Example 1, x̄ = (0.1,0.7)T , compute Q(x̄) , the Jensen lower bound, and
the upper bounds, UBmean , UBmax , UBEM , and UBΣ .

2. Prove Jensen’s inequality, E(g(ξ)) ≥ g(E(ξ)) , by taking an expectation of the
points on a supporting hyperplane to g(ξ) at g(E(ξ)) .

3. Follow the splitting rules for Example 1 until the Edmundson-Madansky upper
and Jensen lower bounds are within 10% of each other. Compare UBEM to
UBmax on each step.

8.3 Using Bounds in Algorithms

The bounds in Section 8.2 can be used in algorithms in a variety of ways. We de-
scribe three basic procedures in this section: (1) uses of lower bounds in the L -
shaped method with stopping criteria provided by upper bounds; (2) uses of upper
bounds in generalized programming with stopping rules given by lower bounds; and
(3) uses of the dual formulation in the separable convex hull function. The first two
approaches are described in Birge [1983] while the last is taken from Birge and Wets
[1989].

The L -shaped method as described in Chapter 5 is based on iteratively providing
a lower bound on the recourse objective, Q(x) . If a lower bound, QL(x) , is used

8.3 Using Bounds in Algorithms 353

in place of Q(x) , then clearly for any supports, ELx + eL , if QL(x) ≥ ELx + eL ,
Q(x) ≥ ELx + eL . Thus, any cuts generated on a lower bounding approximation of
Q(x) remain valid throughout a procedure that refines that lower bounding approx-
imation. This observation leads to the following algorithm. We suppose that QL

j (x)
and QU

j (x) are approximating lower and upper bounding approximations such that

lim j→∞QL
j (x) = Q(x) and lim j→∞QU

j (x) = Q(x) . We suppose that PL
j is the

j th lower bounding approximation measure so that QL
j (x) =

∫
Ω QL

j (x,ξ)PL
j (dω) .

To simplify the algorithm in the following, we assume that all feasibility cuts are
generated separately in (3.2) below before the sequential bounding procedure be-
gins (which generally can be accomplished by first considering all extreme points
of the domain of the random variables).

L -Shaped Method with Sequential Bounding Approximations

Step 0. Set r = s = v = k = 0 .

Step 1. Set ν = ν+ 1 . Solve the linear program (3.1)–(3.3):

min z = cT x +θ
s. t. Ax = b , (3.1)

D� x ≥ d� , � = 1, . . . ,r , (3.2)

E�x +θ ≥ e� , � = 1, . . . ,s , (3.3)

x ≥ 0 , θ ∈ℜ .

Let (xν ,θν) be an optimal solution. If no constraint (3.3) is present, θ is set equal
to −∞ and is ignored in the computation.

Step 2. Find QL
j (x

ν) =
∫
Ω QL

j (x
ν ,ξ)PL

j (dω) , the j th lower bounding approxima-
tion. Suppose −(πν(ξ))T T ∈ ∂xQL

j (x
ν ,ξ) (the simplex multipliers associated with

the optimal solution of the recourse problem). Define

Es+1 =
∫
Ω

(πν(ξ))T TPL
j (dω) (3.4)

and es+1 =
∫
Ω

(πν(ξ))T hPL
j (dω) . (3.5)

Let wν = es+1 − Es+1xν = QL
j (x

ν). If θν ≥ wν , xν is optimal, relative to the
lower bound; go to Step 4. Otherwise, set s = s+ 1 and return to Step 1.

Step 3. Find QU
j (xν) =

∫
Ω QU

j (xν ,ξ)PU
j (ω) , the j th upper bounding approxima-

tion. If θν ≥ QU
j (xν) , stop; xν is optimal. Otherwise, refine the lower and upper

bounding approximations from ν to ν+ 1 . Let ν = ν+ 1 . Go to Step 2.

354 8 Evaluating and Approximating Expectations

This form of the L -shaped method follows the same steps as the standard L -
shaped method, except that we add an extra check with the upper bound to deter-
mine the stopping conditions. We also describe the calculation of QL

j somewhat
generally to allow for more general types of approximating distributions and ap-
proximating recourse functions, QL

j (x
ν ,ξ) .

Example 2

Consider Example 1 from Chapter 5, where:

Q(x,ξ) =

{
ξ − x if x ≤ ξ ,

x− ξ if x > ξ ,
(3.6)

cT x = 0 , and 0 ≤ x ≤ 10 . Instead of a discrete distribution on ξ , however, assume
that ξ is uniformly distributed on [0,5] . For the bounding approximation, we use
the Jensen lower bound and Edmundson-Madansky upper bound for QL and QU ,
respectively. We use the refinement procedure to split the cell that contributes most
to the difference between QL and QU . We split this cell at the intersection of the
supports from the two extreme points of this cell (here, interval).

The sequence of iterations is as follows.

Iteration 1:

Here, x1 = 0 . Find QL
1 (0) = Q(0, ξ̄ = 2.5) = 2.5 . E1 = −∂xQL

1(0,2.5) = −(−1)
and e1 = −∂xQL

1(0,2.5)(h = 2.5) = −(−1)(2.5) = 2.5 . Add the cut:

θ ≥ 2.5− x . (3.7)

Iteration 2:

Here, x2 = 10 , θ = −7.5 , but QL
1 (10) = Q(10, ξ̄ = 2.5) = 7.5 . At this

point, the subgradient of QL
1 (10) is 1 . E2 = −∂xQL

1(10,2.5) = −1 , and e1 =
−∂xQL

1(0,2.5)(h = 2.5) = −(1)(2.5) = −2.5 . Add the cut:

θ ≥ −2.5 + x . (3.8)

Iteration 3:

Here, x3 = 2.5 , θ = 0 , QL
1 (2.5) = Q(2.5, ξ̄ = 2.5) = 0 . Hence we meet the

condition for optimality of the first lower bounding approximation. Now, go to
Step 4 and consider the first upper bounding approximation with equal weights of
0.5 on ξ = 0 and ξ = 5 . In this case, QU

1 (2.5) = 0.5 ∗ (Q(2.5,0)+ Q(2.5,5)) =
2.5 . Thus, we must refine the approximation. Using the subgradient of −1 at ξ = 0
and 1 and ξ = 5 , split at c∗ = 2.5 .

8.3 Using Bounds in Algorithms 355

The new lower bounding approximation has equal weights of 0.5 on ξ =
1.25 and ξ = 3.75 . In this case, QL

2 (2.5) = 0.5 ∗ (Q(2.5,1.25)+ Q(2.5,3.75)) =
1.25 . Now, we add the cut E2 = 0.5(−∂xQ(2.5,1.25)− ∂xQ(2.5,3.75)) = 0 and
e1 = 0.5(−∂xQ(2.5,1.25)(1.25)−∂xQ(2.5,3.75) (3.75))= (0.5)(−1.25+3.75)=
1.25 . Thus, we add the cut:

θ ≥ 1.25 . (3.9)

Iteration 4:

Here, keep x4 = x3 = 2.5 (although other optima are possible) and θ = 1.25 .
Again, QL

2 (2.5) = 1.25 , so proceed to Step 4.
Checking the upper bound, we find that the upper bound places equal weights on

the endpoints of each interval, [0,2.5] and [2.5,5] . Thus,
QU

2 (2.5) = 0.5 ∗ (Q(2.5,2.5))+ (0.25) ∗ (Q(2.5,0)+ Q(2.5,5)) = 1.25 , and θ =
QU

2 (2.5) . Stop with an optimal solution.

The steps are illustrated in Figure 4. We show the true Q(x) as a solid line,
with dashed lines representing the approximations (lower and upper). Note that the
method may not have converged as quickly if we had chosen some point other than
x4 = x3 = 2.5 . The upper and lower bounds meet at this point, because we chose
the division precisely at the link between the linear pieces of the recourse function
Q(x, ·) .

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

2.5

x

Q

Fig. 4 Example of L -shaped method with sequential approximation.

356 8 Evaluating and Approximating Expectations

Bounds with generalized programming

In generalized linear programming, the same types of procedures can be applied.
The difference is that because the generalized programming method uses inner lin-
earization instead of outer linearization, the bounds used should be upper bounds.
We would thus substitute ΨU

j for Ψ in (5.6.6). The same steps are followed again
with ΨU

j until optimality relative to ΨU
j is achieved. At this point, as in Step 4

of the L -shaped method with sequential bounding approximations, overall conver-
gence is tested by solving (5.6.10) with a lower bounding ΨL

j in place of Ψ . If this
value is again non-negative, then the procedure stops. If not, refinement is made un-
til a new upper bounding column is generated or no solution of (5.6.10) is negative
for a lower bounding approximation.

As stated in Chapter 5, generalized programming is most useful if the recourse
function, Ψ(χ) , is separable in the components of χ . The separable upper bound-
ing procedure is a natural use for this approach. A separable lower bound can be
obtained by using a supporting hyperplane. This leads to the Jensen lower bound.

This generalized programming approach applies most directly when a single ba-
sis separable approximation is used. With the convex hull operation, we would still
have the problem of evaluating this function. This difficulty is, however, overcome
by dualizing the problem. In this case, we suppose that the original problem using a
set D of bases is to find x ∈ℜn1 , χ ∈ℜm2 to

min cT x + co{ΨD,D ∈ D}(χ) (3.10)

s. t. Ax = b ,

Tx− χ = 0 ,

x ≥ 0 .

The main result is the following theorem. Recall the conjugate function defined in
Section 2.10.

Theorem 3. A dual program to (3.10) is to find σ ∈ℜm1 , π ∈ℜm2 to

max σT b− sup{Ψ∗
D,D ∈ D}(−π) (3.11)

s. t. σT A +πT T ≤ cT ,

where Ψ ∗
D is the conjugate function and (3.10) and (3.11) have equal optimal val-

ues.

Proof: Let γ(χ) = co{ΨD,D ∈ D}(χ) . Then a dual to (3.10) (see, e.g., Geoffrion
[1971], Rockafellar [1974]) is

max
π ,σ

{ inf
x≥0,χ

[cT x + γ(χ)+σT(b−Ax)+πT(χ −Tx)]} ,

which is equivalently

8.4 Bounds in Chance-Constrained Problems 357

max
π ,σ

{ inf
x≥0,χ

[(cT −σT A−πT T)x +σT (b)− (−πTχ− γ(χ))]}

= max
σT A+πT T≤cT

{σT b− γ∗(−π)} . (3.12)

Problem (3.12) immediately gives (3.11) because (co{ΨD,D ∈ D}(χ))∗(−π)
= sup{Ψ∗

D,D ∈ D}(−π) (Rockafellar [1969, Theorem 16.5]).

Problem (3.11) only involves finding the supremum of convex functions, which
is again a convex function. The main difficulty is in finding expressions for the Ψ∗

D .
These are, however, relatively straightforward to evaluate (Exercise 2). They can be
used in a variety of optimization procedures, but the objective is nondifferentiable.
In Birge and Wets [1989], this difficulty is overcome by making each Ψ∗

D a lower
bound on some parameter that replaces sup{Ψ∗

D ,D ∈ D} in the objective.
The main refinement choice in the separable optimization procedure using (3.11)

is to determine how to update the set D . Choices of bases that are optimal for
ξ̄ and then ξ̄ ± δeiσi for increasing values of δ appear to give a rich set D as
in Birge and Wets [1989]. Any sense of optimal refinements or basis choice is,
however, an open question.

Exercises

1. Consider Example 2 where we redefine Q as

Q(x,ξ) =

{
2(ξ− x) if x ≤ ξ ,

x−ξ if x > ξ ,

with ξ uniformly distributed on [0,5] , cT x = 0 , and 0 ≤ x ≤ 10 . Follow the
L -shaped sequential approximation method until achieving a solution with two
significant digits of accuracy.

2. Find Ψ∗
D(−π) and ∂Ψ ∗

D(−π) . A useful set may be γDi(p) = {y | PDi(y)− ≤
p ≤ PDi(y)} .

3. Use the dualization procedure to solve a stochastic linear program with cT x = x ,
0 ≤ x ≤ 1 , and the recourse function in Example 1.

8.4 Bounds in Chance-Constrained Problems

Our procedures have so far concentrated on methods for recourse problems as we
have throughout this book. In many cases, of course, probabilistic constraints may
also be in the formulation or may be the critical part of the model. The basic results
are aimed at finding some inequalities Ãx ≥ h̃ (or, perhaps, nonlinear inequali-
ties) that imply that P{Ax ≥ h} ≥ α . In Section 3.2, we found some deterministic

358 8 Evaluating and Approximating Expectations

equivalents for specific forms of the distribution, but these are not always available.
In these cases, it is useful to have upper and lower bounds on P{Ax ≥ h} for any
x such that Ãx ≤ h̃ .

As an example, suppose a bank is trying to determine levels of exposure x j, j =
1, . . . ,n in each of n loans which have a random value at time i (relative to the cur-
rent date) of Ai j . The bank may also have an uncertain liability value hi at each
time i as well and wishes to ensure that the values of the loan assets exceed those
of the liabilities at all times with high probability, i.e., P{Ax ≥ h} ≥ α . The bank
wishes to avoid the problems of financial institutions who lost considerable amounts
during the financial crisis of 2007-2010. Instead of assuming some specific distribu-
tions on the random variables, the bank prefers to find values for Ã and h̃ such that
Ãx ≥ h̃ will ensure P{Ax ≥ h} ≥ α for a wide range of possible distributions and,
therefore, seeks a set of bounds that depend on simple metrics. The types of bounds
we consider here can then be used for this type of robust requirement.

The bounds for this purpose are generally of two types: bounds for a single in-
equality such as P{Aix ≥ hi} and bounds for the set of inequalities in terms of
results in lower dimensions. In algorithms, (see Prékopa [1988]), it is often com-
mon to place the probabilistic constraint into the objective and to use a Lagrangian
relaxation or parametric solution procedure.

For bounds with a single constraint, the basic results are extensions of Cheby-
shev’s inequality and require only knowing (or bounding) the first two moments of
the distribution. (See Hoeffding [1963] and Pintér [1989] for many of these results
and additional details.) The basic Chebyshev inequality is (see, e.g., Feller [1971,
Section V.7]) that if ξ has a finite second moment, then

P{|ξ| ≥ a} ≤ E [ξ2]
a2 , (4.1)

and for σ2 , the variance of ξ ,

P{|ξ− ξ̄ | ≥ a} ≤ σ2

a2 . (4.2)

Another useful inequality is the one-sided inequality for a > 0 that

P{ξ− ξ̄ ≥ a} ≤ σ2

σ2 + a2 · (4.3)

To apply (4.2) and (4.3) in the context of stochastic programming, we suppose that
we can represent Aix ≥ hi as ξ0 +ξT x ≥ r0 + rT x , where Ai j = ξ j − t j and hi =
−ξ0 + r0 , to distinguish random elements from those that are not random and to
allow us to set ξ̄ j = 0 for j = 0, . . . ,n . If ξ has covariance matrix, C , then the
variance of ξ0 +ξT x is x̂TCx̂ , where x̂ = (1

x) . In this case, substituting x̂TCx̂ for
σ2 and r0 + rT x = r̂T x̂ for a in (4.3) yields for r̂T x̂ > 0 :

P{Aix ≥ hi} ≤ x̂TCx̂
x̂TCx̂ +(r̂T x̂)2 , (4.4)

8.4 Bounds in Chance-Constrained Problems 359

which implies that if x satisfies

x̂TCx̂(1−α) ≤ α(r̂T x̂)2 , (4.5)

then
P{Aix ≥ hi} ≤ α . (4.6)

Alternatively, if
P{Aix ≥ hi} ≥ α , (4.7)

then
x̂TCx̂(1−α) ≥ α(r̂T x̂)2 . (4.8)

Thus, adding constraint (4.8) in place of (4.7) in a stochastic program allows a large
feasible region and in a minimization problem, would produce a lower bound on
the objective value with constraint (4.7). For an upper bound, we could note that
P{Aix ≥ hi} ≥ α is equivalent to P{Aix ≤ hi} ≤ 1 −α or P{hi − Aix ≥ 0} ≤
1−α . We just replace the previous ξ and t with −ξ and −t and replace α with
(1−α) to obtain that if

x̂TCx̂(α) ≤ (1−α)(r̂T x̂)2 , (4.9)

then (4.7). Hence, replacing (4.7) with (4.9) yields a smaller region and an upper
bound in a minimization problem.

In the context of the banking example discussed earlier, (4.9) provides a con-
straint that ensures the assets’ value exceeds that of the liability with the prescribed
probability α assuming that the covariance C and mean value r̂ are known. We
make this example more precise in the following.

Example 3

For this example, suppose a typical portfolio that has n = 125 loans with an ex-
pected loss on each loan of 5% until the horizon so that E [Ai j] = t j = 0.95 with a
common standard deviation of σ = 0.025 . Suppose that the liability hi is a fixed
value equal to 0.95 and that we want to ensure having the loan values exceed the
liability with probability α = 0.99 . We can use (4.9) to determine x j = b

125 for
some b > 0 for an equally proportioned portfolio that meets the funding reliability
requirement. If the future values of all of the loans are independent, then (4.9) is
equivalent to:

(ασ2 −0.952(1−α)n)nb2 + 2(0.95)2(1−α)nb− (1−α)(0.95)2 ≤ 0, (4.10)

which then implies
b ≥ 1.024, (4.11)

360 8 Evaluating and Approximating Expectations

(Exercise 1) which suggests that ensuring the expected asset value exceeds the li-
ability by 2.4% would suffice in meeting the probabilistic constraint, regardless of
the distribution if the means, variances, and covariances are all given as here.

In this case, the assumption about covariances (in this case, independence, such
that all off-diagonal correlations are zero) can, however, be quite significant. Sup-
pose instead of independence that all of the loans are linked to the same obligor
(or borrower) and, therefore, that the correlations are all one. In that case, (4.11)
becomes:

(ασ2 −0.952(1−α))n2b2 + 2(0.95)2(1−α)nb− (1−α)(0.95)2 ≤ 0, (4.12)

which then implies
b ≥ 1.355, (4.13)

(Exercise 2) requiring now a 35.5% greater expectation for the loans than the liabil-
ity to have the same level of confidence as in the case of independence.

The extremes of zero and perfect correlation might be narrowed with additional
information on the covariance matrix C . In that case, it may be possible to solve
the semi-definite program (see, e.g., Vandenberghe and Boyd [1996]) to maximize
C · X̂ (defined by C · X̂ = ∑n

i=1∑
n
j=1Ci jX̂i j = x̂TCx̂ if X̂ = x̂x̂T) for C subject to

C # 0 (meaning that C is positive semi-definite) and other constraints representing
available information on C . The resulting solution C∗(x̂) can then be substituted
for C in (4.9) to obtain a constraint that implies the reliability constraint for any
covariance consistent with the available information.

Other information, such as ranges, can also be used to obtain sharper bounds.
A particularly useful inequality (see, again, Feller [1971]) is that, for any function
u(ξ) such that u(ξ) > ε > 0 , for all ξ ≥ t ,

P{ξ ≥ t} ≤ 1
ε

E [u(ξ)] . (4.14)

In fact, using, u(ξ) =
(
ξ + σ2

a

)2
yields (4.3) from (4.14). A difficulty in using

bounds based on (4.3) is that the constraint in (4.8) or (4.9) may be quite difficult to
include in an optimization problem. Various linearizations around certain values of
x of this constraint can be used in place of (4.8) or (4.9). Other approaches, as in
Pintér [1989] and Nemirovski and Shapiro [2006], are based on the expectations of
exponential functions of ξi (i.e., its moment-generating function) that can in turn
be bounded using the Jensen inequality and other convexity properties.

Given these approaches or deterministic equivalents for a single inequality as in
Section 3.2, we wish to find approximations for multiple inequalities, P{Ax ≤ h} .
With relatively few inequalities and special distributions, such as the multivariate
gamma described in Szántai [1986], deterministic equivalents can again be found.
The general cases are, however, most often treated with approximations based on
Boole-Bonferroni inequalities. A thorough description is found in Prékopa [1988].

We suppose that A ∈ℜm×n and that h ∈ℜm . The Boole-Bonferroni inequality
bounds are based on evaluating P{Aix ≤ hi} and P{Aix ≤ hi,A jx ≤ h j} for each

8.4 Bounds in Chance-Constrained Problems 361

i and j and using these values to bound the complete expression P{Ax ≤ h} . To
distinguish among the rows of A , we let Ai j = ξi

j − ti
j and hi = −ξi

0 + ti
0 . A main

result is then the following.

Theorem 4. Given these assumptions,

P{Ax ≤ h} = 1−
(

a− 2b
m

)
+λ

[
(c−1)a

c + 1
− 2(−m+ c(c + 1))b

m(c(c + 1))

]
, (4.15)

with

a = ∑
1≤i≤m+1

P (ηi > si(x)) ,

b = ∑
1≤i< j≤m+1

P(ηi > si(x),η j > s j(x)) ,

c = �2b
a

� ,

0 ≤ λ ≤ 1 , ηi = (ξi)T x̂ , si(x) = (ri)T x̂ .

Proof: Denote the event ηi ≤ si(x) by Ei . Then

P(Ax ≤ h) = P (E1 . . .Em) = 1−P(Ê1 + · · ·+ Êm) , (4.16)

where Ŝ for a set S indicates the complement of S , i.e., the set of elements not in
S .

By the inequality of Dawson and Sankoff [1967] ((7) of Prékopa [1988]),

P(Ê1 + · · ·+ Êm) ≥ 2
c + 1

a− 2
c(c + 1)

b , (4.17)

where

a = ∑
1≤i≤m

P (Êi) = ∑
1≤i≤m

P (ηi > si(x)) ,

b = ∑
1≤i< j≤m

P(Êi · Ê j) = ∑
1≤i< j≤m

P(ηi > si(x),η j > s j(x)) ,

c = �2b
a

� .

Similarly, by the inequality of Sathe, Pradhan, and Shah [1980] ((8) of Prékopa
[1988]),

P(Ê1 + · · ·+ Êm) ≤ a− 2
m

b . (4.18)

Combining (4.16)–(4.18), we obtain (4.15).

362 8 Evaluating and Approximating Expectations

We may use (4.15) to approximate P{Ax ≤ h} by assigning λ in [0,1] , e.g.,
0.5 , or by using (4.15) for bounds with λ = 0 or 1 (see Exercise 6). With the
marginal distribution of ηi and the joint distribution of ηi and η j , we can again
use bounds on the variances of these random variables to calculate additional bounds
from (4.15). Of course, with normally distributed random variables, we may again
obtain the ηi to be normally distributed or may obtain such limiting distributions
(see, e.g., Salinetti [1983]). In this case, besides the exact results in Section 3.2,
we should mention the specializations of Gassmann [1988] and Deák [1980]. They
also combine these inequalities with Monte Carlo simulation schemes (see, e.g.,
Rubinstein [1981]). In general, the inequalities from (4.15) can reduce the variance
of Monte Carlo schemes. For this approach and the bivariate gamma, we again refer
to Szántai [1986].

Before closing this section, we should also mention that approximating probabil-
ities is quite useful in recourse problems because the gradient of the linear recourse
function with fixed q and T is simply a weighted probability of given bases’ opti-
mality. From Theorem 3.11, if x is in the interior of K2 , then

∂Q(x) = Eξ[−π(ξ)T T]

=
J

∑
j=1

−π jTP
{
(π j)T (h−Tx) ≥ πT (h−Tx) , ∀πTW ≤ q

}
, (4.19)

where {π1, . . . ,πJ} is the set of extreme values of {π | πTW ≤ q} . Because
(π j)T = (W j)−1qT is optimal, if and only if (W j)−1(h − Tx) ≥ 0 , the result re-
duces to finding the probability that (W j)−1(h−Tx) ≥ 0 . This observation can be
useful in guiding algorithms based on subgradient information. This idea is explored
in Birge and Qi [1995].

Other model forms also lead to bounds of this type that can in some cases be
stronger because of the structure of A . A particular case is when A represents a
network. In this case, bounds on project network completion times can be found
in Maddox and Birge [1991] with other generalizations using semi-definite pro-
gramming in Bertsimas, Natarajan, and Teo [2004] and Bertsimas and Popescu
[2004]. These bounds, as well as those given earlier, can be derived from solutions
of a generalized moment problem. That is one of the main topics of the generaliza-
tions in the next section.

Exercises

1. Show how (4.10) and (4.11) follow from (4.9).

2. Show how (4.12) and (4.13) follow from (4.9).

3. Under what conditions is (4.9) a convex constraint on x̂ ?

4. Derive (4.14).

8.5 Generalized Bounds 363

5. Define u in (4.14) as u(ξ) = cσ2 − (
ξ − u+t

2

)2
, where it is known, however,

that ξ ≤ U = βa , a.s., for some finite β . For given β and a , can you find c
such that (4.14) gives a better bound with this u than with the u used to obtain
(4.3)?

6. Consider Example 3 with multiple (m = 3) periods such that each Ai j is
conditionally an independent Bernoulli random variable such that P{Ai j =
1|A(i−1) j = 1}=0.95 , P{Ai j = 0|A(i−1) j=1}= 0.05 , and P{Ai j = 0|A(i−1) j =
0} = 1 . Suppose also h = [0.95,0.95,0.95]T , α = 0.99 , and the goal again is
to find b so that x j = b

125 , j = 1, . . . ,n satisfies P{Ax ≥ h} ≥ α . Use (4.15)
to obtain a constraint that implies P{Ax ≥ h} ≥ α and find the smallest b sat-
isfying this constraint. What happens in the case where the random variables
within each period could be perfectly correlated?

7. Suppose ξi , i = 1,2,3 , are jointly multivariate normally distributed with zero
means and variance-covariance matrix

C =

⎛
⎝ 1 0.25 −0.25

0.25 1 −0.5
−0.25 −0.5 1

⎞
⎠ .

Use Theorem 4 to bound P{ξ ≤ 1 , i = 1,2,3} . What is the exact result? (Hint:
Try a transformation to independent normal random variables.)

8.5 Generalized Bounds

a. Extensions of basic bounds

When the components of ξ are correlated, a bound is still tractable (see Frauendor-
fer [1988b]), although somewhat more difficult to evaluate. In this subsection, we
give the necessary generalizations. The notation here is particularly cumbersome,
although the results are straightforward.

For the general results, we define:

η(e,ξi) =

{
(ξi −ai) if ei = ai ,

(bi − ξi) if ei = bi .
(5.1)

Then we have (Exercise 1) that

φ(ξ ,e) =
N

∏
i=1

η(e,ξi)
(bi −ai)

· (5.2)

The λ (e) values can be found by integrating over ω . This may involve all prod-
ucts of the ξi components. Defining M = {M | M ⊂ {1, . . . ,N}} , and ρM =

364 8 Evaluating and Approximating Expectations

E [∏i∈M ξi]−∏i∈M ξ̄i , we obtain the general E-M extension:

UBEM−D(x) = UBEM−I(x)

+ ∑
e∈extΞ

1
N
∏
i=1

(bi −ai)

{
∑

M∈M

[
∏
i�∈M

(−1)
ei−ai
bi−ai

(
ai

(
ei −ai

bi −ai

)

+bi

(
bi − ei

bi −ai

))
×∏

i∈M
(−1)1− ei−ai

bi−ai

]
ρM

}
g(x,e) . (5.3)

Notice, in (5.3), that if the components of ξ are independent, then ρM = 0 for all
M and UBEM−D(x) = UBEM−I(x) , as expected.

Each of these upper bounds is a solution of a corresponding moment problem in
which the highest expected function value is found over all probability distributions
with the given moment information. The upper bounds derived so far all used first
moment information plus some information about correlations. In Subsection 8.5c.,
we will explore the possibilities for higher moments and methods for constructing
bounds with this additional information.

For different support regions, Ξ , we can combine the bounds or use enclos-
ing regions as we mentioned for simplicial approximations. To use the bounds in
a convergent method, the partitioning scheme in Theorem 1 is again employed. In-
stead of applying the bounds on Ξ in its entirety, they are applied on each Sl .
The dimension of these cells may, however, make computations quite cumbersome,
especially if the Sl have an exponentially increasing number of extreme points in
the dimension. For this reason, algorithms primarily concentrate on a lower bound-
ing approximation for most computations and only use the upper bound to check
optimality and stopping conditions.

So far, we have only considered convex g(x, ·) . In the recourse problem, Q(x,
ξ (ω)) is generally convex in h(ω) and T (ω) but concave in q(ω) . In this general
case, the Jensen-type bounds provide an upper bound on Q in terms of q while
the extreme point bounds provide lower bounds in q . We can combine these results
with the convex function results to obtain overall bounds by, for example, determin-
ing UB(x) =

∫
Ω UB(x,q)P(dω) where UB(x,q) =UBh,T(Q(x,ξ)) , where the last

upper bound is taken with respect to the h and T with q fixed. The difficulty of
evaluating

∫
Ω UB(x,q)P(dω) may determine the success of this effort. In the case

of q independent of h and T , it is simple. In other cases, linear upper bounding
hulls may be constructed to allow relatively straightforward computation (Frauen-
dorfer [1988a]) or extensions of the approach in UBmean may be used (Edirisinghe
[1991]).

For the procedure in Frauendorfer [1988a], assume that Ξ is compact and rect-
angular with q ∈ Ξ1 = [c1,d1]×·· ·× [cn2 ,dn2] and (h,T)T ∈ Ξ2 = [a1,b1]×·· ·×
[aN−n2 ,bN−n2] . For convenience here, we consider T as a single vector of all com-
ponents in order, T1·, . . . ,Tm2· . We also delete transposes on vectors when they are
used as function arguments.

8.5 Generalized Bounds 365

Let the extreme points of the support of q be el , l = 1, . . . ,L, and the extreme
points of the support of (h,T) be ek , k = 1, . . . ,K . In this case, because Q(x, ·) is
convex in (h,T) , for any el , we can take any support π(el) such that π(el)TW ≤
el and obtain a lower bound on Q(x,(el ,h,T)) as

π(el)T (h−Tx) ≤ Q(x,(el ,h,T))) . (5.4)

We can also let φ(q,el) = ∏n2
i=1

η(el ,qi)
(di−ci)

, where η is as defined earlier with c re-

placing a and d replacing b . Because for any (h,T) , Q(x,(q,h,T)) is concave
in q , we have that

Q(x,(q,h,T)) ≥
L

∑
l=1

φ(q,el)Q(x,(el ,h,T))

≥
L

∑
l=1

φ(q,el)π(el)T (h−Tx) , (5.5)

where we note that π(el) need not depend on (h,T) . A bound is obtained by
integrating over (h(ω),T (ω)) in (5.5), so that

Q(x) ≥
L

∑
l=1

∫
Ω

n2

∏
i=1

η(el,qi)
(di − ci)

π(el)T (h−Tx)P(dω) . (5.6)

Note the terms in (5.6) just involve products of the components of q and each
component of h or Tx singly. Following Frauendorfer [1988a], we let L = {Λ |
Λ ⊂ {1, . . . ,n2}} and define

cΛ (el) =
1

n2

∏
i=1

(di − ci)

[
∏
i�∈Λ

(−1)
el,i−ci
di−ci

(
ci

el,i − ci

di − ci
+ di

di − el,i

di − ci

)]

×
[
∏
i∈Λ

(−1)1− el,i−ci
di−ci

]
, (5.7)

mΛ =
∫
Ω
∏
i∈Λ

qiP(dω) , (5.8)

and m j,Λ =
∫
Ω

h j∏
i∈Λ

qiP(dω) , (5.9)

where j = 1, . . . ,m2 . We may also include stochastic components of T in place of
h j in (5.9). For simplicity, however, we only consider h stochastic next.

Assuming that ∑Λ∈L cΛ (el)mΛ > 0 for all l = 1, . . . ,L , the integration in (5.6)
yields a lower bound. With the definitions in (5.7)–(5.9), we can define a general
dependent lower bound, LBq,h(x) , as

LBq,h(x)

366 8 Evaluating and Approximating Expectations

=
L

∑
l=1

(
∑

Λ∈L

cΛ (el)mΛ

)⎡
⎣ m2

∑
j=1

π(el, j)

⎛
⎝ ∑

Λ∈L
cΛ (el)m j,Λ

∑
Λ∈L

cΛ (el)mΛ
− (Tx) j

⎞
⎠
⎤
⎦

=
L

∑
l=1

(
∑

Λ∈L

cΛ (el)mΛ

)
Q

⎛
⎝x,el ,

∑
Λ∈L

cΛ (el)m j,Λ

∑
Λ∈L

cΛ (el)mΛ

⎞
⎠

≤ Q(x) ,

(5.10)

where π(el) is chosen so that

Q

⎛
⎝x,el ,

∑
Λ∈L

cΛ (el)m j,Λ

∑
Λ∈L

cΛ (el)mΛ

⎞
⎠

=

⎡
⎣ m2

∑
j=1

π(el, j)

⎛
⎝ ∑

Λ∈L
cΛ (el)m j,Λ

∑
Λ∈L

cΛ (el)mΛ
− (Tx) j

⎞
⎠
⎤
⎦ .

When ∑Λ∈L cΛ (el)mΛ = 0 , we also have ∑Λ∈L cΛ (el)m j,Λ = 0 (Exercise 5)
making the l th component of the bound zero in that case. A completely analogous
upper bound is also available then.

Dependency can be removed if the random variables, h , can be written as linear
transformations of independent random variables. Here, the independent case needs
only to be slightly altered. A discussion appears in Birge and Wallace [1986].

The difficulty with the upper bounds for convex g(x, ·) and the other bounds
with concave components is that they minimally require function evaluations at the
extreme points of the support of the random vectors. They also may require joint
moment information that is not available. These factors make bounds based on ex-
treme points unattractive for practical computation with more than a small number
of random elements. As we saw earlier, in the case of simplicial support, we can
reduce the effort to only being linear in the dimension of the support, but the bounds
generally become imprecise.

Another problem with the upper bounds described so far in this chapter is that
they require bounded support. In Subsection 8.5c., we will describe generalizations
to eliminate this requirement for Edmundson-Madansky types of bounds. In the
next subsection, we consider other bounds that do not have this limitation. They are
based on exploiting separable structure in the problem. The goal in this case is to
avoid exponential growth in effort as the number of random variables increases. The
bounds of Section 8.3 are, however, still quite useful for low dimensions.

8.5 Generalized Bounds 367

b. Bounds based on separable functions

As we observed earlier, simple recourse problems are especially attractive because
they only require simple integrals to evaluate. The basic idea in this section is to
construct approximating functions that are separable and, therefore, easy to inte-
grate. This idea can be extended to separate low-dimension approximations, which
can then be combined with the bounds in Section 8.3. These ideas also generalize to
multistage approximations, such as approximate dynamic programming considered
in Chapter 10.

In the simple recourse problem (Section 3.1d.), we noticed that Ψ(χ) can be
written as

Ψ (χ) =
m2

∑
i=1

Ψi(χi) , (5.11)

in the case when only h is random in the recourse problem. We again consider this
case and build approximations on it. These results appear in Birge and Wets [1986,
1989], Birge and Wallace [1988], and, for network problems, Wallace [1987].

The basic simple recourse approximation is to consider an optimal response to
changes in each component of h separately and to combine those responses into an
approximating function. For the i th component of h , this response is the pair of
optimal solutions, yi,+,yi,− , to:

min qT y

s. t. Wy = ±ei ,y ≥ 0 , (5.12)

where ei is the i th coordinate direction, yi,+ corresponds to a right-hand side of
ei , and yi,− corresponds to a right-hand side of −ei . Thus, for any value hi of hi ,
the approximating response of yi,+(hi −χi) if hi ≥ χi and yi,−(χi −hi) if hi < χi .
We have thus used the positive homogeneity of ψ(χ ,h + χ) .

Using yi,+ and yi,− , we then obtain the approximate simple recourse functions:

ψI(i)(χi,hi) =

{
qT yi,+(hi − χi) if hi ≥ χi,

qT yi,−(χi −hi) if hi < χi ,
(5.13)

which are integrated to form

ΨI(i)(χi) =
∫

hi

ψI(i)(χi,hi)Pi(dhi) , (5.14)

where we let Pi be the marginal probability measure of hi . Note that the calculation
in (5.14) only requires the conditional expectation of hi on each interval (−∞,χi]
and (χi,∞) and the expectation of these intervals.

The ΨI(i) functions combine to form

ΨI(χ) =
m2

∑
i=1

ΨI(i)(χi) , (5.15)

368 8 Evaluating and Approximating Expectations

which is a simple recourse function. The next theorem states the main result of this
section.

Theorem 5. The function ΨI(χ) constructed in (5.13)–(5.15) represents an upper
bound on the recourse function Ψ(χ) , i.e.,

Ψ(χ) ≤ΨI(χ) , (5.16)

for all χ .

Proof: Consider the solution yI = ∑m2
i=1[y

i,+(hi − χi)+ + yi,−(−)(hi − χi)−] . Note
that yI is feasible in the recourse problem for h . Thus

Ψ (χ) =
∫
Ω
ψ(χ ,h)P(dω)

≤
∫
Ω

qT yIP(dω) =
m2

∑
i=1

ΨI(χi) =ΨI(χ) . (5.17)

The result in Theorem 5 is straightforward but useful. In particular, we can con-
struct other approximations that use different representations of a solution to the
recourse problem with right-hand side h− χ . A particularly useful type of this ap-
proximation is to consider a set of vectors, V = {v1, . . . ,vν} , such that any vector
in ℜm2 can be written as a non-negative linear combination of the vectors in V .
This defines V as a positive linear basis of ℜm2 . For such V , we suppose that yV,i

solves:

min qT y

s. t. Wy = vi , y ≥ 0 . (5.18)

We can then represent any h − χ in terms of non-negative combinations of the
vi or W times the corresponding non-negative combination of the yV,i . Thus, we
construct a feasible solution that responds separately to the components of V .

If V is a simplex, the construction of h− χ from V corresponds to a barycen-
tric coordinate system. Bounds based on this idea are explored in Dulá [1991]. An-
other option is to let V be the set of positive and negative components of a basis
D = [d1 | · · · | dm2] of ℜm2 , or, V = {d1, . . . ,dm2 ,−d1, . . . ,−dm2} . This yields so-
lutions, yD,i,+ , to (5.18) when vi = di and yD,i,− when vi = −di . To use these
in approximating a recourse problem solution with right-hand side h− χ , we want
the values of ζ such that Dζ = h−χ or ζ = D−1(h−χ) . Then the weight on di

is ζi if ζi ≥ 0 and the weight on −di is −ζi if ζi < 0 . We thus construct simple
recourse-type functions,

ψDi(ζi) =

{
qT yD,i,+(ζi) if ζi ≥ 0 ,

qT yD,i,−(−ζi) if ζi < 0 ,
(5.19)

8.5 Generalized Bounds 369

which are integrated to form

ΨDi(χ) =
∫

ζi

ψDi(ζi)PDi(dζi) , (5.20)

where PDi is the marginal probability measure of ζi . Again, these are added to
create a new upper bound,

ΨD(χ) =
m2

∑
i=1

ΨDi(χ) ≥Ψ(χ) . (5.21)

Now, computation of ΨD relies on the ability to find the distribution of ζi . In spe-
cial cases, such as when h is normally distributed, then ζ , the affine transformation
of a normal vector is also normally distributed so that the marginal ζi can be easily
calculated. In other cases, full distributional information of h may not be known.
In this case, first or higher moments of ζi can be calculated and bounds such as
those in Section 8.2 or those based on the moment problem in Subsection 8.5c., can
be used. In either case, the calculation of ΨD reduces to evaluating or bounding the
expectation of a function of a single random variable.

Of course, if a set of bases, D , is available, then the best bound within this set
can be used. In fact, the convex hull of all approximations, ΨD , for D ∈ D , is also
a bound. We write this function as:

co{ΨD,D ∈ D}(χ)

= inf

{
K

∑
i=1

λ iΨDi(χ i) |
K

∑
i=1

λ iχ i = χ ,

j

∑
i=1

λ i = 1 , λ i ≥ 0 , i = 1, . . . ,K

}
, (5.22)

where D = {D1, . . . ,D j} . This definition yields the following.

Theorem 6. For any set D of linear bases of ℜm2 ,

Ψ(χ) ≤ co{ΨD,D ∈ D}(χ) . (5.23)

Proof: From earlier,
Ψ(χ i) ≤ΨDi(χ i) (5.24)

for each i = 1, . . . ,K and choice of χ i . By convexity of Ψ ,
Ψ(χ) ≤ ∑ j

i=1λ
iΨ(χ i) where

K

∑
i=1

λ iχ i = χ ,
j

∑
i=1

λ i = 1 , λ i ≥ 0 , i = 1, . . . ,K . (5.25)

370 8 Evaluating and Approximating Expectations

Combining (5.24) and (5.25) with the definition in (5.22) yields (5.23).

From Theorem 6, we continue to add bases Di to D to improve the bound on
Ψ(χ) . Even if D(W) , the set of all bases in W are included; however, the bound
is not exact. In this case, co{ψD(D−1(h − χ)) | D ∈ D(W)} = ψ(χ ,h) because
ψ(χ ,h) = qT y∗ = qT (D∗)−1(h− χ) for some D∗ ∈ D(W) . However,

Ψ (χ) =
∫

co{ψD(D−1(h− χ)) | D ∈ D(W)}P(dh)

≤ co{
∫
ψD(D−1(h− χ))P(dh) | D ∈ D(W)}

= co{ΨD,D ∈ D}(χ) , (5.26)

where the inequality is generally strict except for unusual cases (such as Ψ linear
in χ).

As we shall see in an example later, the main intention of this approximation is to
provide a means to find the optimal x value. Thus, the most important consideration
is whether the subgradients of co{ΨD,D ∈ D}(χ) are approximately the same as
those for Ψ(χ) . In this case, the approximation appears to perform quite well (see
Birge and Wets [1989]).

Example 1 (continued)

Let us consider Example 1 again, as in Section 8.2. The optimal bases and their
regions of optimality were given there. In this case, we let D1 = B1 , D2 = B2 ,
and D3 = B3 . Note that this last approximation is derived for B4 and B5 because
they correspond to the same positive linear basis as [B3,−B3] . At χ = (0.3,0.3)T ,
we can evaluate each of the bounds, ΨDi . For i = 1 , we have (D1)−1 =

(
1 −1
0 1

)
,

so that ζ1
1 = h1 − h2 and ζ1

2 = h2 − χ2 = h2 − 0.3 . In this case, yD1,1,+ =
(y+

1 ,y−
1 ,y+

2 ,y−
2 ,y3)T = (1,0,0,0,0)T , yD1,1,− = (0,1,0,0,0)T , yD1,2,+ =

(0,0,0,0,1)T , and yD1,2,− = (0,1,0,1,0)T . Integrating out each ζ1
i , we obtain

ΨD1(0.3,0.3) = 0.668 . Symmetrically, ΨD2(0.3,0.3) = 0.668 . For ΨD3(0.3,0.3) ,
we note that each component is simply the probability that hi ≤ 0.3 times the con-
ditional expectation of hi − 0.3 given hi ≤ 0.3 plus the probability that hi > 0.3
times the conditional expectation of hi −0.3 given hi > 0.3 . Thus, ΨD3(0.3,0.3)=
2[(0.3)(0.15)+ (0.7)(0.35)]= 0.580 .

Comparing the best of these bounds with those in the previous chapters leads to a
more accurate approximation. We should note, however, that this approach requires
more distributional information.

Taking convex hulls can produce even better bounds. The convex hull operation
is, however, a nonconvex optimization problem. The dual gives some computational
advantage. To give an idea of the advantage of the convex hull, however, consider
Figure 5, where the graphs of ΨDi are displayed with that of Ψ as functions of χ1

8.5 Generalized Bounds 371

for χ2 = 0.1 . Note how the convex hull of the graphs of the approximations appears
to have similar subgradients to that of Ψ . This observation appears to hold quite
generally, as indicated by the computational tests in Birge and Wets [1989].

Fig. 5 Graphs of Ψ (solid line) and the approximations, ΨDi (dashed lines).

The separable bounds in ΨDi can also be enhanced by, for example, including fixed
values (due to known entries in h) in the right-hand sides of (5.18). Other pos-
sibilities are to combine the component approximations on an interval instead of
assuming that they may apply for all positive multiples of the vi . In this case, the
solution for some interval of vi multiples can serve as a constraint for determin-
ing solutions for the next vi+1 . This procedure is carried out in Birge and Wallace
[1988]. It appears especially useful for problems with bounded random variables
and networks (Wallace [1987]).

To improve on these bounds and obtain some form of convergence requires re-
laxation of complete separability. For example, pairs of random variables can be
considered together. In this way, more precise bounds can be found. Determination
of these terms is, however, problem-specific. In general, the structure of the prob-
lem must be used to obtain the most efficient improvements on the basic separable
approximation bounds.

So far, we have presented bounds for the recourse function with a fixed χ value.
In the next subsection, we consider how to combine these approximations into so-
lution algorithms where x varies from iteration to iteration. In the case of the sepa-
rable bounds, this implementation results from a dualization that turns the difficult
convex hull operation into a simpler supremum operation.

372 8 Evaluating and Approximating Expectations

c. General-moment bounds

Many other bounds are possible in addition to those presented so far. A general
form for many of these bounds is found through the solution of an abstract linear
program, called a generalized moment problem. This problem provides the lowest
or highest expected probabilities or objective values that are possible given certain
distribution information that can be written as generalized moments. In this sub-
section, we present this basic framework, some results using second moments, and
generalizations to nonlinear functions. Concepts from measure theory appear again
in this development.

To obtain bounds that hold for all distributions with certain properties, we can
find P ∈ P , a set of probability measures on (Ξ ,BN) , to extremize a moment
problem. We let BN be the Borel field of ℜN where ℜN ⊃ Ξ . We use probability
measures defined directly on BN to simplify the following discussion. We wish to
find:

P ∈ P a set of probability measures on (Ξ ,BN)

s. t.
∫
Ξ

vi(ξ)P(dξ) ≤ αi , i = 1, . . . ,s ,
∫
Ξ

vi(ξ)P(dξ) = βi , i = s+ 1, . . . ,M ,

to maximize
∫
Ξ

g(ξ)P(dξ) , (5.27)

where M is finite and the vi are bounded, continuous functions. A solution of
(5.27) obtains an upper bound on the expectation of g with respect to any proba-
bility measure satisfying the conditions given earlier. We could equally well have
posed this to find a lower bound.

Problem (5.27) is a generalized moment problem (Krein and Nudel’man [1977]).
When the vi are powers of ξ , the constraints restrict the moments of ξ with re-
spect to P . In this context, (5.27) determines an upper bound when only limited
moment information on a distribution is available.

Problem (5.27) can also be interpreted as an abstract linear program, i.e., a lin-
ear program defined over an abstract space, because the objective and constraints are
linear functions of the probability measure. The solution is then an extreme point
in the infinite-dimensional space of probability measures. The following theorem,
proven in Karr [1983, Theorem 2.1], gives the explicit solution properties. We state
it without proof because our main interests here are in the results and not the partic-
ular form of these solutions. Readers with statistics backgrounds may compare the
result with the Neyman-Pearson lemma and the proof of the optimality conditions
as in Dantzig and Wald [1951]. For details on the weak ∗ topology that appears in
the theorem, we refer the reader to Royden [1968].

8.5 Generalized Bounds 373

Theorem 7. Suppose Ξ is compact. Then the set of feasible measures in (5.27),
P , is convex and compact (with respect to the weak ∗ topology), and P is the
closure of the convex hull of the extreme points of P . If g is continuous relative to
Ξ , then an optimum (maximum or minimum) of

∫
Ξ g(x,ξ)P(dξ) is attained at an

extreme point of P . The extremal measures of P are those measures that have
finite support, {ξ1, . . . ,ξL} , with L ≤ M + 1 , such that the vectors

⎛
⎜⎜⎜⎜⎜⎝

v1(ξ1)
v2(ξ1)

...
vM(ξ1)

1

⎞
⎟⎟⎟⎟⎟⎠

, . . . ,

⎛
⎜⎜⎜⎜⎜⎝

v1(ξL)
v2(ξL)

...
vM(ξL)

1

⎞
⎟⎟⎟⎟⎟⎠

(5.28)

are linearly independent.

Kemperman [1968] showed that the supremum is attained under more general
continuity assumptions and provides conditions for P to be nonempty. Dupačová
(formerly Žáčková) [1976, 1977, 1966] pioneered the use of the moment problem as
a bounding procedure for stochastic programs in her work on a minimax approach to
stochastic programming. She showed that (5.27) attains the Edmundson-Madansky
bound (and the Jensen bound if the objective is minimized) when the only constraint
in (5.27) is v1 = ξ , i.e., the constraints fix the first moment of the probability mea-
sure. She also provided some properties of the solution with an additional second-
moment constraint (v2(x) = ξ 2) for a specific objective function g . Frauendorfer’s
[1988b] results can be viewed as solutions of (5.27) when the constraints satisfy all
of the joint moment conditions.

To solve (5.27) generally, we consider a generalized linear programming proce-
dure.

Generalized Linear Programming Procedure for the Generalized Moment
Problem (GLP)

Step 0. Initialization. Identify a set of L ≤ M + 1 linearly independent vectors as
in (5.28) that satisfy the constraints in (5.27). (Note that a phase one–objective
(Dantzig [1963]) may be used if such a starting solution is not immediately avail-
able. For N = 1 , the Gaussian quadrature points may be used.) Let r = L , ν = 1 ;
go to 1.

Step 1. Master problem solution. Find p1 ≥ 0 , . . . , pr ≥ 0 such that

r

∑
l=1

pl = 1 ,

r

∑
l=1

vl(ξl)pl ≤ βi , l = 1, . . . ,s ,

374 8 Evaluating and Approximating Expectations

r

∑
l=1

vl(ξl)pl = βi , l = s+ 1, . . . ,M ,

and z =
r

∑
l=1

g(ξl)pl is maximized. (5.29)

Let {p j
1, . . . , p j

r} attain the optimum in (5.29), and let {σ j,π j
1 , . . . ,π j

M} be the as-
sociated dual multipliers such that

σ j +
M

∑
i=1

π j
i vi(ξl) = g(ξl) , if p j

l > 0 , l = 1, . . . ,r ,

σ j +
M

∑
i=1

π j
i vi(ξl) ≥ g(ξl) , if p j

l = 0 , l = 1, . . . ,r ,

π j
i ≥ 0 , i = 1, . . . ,s. (5.30)

Step 2. Subproblem solution. Find ξ r+1 that maximizes

γ(ξ ,σ j,π j) = g(ξ)−σ j −
M

∑
i=1

π j
i vi(ξ) . (5.31)

If γ(ξ r+1,σ j,π j) > 0 , let r = r+1 , ν = ν+1 and go to Step 1. Otherwise, stop;
{p j

1, . . . , p j
r} are the optimal probabilities associated with {ξ1, . . . ,ξr} in a solution

to (5.27).

As we saw in Chapter 3, the generalized programming approach is useful in
problems with a potentially large number of variables. This approach is used in Er-
moliev, Gaivoronski, and Nedeva [1985] to solve a class of problems (5.27). The
difficulty in GLP is in the solution of the subproblem (5.31), which generally in-
volves a nonconvex function. Birge and Wets [1986] describe how to solve (5.31)
with constrained first and second moments, if convexity properties of γ can be iden-
tified. Cipra [1985] describes other methods for this problem based on discretiza-
tions and random selections of candidate points, xi . Dulá [1991] gives results when
g is sublinear and has simplicial level sets. Kall [1991] gives the results for sub-
linear, polyhedral functions with known generators. Edirisinghe [1996] also finds
bounds using second moment information that is somewhat looser than the general-
ized moment solution.

Kall’s result is useful when the optimal recourse problem multipliers are known,
so that

Q(x,ξ) = max
i=1,...,K

πT
i (h−Tx) , (5.32)

where we again assume that ξ = h or that T and q are known. Kall’s result per-
tains to having known means for all hi and a limit ρ on the total second moment,
defined as

8.5 Generalized Bounds 375

ρ =
∫
Ξ
‖ξ‖2P(dξ) . (5.33)

The moment problem becomes:

sup
P∈P

∫
Ω

Q(x,ξ)P(dξ)

s. t.
∫
Ξ
ξP(dξ) = h̄ and (5.33) , (5.34)

where P is a set of probability measures with support, Ξ .
Kall shows that the solution of (5.34) with Q defined as in (5.32) is equivalent

to the following finite-dimensional optimization problem:

inf
y∈ℜm

{ max
i=1,...,K

(√
ρ−2(h̄)T T x +‖Tx‖2

)
‖πi − y‖+(h̄−Tx)T y} . (5.35)

Dulá obtained similar results for strictly simplicial Q . Note that when h̄ = T x , this
reduces to a form of location problem to minimize the maximum weighted distance
from πi to y . The solution to (5.34) may involve calculations with each of these
recourse problem solutions, but the resulting distribution P that solves (5.34) still
has only m2 +2 points of support. These are found by solving for the Karush-Kuhn-
Tucker conditions for problem (5.34), where the y values correspond to multipliers
for the mean value constraints.

Other bounds are also possible for different types of objective functions. In par-
ticular, we consider functions built around separable properties. The use of the
generalized programming formulation is limited in multiple dimensions because of
the difficulty in solving subproblem (5.32). These computational disadvantages for
large values of N suggest that a looser but more computationally efficient upper
bound on the value of (5.27) may be more useful than solving (5.27) exactly for
large N .

If a separable function, η(x) = ∑N
i=1ηi(x(i)) , is available, it offers an obvious

advantage by only requiring single integrals, as we stated earlier. Here, we would
also like to show that these bounds can be extended to nonlinear recourse functions.
We suppose that the recourse function becomes some general g(ξ (ω)) , where

g(ξ) = inf
y
{q(y) | g(y) ≤ ξ} . (5.36)

In this case, we would like to find η(ξ) = ∑N
i=1ηi(ξ (i)) ≥ g(ξ) where each

ηi(ξ (i)) is a convex function. Methods for constructing these functions to bound
the optimal value of a linear program with random right-hand sides were discussed
in Subsection 8.5b. We next give the results for the general problem in (5.36).

Lemma 8. If g is defined as in (5.36), then g is a convex function of ξ .

Proof: Let y1 solve the optimization problem in (5.36) for ξ1 and let y2 solve
the corresponding problem for ξ2 . Consider ξ = λξ1 + (1 − λ)ξ2 . In this case,

376 8 Evaluating and Approximating Expectations

g(λy1 +(1−λ)y2) ≤ λg(y1)+ (1−λ)g(y2) ≤ λξ1 +(1−λ)ξ2 . So g(λξ1 +(1−
λ)ξ2) ≤ q(λy1 +(1−λ)y2) ≤ λg(ξ1)+ (1−λ)g(ξ2) , giving the result.

Let

ηi(ξ (i)) ≡ 1
N

g(Nξ (i)ei) , (5.37)

which is the optimal value of a parametric mathematical program. The follow-
ing theorem shows that these values supply the separable bound required. Related
bounds are possible by defining ηi with other right scalar multiples, gλi(ξ (i)ei)
(see Rockafellar [1969] for general properties), where ∑N

i=1λi = 1 . The following
proof below is easily extended to these cases and to translations of the constraints
and explicit variable bounds.

Theorem 9. The function η(ξ) = ∑N
i=1ηi(ξ (i)) ≥ g(ξ) , where g is defined as in

(5.36).

Proof: In this case, let yi(ξ (i)) solve (5.36), where ξ (ω) = Nξ (i)ei . Then,

g
(
∑N

i=1 yi(ξ (i))
N

)
≤∑N

i=1

(
1
N

)
[g(yi(ξ (i))] ≤∑N

i=1

(
1
N

)
Nξ (i)ei = ξ . Next, let y∗ solve

(5.36) for ξ in the right-hand side of the constraints. By feasibility of ∑N
i=1

yi(ξ (i))
N ,

g(ξ)= q(y∗) ≤ q
(
∑N

i=1
yi(ξ (i))

N

)
≤∑N

i=1

(1
N

)
q(yi(ξi)) =∑N

i=1ηi(ξ (i)) = η(ξ) .

This result demonstrates that a parametric optimization of (5.36) in i = 1, . . . ,N
yields an upper bound on g(ξ) for any ξ . The bound may be tight, as in some
examples for stochastic linear programs as given in Subsection 8.5b.

Generalizations of the stochastic linear program bound as in Subsection 8.5b.
can also be given for the general bound in Theorem 9. For example, we may ap-
ply a linear transformation T to ξ to obtain u = Tξ . The constraints become
g(y) ≤ G−1(u) . To use any bound of the general type in Theorem 9 to bound∫
ℜN g(ξ)dg(ξ) requires a bound on

∫
ℜηi(ξ (i)) dFi(ξi) or

∫
ℜ μi(u(i)) dFui(u(i)) ,

where Fi is the marginal distribution on ξi and Fui is the marginal distribution on
u(i) . Because it may be difficult to find the distribution of u , the generalized mo-
ment problem can be solved to obtain bounds on each integral in ℜ . Generalized
linear programming may solve this problem but can be inefficient. To simplify this
process, in Birge and Dulá [1991], it is shown that a large class of functions requires
only two points of support in the bounding distribution. A single line search can
determine these points and give a bound on f over all distributions with bounded
first and second moments for the marginals.

We develop bounds following Birge and Dulá [1991] on
∫
ηi(x(i))dFi(x(i)) by

referring to g as a function on ℜ (N = 1). We then consider the moment problem
(5.27) with s = 0 , and M = 2 and where the constraints correspond to known first
and second moments. In other words, we wish to find:

U = sup
Q∈P

∫
Ξ

g(ξ)P(dξ)

∫
Ξ
ξP(dξ) = ξ̄ ,

8.5 Generalized Bounds 377

∫
Ξ
ξ 2P(dx) = ξ̄ (2) , (5.38)

where P ∈ P is the set of probability measures on (Ξ ,B1) , the first moment of
the true distribution is ξ̄ , and the second moment is ξ̄ (2) .

A generalization of Carathéodory’s theorem (Valentine [1964]) for the convex
hull of connected sets tells us that y∗ can be expressed as a convex combination of
at most three extreme points of C , giving us a special case of Theorem 9. Therefore,
an optimal solution to (5.38) can be written, {ξ ∗, p∗} , where the points of support,
ξ ∗ = {ξ ∗

1 ,ξ ∗
2 ,ξ ∗

3 } have probabilities, p∗ = {p∗
1, p∗

2, p∗
3} . An optimal solution may,

however, have two points of support. A function that has this property for a given
instance of (5.27) is called a two–point support function. We will give sufficient
conditions for a function to have this two-point support property. This property then
allows a simplified solution of (5.38). It is given in the next theorem which is proven
in Birge and Dulá [1991].

Theorem 10. If g is convex with derivative g′ defined as a convex function on
[a,c) and as a concave function on (c,b] for Ξ = [a,b] and a ≤ c ≤ b , then there
exists an optimal solution to (5.38) with at most two support points, {ξ1,ξ2} , with
positive probabilities, {p1, p2} .

A corollary of Theorem 10 is that any function g that has a convex or concave
derivative has the two-point support property. The class of functions that meets the
criteria of Theorem 10 contains many useful examples, such as:

1. Polynomials defined over ranges with at most one third-derivative sign change.
2. Exponential functions of the form, c0ec1ξ , c0 ≥ 0 .
3. Logarithmic functions of the form, log j(cξ) , for any j ≥ 0 .
4. Certain hyperbolic functions such as sinh(cξ) , c,ξ ≥ 0 , cosh(cx) .
5. Certain trigonometric and inverse trigonometric functions such as tan−1(cξ) ,

c,ξ ≥ 0 .

In fact, Theorem 10 can be applied to provide an upper bound on the expectation
of any convex function with known third derivative when the distribution function
has a known third moment, ξ̄ (3) . Suppose a > 0 (if not, then this argument can
be applied on [a,0] and [0,b]); then let g(ξ) = βξ 3 + g(ξ) . The function g is
still convex on [0,b) for β ≥ 0 . By defining β ≥ (−1/6)min(0, infξ∈[a,b] f ′′′(ξ)) ,
g′ is convex on [a,b] , and an upper bound, UB(g) , on E g(ξ) has a two-point
support. The expectation of g is then bounded by

Eg(ξ) ≤ UB(g)−β ξ̄ (3) . (5.39)

The conditions in Theorem 10 are only sufficient for a two-point support
function. They are not necessary (see Exercise 8). Note also that not all func-
tions are two-point support functions (although bounds using (5.34) are avail-
able). A function requiring three support points, for example, is g(ξ) = (1/2)−√

(1/4)− (ξ− (1/2))2 (Exercise 9).

378 8 Evaluating and Approximating Expectations

Given that a function is a two-point support function, the points {ξ1,ξ2} can be
found using a line search to find a maximum.

For the special case of piecewise linear functions, the points, ξ1 , ξ2 , can be
found analytically. In this case, suppose that g(ξ) =ψSR(h,χ) , the simple recourse
function defined by:

ψSR(h,χ) =

{
q−(χ−h) if h ≤ χ ,

q+(h− χ) if h > χ .
(5.40)

Consider the nonintersecting intervals, A = (0, ξ̄ (2)/(2ξ̄)) , B = [ξ̄ (2)/(2ξ̄),
(1− ξ̄ (2))/(2(1− ξ̄))] , and C = ((1− ξ̄ (2))/(2(1− ξ̄)),1) . The points of support
for this semilinear, convex function defined on [0,1] are

{ξ ∗
1 ,ξ ∗

2 } =

⎧⎪⎨
⎪⎩

{0, ξ̄ (2)/ξ̄} if χ ∈ A ,

{χ−d,χ+ d} if χ ∈ B ,

{(ξ̄ − ξ̄ (2))/(1− ξ̄),1} if χ ∈ C ,

(5.41)

where d =
√
χ2 −2χξ̄ + ξ̄ (2) . This result can be obviously extended to other finite

intervals. Infinite intervals can also be solved analytically for these semilinear, con-
vex functions. For X = [0,∞) , the results are as in (5.41) with B = [ξ̄ (2)/(2ξ̄),∞)
and C = /0 . For the interval (−∞,∞) , the points of support are those for interval
B in (5.41). We note that special cases for these supports of semilinear, convex
functions were considered in Jagganathan [1977] and Scarf [1958].

Other bounds are also possible using the generalized moment problem frame-
work. One possible approach is to use piecewise linear constraints on the quadratic
functions defining second-moment constraints as in (5.38). This approach is de-
scribed in Birge and Wets [1987] which also considers unbounded regions that lead
to measures that are limiting solutions to (5.27) but that may not actually be prob-
ability measures but are instead nonnegative measures with weights on extreme di-
rections of Ξ . An example is given in Exercise 12.

To see how these bounds are constructed for unbounded regions, weights can
be placed on extreme recession directions, r j , j = 1, . . . ,J , such that ξ + β r j ∈
Ξ for all ξ ∈ Ξ and r j not decomposable into non-negative multiples of other
recession directions. Then, if the recourse function Q has a recession function,

rcQ(x,r j) ≥ Q(x,ξ+β r j)−Q(x,ξ)
β for all β > 0 , then Q(x,ξ) ≤∑k=1,...,K λ kQ(x,ek)+

∑ j=1,...,J μ jrcQ(x,r j) , when ξ = ∑k=1,...,K λ kek +∑ j=1,...,J μ jr j , ∑k=1,...,K λ k =
1 , λ k,μ j ≥ 0 . Now, an analogous result to Theorem 1 can be constructed where
λ k =

∫
Ξ λ (ξ ,ek)P(dξ) and μ j =

∫
Ξ μ(ξ ,r j)P(dξ) are constructed from measures

λ (ξ , ·) and μ(ξ , ·) such that ξ = ∑k=1,...,K ekλ (ξ ,ek) +∑ j=1,...,J r jμ j(ξ ,r j) for
all ξ ∈ Ξ .

With piecewise linear functions, vi(ξ)= βilξ+βil on Ξ l , l = 1, . . . ,L , P[Ξ l] =
pl ,

8.5 Generalized Bounds 379

∫
Ξ

vi(ξ)P(dξ) =
L

∑
l=1

∑
e∈extΞl

βileλ l(e)+ ∑
r∈rcΞl

βilrμl(r)−βil p
l , (5.42)

where λ l(e) is a weight on the extreme point e in Ξ l and μ l(r) is a weight on
extreme direction r of Ξ l . From (5.42), we can use a piecewise linear vi to bound
nonlinear v from below. If

∫
Ξ

v(ξ)P(dξ) ≤ v̄ , (5.43)

then ∫
Ξ

vi(ξ)P(dξ) ≤ v̄ . (5.44)

Thus, we can use (5.44) in place of (5.43) to obtain an upper bound on a moment
problem. The advantage of (5.44) is that we need only use the extreme values of the
Ξ l from (5.42) in (5.44).

Other types of bounds are also possible that depend on different types of func-
tions, such as lower piecewise linear functions (see Marti [1975] or Birge and Wets
[1986]). Stochastic dominance of probability distributions can also be used to con-
struct bounds. This approach tends to be difficult in higher dimensions (see Birge
and Wets [1986, Section 7]) but has useful properties for accounting for general
risk preferences (see Dentcheva and Ruszczyński [2010]). Another alternative is to
identify optimization procedures that improve among all possible distributions (see,
e.g., Marti [1988]). Still other procedures are possible using conjugate function in-
formation directly such as in Birge and Teboulle [1989], which considers nonlinear
functions that are otherwise not easily evaluated.

We have not yet considered approximations based on sampling ideas. Many pos-
sibilities exist in this area as well. We will describe these bounds and algorithms
based on them in Chapter 9.

Exercises

1. Verify the derivation of η(ξ , ·) in (5.2).

2. Derive the result in (5.3).

3. Consider the sugar beet recourse function, Q3 , in Section 1.1. Suppose that the
selling price above 6000 is actually a random variable, q , that has mean 10 and
is distributed on [5,15] . Suppose also that E [qr3] = 250 . Use (5.9) to derive a
lower bound on Q3(300) .

4. Verify the result of the integration in (5.5) given in (5.9).

5. Verify that ∑Λ∈L cΛ (el)mΛ = 0 implies ∑Λ∈L cΛ (el)m j,Λ = 0 and that, if

both are nonzero, then ∑Λ∈L cΛ (el)mj,Λ
∑Λ∈L cΛ (el)mΛ

is in the closure of the support of h .

380 8 Evaluating and Approximating Expectations

6. Find the functions ΨDi as functions of χ for each i as in the example. Also
find the optimal value function Ψ in terms of χ . Graph these functions as
functions of χ2 for values of χ1 = j

10 , j = 0, . . . ,9 . Compare the convex hulls
of the approximations with the graph of Ψ .

7. Using the data for Example 1, solve (5.34) to determine an upper bound with
the total second-moment constraint.

8. Construct a two-point support function that does not meet the conditions in The-
orem 3.

9. A European call option is a type of financial derivative contract that provides the
right (but not the obligation) to purchase an asset at a fixed price K at a future
time T . If the asset’s price at time time t is given by a price process St , then,
under a complete and perfect assumption, the value (or premium) of the call
option at time 0 is given as C0 = e−r f T E Q[(ST −K)+] , where r f is the riskfree
rate (earned by a riskless zero-coupon bond that pays no interest until time T
when it matures and pays a face value of one with certainty) and Q is a measure
over ω known as the equivalent martingale measure. While it is common to
assume ST under Q has a log-normal distribution, the distribution is often
unknown. The bounds in this section can be used if only partial information
is given. Suppose that only the mean and variance of ST under Q is known.
Show that the call function satisfies the conditions for a two-point support and
find the maximum price that is consistent with these moments as a function of
the mean, variance, and K . (Note that ST ≥ 0 as well.) (Lo [1987].)

10. Show that g(ξ)= (1/2)−√
(1/4)− (ξ− (1/2))2 requires three support points

to obtain the best upper bound with mean of 0.5 and variance of 1/6 on Ξ =
[0,1] .

11. Find the Edmundson-Madansky and two-moment bounds for ξ uniform on
Ξ = [0,1] and the following functions: e−ξ , ξ 3 , sin(π(ξ + 1)) .

12. Use the results in Theorems 9 and 10 to bound the following nonlinear recourse
function with the form in (5.38). We suppose in this case that

g(ξ1,ξ2) = min (ξ1 −1)2 +(ξ2 −2)2

s. t. ξ 2
1 + ξ 2

2 −1 ≤ ξ1 ,

(ξ1 −1)2 + ξ 2
2 −1 ≤ ξ2 .

13. Suppose that it is known that the ξi are non-negative, that ξ̄i = 1 , and that

ξ̄ (2)
i = 1.25 . In this case, we would like an upper bound on the expected per-

formance E(g(ξ)) . We construct a bound by first finding ηi(ξi) as in (5.37).
This problem may correspond to determining a performance characteristic of a
part machined by two circular motions centered at (0,0) and (1,0) , respec-
tively. Here, the performance characteristic is proportional to the distance from
the finished part to another object at (2,1) . The square of the radii of the tool
motions is ξi + 1 , where ξi is a non-negative random variable associated with
the machines’ precision.

8.6 General Convergence Properties 381

14. As an example of using (5.41), consider Example 1, but assume that Ξ is the
entire non-negative orthant and that each ξi is exponentially distributed with
mean 0.5 . Use a piecewise linear lower bound on the individual second mo-
ments that is zero for 0 ≤ ξi ≤ 0.5 , and 2ξi −1 for ξ ≥ 0.5 . Solve the moment
problem using these regions to obtain an upper bound for all expected recourse
functions with the same means and variances as the exponential. Also, solve the
moment problem with only mean constraints and compare the results.

8.6 General Convergence Properties

For the following bounding discussions, we use a general function notation because
these results hold quite broadly. The discussion in this section follows Birge and
Qi [1995], which gives a variety of results on convergence of probability measures.
Other references are Birge and Wets [1986] and King and Wets [1991]. This section
is fundamental for theoretical properties of convergence of approximations.

We consider the expectational functional E(g(·)) = E{g(·,ξ)} , where ξ is a
random vector with support Ξ ⊆ℜN and g is an extended real-valued function on
ℜn ×Ξ . Here,

E(g(x)) =
∫

g(x,ξ)P(dξ) , (6.1)

where P is a probability measure defined on ℜn .
We assume that E(g(·)) (which represents the recourse function Q) is difficult

to evaluate because of the complications involved in g and the dimension of Ξ .
The basic goal in most approximations is to approximate (6.1) by

Eν(g(x)) =
∫

g(x,ξ)Pν(dξ) , (6.2)

where {Pν ,ν = 1, . . .} is a sequence of probability measures converging in distri-
bution to the probability measure P . By convergence in distribution, we mean that∫

g(ξ)Pν(dξ) → ∫
g(ξ)P(dξ) for all bounded continuous g on Ξ . For more gen-

eral information on convergence of distribution functions, we refer to Billingsley
[1968].

In the following, we use E 0 and P0 instead of E and P for convenience. If
C ⊆ ℜn is a closed convex set, then Ψ∗

C is the support function of C , defined by
Ψ∗(g |C) = sup{〈x,g〉 : x ∈C} . A sequence of closed convex sets {Cν : ν = 1, . . .}
in ℜn is said to converge to a closed convex set C in ℜn if for any g ∈ℜn ,

lim
ν→+∞

Ψ∗(g | Cν) =Ψ∗(g | C) .

One may easily prove the following proposition that is stated without proof.

Proposition 11. Suppose that C and Cν , for ν = 1, . . . , are closed convex sets in
ℜn . The following two statements are equivalent:

382 8 Evaluating and Approximating Expectations

(a) Cν converges to C as ν → +∞ ;
(b) a point x ∈ C if and only if there are xν ∈ Cν such that xν → x .

This notion of set convergence is important in the study of convergence of func-
tions. We say that a sequence of functions, {gν ;ν = 1, . . .} , epi-converges to func-
tion, g , if and only if the epigraphs, epi gν = {(x,β) | β ≥ gν(x)} , of the functions
converge as sets to the epigraph of g , epi g = {(x,β) | β ≥ g(x)} . Epi-convergence
has many important properties, which are explored in detail in Wets [1980a] and
Attouch and Wets [1981]. A chief property (Exercise 1) is that any limit point of
minima of gν is a minimum of g .

In the following, we restrict our attention to convex integrands g although ex-
tensions to nonconvex functions are also possible as in Birge and Qi [1995]. In this
case, one can use the generalized subdifferential in the sense of Clarke [1983] or
other definitions as in Michel and Penot [1984] or Mordukhovich [1988]. The next
theorem appears in Birge and Wets [1986] with some extensions in Birge and Qi
[1995]. Other results of this type appear in Kall [1987].

Theorem 12. Suppose that
(i) {Pν ,ν = 1, . . .} converges in distribution to P ;
(ii) g(x, ·) is continuous on Ξ for each x ∈ D , where

D = {x : E(g(x)) < +∞} = {x : g(x,ξ) < +∞, a. s. } ;

(iii) g(·,ξ) is locally Lipschitz on D with Lipschitz constant independent of ξ ;
(iv) for any x ∈ D and ε > 0 , there exists a compact set Sε and νε such that for
all ν ≥ νε , ∫

Ξ\Sε
|g(x,ξ)|Pν(dξ) < ε ,

and with Vx = {ξ : g(x,ξ) = +∞} , P(Vx) > 0 if and only if Pν(Vx) > 0 for ν =
0,1,
Then
(a) Eν (g(·)) epi- and pointwise converges to E(g(·)) ; if x,xν ∈ D for ν = 1,2, . . .
and xν → x , then

lim
ν→∞

Eν(g(xν)) = E(g(x)) ;

(b) Eν(g(·)) , where ν = 0,1, . . . , is locally Lipschitz on D ; furthermore, for each
x ∈ D , {∂Eν (g(x)) : ν = 0,1, . . .} is bounded;
(c) if xν ∈ D minimizes Eν(g(x)) for each ν and x is a limiting point of {xν} ,
then x minimizes E(g(x)) .

Proof: First, we establish pointwise convergence of the expectation functionals.
Suppose x ∈ D and consider Sε as in the hypothesis. Let Mε = supξ∈Sε |g(x,ξ)| ,
which is finite for g continuous and Sε compact. Construct a bounded and contin-
uous function,

8.6 General Convergence Properties 383

gε(ξ) =

⎧⎪⎨
⎪⎩

g(x,ξ) if |g(x,ξ)| ≤ Mε ,

Mε if |g(x,ξ)| > Mε ,

−Mε if |g(x,ξ)| < −Mε .

By convergence in distribution, βνε → βε , for βνε =
∫
Ξ gε(ξ)Pν(dξ) and βε =∫

Ξ gε(ξ)P(dξ) . Let βν =
∫
Ξ g(x,ξ)Pν(dξ) . Noting that for ν > νε ,∫

Ξ\Sε gε(ξ)Pν(dξ) < ε ,
|βν −βνε | < 2ε . (6.3)

We also have that
|β −βε | < 2ε . (6.4)

From the convergence of the βν , there exists some ν̄ε such that for all ν ≥ ν̄ε ,

|βνε −βε | < 2ε . (6.5)

Combining (6.3), (6.4), and (6.5) for any ν > max{ν̄ε ,νε} ,

|β −βν | < 6ε ,

which establishes that Eν(g(x)) → E(g(x)) for any x ∈ D .
To establish epi-convergence, from (b) of Proposition 11, we need to show that if

x ∈ D and h ≥ E(g(x)) , then there exists xν ∈ D and hν ≥ Eν(g(xν)) such that
(xν ,hν) → (x,h) , and, if xν ∈ D and hν ≥ Eν(g(xν)) such that (xν ,hν) → (x,h) ,
then x ∈ D and h ≥ E(g(x)) . The former follows by letting xν = x and hν =
Eν (g(x))+(h−E(g(x))) and using pointwise convergence. The latter follows from
pointwise convergence and continuity because ν = limν hν ≥ limν Eν (g(xν)) =
limν [(Eν(g(xν))−Eν (g(x))+ (Eν(g(x))−E(g(x)))+ E(g(x))] = E(g(x)) .

For (b), again let x,xν ∈ D , xν → x . For any x ∈ D , y , and z close to x ,
ν = 0,1, . . . ,

|Eν(g(y))−Eν(g(z))| ≤
∫

|g(y,ξ)−g(z,ξ)|Pν(dξ)

≤
∫

Lx‖y− z‖Pν(dξ)

= Lx‖y− z‖ ,

where Lx is the Lipschitz constant of g(·,ξ) near x , which is independent of ξ
by (iii). By (ii) and (iii), x is in the interior of the domain of Eν (g(x)) . Hence, (see
Theorem 23.4 in Rockafellar [1969]), the subdifferential ∂Eν(g(x)) is a nonempty,
compact convex set, for each ν . The two-norms of subgradients in these subdiffer-
entials are bounded by Lx .

By (b), Eν(g(x)) are lower semicontinuous functions. By (a), Eν(g(x)) epi-
converges to E(g(x)) . We get the conclusion of (c) from the statement in Exercise 1.
This completes the proof.

384 8 Evaluating and Approximating Expectations

This result also extends directly to nonconvex functions, as we mentioned earlier.
In terms of stochastic programming computations, the most useful result may be
(c), which implies convergence of optima for approximating distributions. Actually
achieving optimality for each approximation may be time-consuming. One might,
therefore, be interested in achieving convergence of subdifferentials. This may allow
suboptimization for each approximating distribution.

In the case of closed convexity, Wets showed in Theorem 3 of Wets [1980a] that
if g,gν : ℜn → ℜ∪ {+∞} , ν = 1,2, . . . , are closed convex functions and {gν}
epi-converges to g , then the graphs of the subdifferentials of gν converge to the
graph of the subdifferential of g , i.e., for any convergent sequence {(xν ,uν) : uν ∈
∂gν(xν)} with (x,u) as its limit, one has u ∈ ∂g(x) ; for any (x,u) with u ∈
∂g(x) , there exists at least one such sequence {(xν ,uν) : uν ∈ ∂gν(xν)} converging
to it.

However, in general, it is not true that

∂g(x) = lim
ν→∞

∂gν(x) (6.6)

even if x ∈ int(dom(g)) (See Exercise 2). However, if g is G -differentiable at x ,
(6.6) is true. This is the following result from Birge and Qi [1995].

Theorem 13. Suppose that g,gν : ℜn → ℜ ∪ {+∞} , ν = 1,2, . . . , are closed
convex functions and {gν} epi-converges to g . Suppose further that g is G -
differentiable at x . Then

∇g(x) = lim
ν→∞

∂gν(x) . (6.7)

In fact, for any x ∈ int(dom(g)) , there exists νx such that for any ν ≥ νx , ∂gν(x)
is nonempty, and {∂gν(x) : ν ≥ νx} is bounded. Thus, for any x ∈ int(dom(g)),
the right hand side of (6.7) is nonempty and always contained in the left-hand side
of (6.7). But equality does not necessarily hold by our example. We also state the
following result (Corollary 2.5 of Birge and Qi [1995]).

Corollary 14. Suppose the conditions of Theorem 12 and that g(·,ξ) is convex for
each ξ ∈ Ξ . Then for D = dom(E(g(·))) , in addition to results (a)–(c) in Theo-
rem 12,
(d) there is a Lebesgue zero-measure set D1 ⊆ D such that E(g(x)) is G -
differentiable on D \ D1 , E(g(x)) is not G -differentiable on D1 , and for each
x ∈ D\D1

lim
ν→∞

∂E ν(g(x)) = ∇E(g(x)) ;

(e) for each x ∈ D ,

∂E(g(x)) = { lim
ν→∞

uν : uν ∈ ∂Eν (g(xν)) , xν → x} .

8.6 General Convergence Properties 385

Proof: By closed convexity of g(·,ξ) , Eν(g(x)) are also closed convex for all
ν . Now (d) follows from Theorem 13 and the differentiability property of convex
functions, and (e) follows from Theorem 3 of Wets [1980a].

Many other results are possible using Theorem 13 and results on epi-convergence.
As an example, we consider convergence of sampled problem minima following
King and Wets [1991]. Let Pν be an empirical measure derived from an indepen-
dent series of random observations {ξ 1, . . . ,ξ ν} each with common distribution
P . Then, for all x ,

Eν(g(x)) =
1
ν

ν

∑
i=1

g(x,ξi) .

Let (Ξ ,A ,P) be a probability space completed with respect to P . A closed-valued
multifunction G mapping Ξ to ℜn is called measurable if for all closed subsets
C ⊆ℜn , one has

G−1(C) := {ξ ∈ Ξ : G(ξ)∩C �= /0} ∈ A .

In the following, “with probability one” refers to the sampling probability measure
on {ξ 1, . . . ,ξ ν , . . .} that is consistent with P (see King and Wets [1991] for de-
tails). Applying Theorem 2.3 of King and Wets [1991] and Corollary 14, we have
the following.

Corollary 15. Suppose for each ξ ∈ Ξ , g(·,ξ) is closed convex and the epi-
graphical multifunction ξ "→ epi g(·,ξ) is measurable. Let Eν(g(x)) be cal-
culated by (6.2). If there exists x̄ ∈ dom(Eν (g(x))) and a measurable selection
ū(ξ) ∈ ∂g(x̄,ξ) with

∫ ‖ū(ξ)‖P(dξ) finite, then the conclusions of Corollary 14
hold with probability one.

King and Wets [1991] applied their results to the two-stage stochastic program
with fixed recourse repeated here as

min cT x +
∫

Q(x,ξ)P(dξ)

s. t. Ax = b,

x ≥ 0 ,

(6.8)

where x ∈ℜn and

Q(x,ξ) = inf{q(ξ)T y | Wy = h(ξ)−T(ξ)x,y ∈ℜn2
+ } . (6.9)

It is a fixed recourse problem because W is deterministic. Combining their Theo-
rem 3.1 with our Corollary 14, we have the following.

Corollary 16. Suppose that the stochastic program (6.8) has fixed recourse (6.9)
and that for all i , j , k , the random variables qiζ j and qiT jk have finite first
moments. If there exists a feasible point x̄ of (6.9) with the objective function of
(6.9) finite, then the conclusions of Corollary 14 hold with probability one for

386 8 Evaluating and Approximating Expectations

g(x,ξ) = cT x + Q(x,ξ)+ δ (x) ,

where δ (x) = 0 if Ax = b , x ≥ 0 , δ (x) = +∞ otherwise.

By Theorem 3.1 of King and Wets [1991], one may solve the approximation
problem

min cT x +
1
ν

ν

∑
i=1

Q(x,ξi)

s. t. Ax = b ,

x ≥ 0 ,

(6.10)

instead of solving (6.8). If the solution of (6.10) converges as ν tends to infinity,
then the limiting point is a solution of (6.8). Alternatively, by Corollary 16, one may
directly solve (6.8) with a nonlinear programming method and use

cT x +
1
ν

ν

∑
i=1

Q(x,ξi) and c +
1
ν

ν

∑
i=1

∂xQ(x,ξi)

as approximate objective function values and subdifferentials of (6.8) with ν = ν(k)
at the k th step. Notice that −uT T (ξi) ∈ ∂xQ(x,ξi) if and only if u is an opti-
mal dual solution of (6.9) with ξ = ξi . In this way, one may directly solve the
original problem using the subgradients −uT T (ξi) and the probability that each
is optimal (equivalently that the corresponding basis is primal feasible). The cal-
culation is therefore reduced to obtaining the probability of satisfying a system of
linear inequalities, which can be approximated well (see Prékopa [1988] and Sec-
tion 8.4). This procedure may allow computation without calculating the actual ob-
jective value, which may involve a more difficult multiple integral.

These results give some general idea about the uses of approximations in stochas-
tic programming. We can also introduce approximating functions, gν , such that
gν converges to g pointwise in D . Similar convergence results are also obtained
there. The general rule is that approximating distribution functions that converge
in distribution (even with probability one) to the true distribution function lead to
convergence of optima and, for differentiable points, convergence of subgradients.

Exercises

1. Prove that if gν epi-converges to g and x∗ is a limit point of {xν} , where
xν ∈ argmingν = {x | gν(x) ≤ infgν} , then x∗ ∈ argming .

2. Construct an example where gν epi-converges to g but ∂g(x) �= limν ∂gν(x) .

3. Consider the basic bounding method in Section 8.2. Suppose that Ξ is com-
pact and that for any ε > 0 , there exists some νε such that for all ν ≥ νε ,

8.6 General Convergence Properties 387

diam Sl ≤ ε for all Sl ∈ S ν . Show that this implies that Pν converges to P
in distribution.

Chapter 9
Monte Carlo Methods

Each function value in a stochastic program can involve a multidimensional integral
in extremely high dimensions. Because Monte Carlo simulation appears to offer the
best possibilities for higher dimensions (see, e.g., Deák [1988] and Asmussen and
Glynn [2007]), it seems to be the natural choice for use in stochastic programs. In
this chapter, we describe some of the basic approaches built on sampling methods.
The key feature is the use of statistical estimates to obtain confidence intervals on
results. Some of the material uses probability measure theory which is necessary to
develop the analytical results.

To build on our earlier emphasis on decomposition algorithms, Section 9.1 be-
gins this discussion with a description of the basic sampling approximation, the
sample-average approximation, and then approaches uses of this system with the
L -shaped method. We first consider possibilities for estimating the cuts in this
method using a large number of samples for each cut. Section 9.2 then considers
the stochastic decomposition method (Higle and Sen [1991b]) that forms many cuts
with few additional samples on each iteration. Section 9.3 considers methods based
on the stochastic quasi-gradient, which can be viewed as a generalization of the
steepest descent method. These approaches have a wide variety of applications that
extend beyond stochastic programming. In Section 9.4, we consider extensions of
Monte Carlo methods to include analytical evaluations exploiting problem structure
in probabilistic constraint estimation and empirical sample information for methods
that may use updated information in dynamic problems. Section 9.5 describes basic
theoretical results for the statistical analysis of stochastic programs and, in partic-
ular, for the sample-average approximation. We describe asymptotic properties and
large-deviation bounds for optimal values and solutions to those problems.

J.R. Birge and F. Louveaux, Introduction to Stochastic Programming, Springer Series 389
in Operations Research and Financial Engineering, DOI 10.1007/978-1-4614-0237-4 9,
c© Springer Science+Business Media, LLC 2011

390 9 Monte Carlo Methods

9.1 Sample Average Approximation and Importance Sampling in
the L -Shaped Method

The most direct sampling approach to the two-stage stochastic program is to replace
the recourse function, Q(x) , by a Monte Carlo estimate,

Qν(x) =
ν

∑
k=1

Q(x,ξ k)
ν

, (1.1)

where ξ 1, . . . ,ξ ν are random samples of the random vector ξ . This then yields the
sample average approximation (SAA) problem for the general two-stage problem
as:

min
x∈X

f 1(x)+
ν

∑
k=1

Q(x,ξ k)
ν

, (1.2)

where X represents the feasibility set as, for example, in the nonlinear program in
(3.4.1). For a stochastic linear program, we can then write (1.2) as:

min cT x +
1
ν

ν

∑
k=1

qT
k yk (1.3)

s. t. Ax = b,

Tkx +Wyk = hk,

x ≥ 0,yk ≥ 0.

As we show in Section 9.5, by increasing the sample size ν , solutions to (1.3)
converge to an optimal solution of the two-stage stochastic program (3.1.2). A dis-
advantage of solving (1.3) completely for each ν using any algorithm is that some
effort might be wasted on optimizing when the approximation is not accurate. An
approach to avoid these problems is to use sampling within another algorithm with-
out complete optimization. In this section, we describe this process for the L -shaped
method, which often works well for discrete distributions. To ensure that the process
makes efficient use of the sample information, we first describe a version using im-
portance sampling to reduce variance in deriving each cut based on a large sample
(see Dantzig and Glynn [1990]). In the following section, we consider an approach
that uses a single sample stream to derive many cuts that eventually drop away as
iteration numbers increase (Higle and Sen [1991b]).

The general approach is to sample Q to construct cuts in the L -shaped method
to obtain an approximate solution to (3.1.2). Using a crude Monte Carlo sample of
ξ , however, may result in high variance for the sample values Q(x,ξk) , slowing
convergence or leading to biased results. Instead, to reduce the variance of the sam-
ple values, we use the importance sampling (see, e.g., Rubinstein [1981] and Deák
[1990]) variance-reduction technique to concentrate samples where they provide the
most information.

9.1 Sample Average Approximation and Importance Sampling in the L -Shaped Method 391

If we use a crude Monte Carlo estimate, ξ 1, . . . ,ξ ν , then, given an iterate xs , the
result is a recourse function estimate, Qν(xs) = 1

ν ∑
ν
i=1 Q(xs,ξ i) , and a correspond-

ing estimate of the gradient, ∇Q(xs) , as π̄νs = 1
ν ∑

ν
i=1π i

s where π i
s ∈ ∂Q(xs,ξ i) .

Now, for Q convex in x , one obtains

Q(x,ξ i) ≥ Q(xs,ξ i)+ (π i
s)

T (x− xs) (1.4)

for all x . We also have that

Qν(x) =
(

1
ν

)(
ν

∑
i=1

Q(x,ξ i)

)
≥ Qν(xs)+ (π̄νs)T (x− xs) = LBν

s (x) , (1.5)

where, by the central limit theorem,
√
ν times the right-hand side is asymptotically

normally distributed with a mean value,

√
ν(Q(xs)+∇Q(xs)T (x− xs)) , (1.6)

which is a lower bound on
√
νQ(x) , and a variance, ρ s(x) .

Note that the cut placed on Q(x) as the right-hand side of (1.5) is a support of
Q with some error,

Q(x) ≥ Qν(xs)+ (π̄νs)T (x− xs)− εs(x) , (1.7)

where εs(x) is an error term with zero mean and variance equal to 1
ν ρ s(x) . Of

course, the error term is not known. At iteration s , the L -shaped method involves
the solution of:

min cT x +θ
s. t. Ax = b ,

Dlx ≥ dl , l = 1, . . . ,r ,

Elx +θ ≥ el, l = 1, . . . ,s ,

x ≥ 0 ,

(1.8)

where Dl,dl is a feasibility cut as in (5.1.7)–(5.1.8), El = −π̄l , and el = Qν(xl)+
(π̄l)T (−xl) , where we count iterations only when a finite Qν(xs) is found. Note
that the generation of feasibility cuts occurs whenever ξ i is sampled and Q(xl,ξ i)
is ∞ .

We suppose that (1.8) is solved to yield xs+1 and θ s+1 , where

θ s+1 = max
l

{el −Elx
s+1} , (1.9)

where each el −Elxs+1 can be viewed as a sample from a normally distributed ran-
dom variable with mean at most Q(xs+1) and variance at most 1

ν (σmax(xs+1))2 =
1
ν (maxl ρ l(xs+1)) . Note that θ s+1 is a maximum of these random variables so,
if the samples are taken independently on each iteration s , the solution of (1.8)

392 9 Monte Carlo Methods

has a bias that may skew results for large s . Confidence intervals can, however, be
developed based on certain assumptions about the functions and the supports. Al-
ternatively, the same sample set, ξ 1, . . . ,ξ ν can be used on each iteration so that
the L -shaped method iterations solve (1.2) for the given sample with the theory of
sample average approximations providing convergence results (see Section 9.5).

If the variances of the sample estimates are sufficiently small, one can stop with
a high confidence solution. Other approaches may also be used. Infanger [1991]
makes several assumptions that can lead to tight confidence intervals on the optimal
value and allow solutions of large problems (see, e.g., Dantzig and Infanger [1991]).
Variances and any form of confidence interval may, however, be quite large when
crude Monte Carlo samples are used as indicated earlier. Importance sampling can,
however, reduce the variance substantially (see Dantzig and Glynn [1990]).

In importance sampling, the goal is to replace a sample using the distribution of
ξ with one that uses an alternative distribution that places more weight in the areas
of importance. To see this, suppose that ξ has a density f (ξ) over Ξ so that we
are trying to find:

Q(x) =
∫
Ξ

Q(x,ξ) f (ξ)dξ . (1.10)

The crude Monte Carlo technique generates each sample ξ i according to the distri-
bution given by density f .

In importance sampling, a new probability density g(ξ) is introduced that is
somewhat similar to Q(x,ξ) and such that g(ξ) > 0 whenever Q(x,ξ) f (ξ) �=
0 . We then generate samples ξ i according to this distribution while writing the
integral as:

Q(x) =
∫
Ξ

Q(x,ξ) f (ξ)
g(ξ)

g(ξ) dξ . (1.11)

In this case, we generate random samples of Q(x,ξ) f (ξ)
g(ξ) from the distribution with

density g(ξ) . Note that if g(ξ) = Q(x,ξ)
f (ξ)Q(x) , then every sample ξ i

imp under impor-

tance sampling yields an importance sampling expectation, Q1
imp(x) = Q(x) .

Of course, if we could generate samples from the density Q(x,ξ)
f (ξ)Q(x) , we would

already know Q(x) . We can, however, use approximations such as the sublinear
approximations in Section 8.5 that may be close to Q(x) and should result in lower
variances for Qν

imp over Qν . This approximation is the approach suggested in
Infanger [1991].

In the sublinear approximation approach, the approximating density g(ξ) is cho-
sen as

g(ξ) =
m2

∑
i=1

ψI(i)(Ti·x,hi) f (ξ)/ΨI(T x) , (1.12)

where g may also depend on x . Using this construction, much lower variances
can result in comparison to the crude Monte Carlo approach. One complication
is, however, in generating a random sample from the density in (1.12). The gen-
eral techniques for generating such random vectors is to generate sequentially from

9.1 Sample Average Approximation and Importance Sampling in the L -Shaped Method 393

the marginal distributions conditionally, first choosing ξ1 with the first marginal,
g1(ξ1) =

∫
ξ2,...,ξN

g(ξ) dξ . Then, sequentially, ξi is chosen with density, gi(ξi |
ξ1, . . . ,ξi−1) . Remember that in each case, a random sample with density gi(ξi) on
an interval Ξi of ℜ can be found by choosing from a uniform random sample u
from [0,1] and then taking ξ such that G(ξ) = u where G(x) =

∫ x
−∞ gi(ξi)dξi .

Example 1

Consider Example 1 of Section 8.2 with x1 = x2 = x . We consider both the crude
Monte Carlo approach and the importance sampling using the sublinear approxi-
mation for g(ξ) . In this case, g(ξ) is actually chosen to depend on x as gx(ξ)
defined by:

gx(ξ) =
|x− ξ1|+ |x− ξ2|

Eξ[|x−ξ1|+ |x−ξ2|] · (1.13)

For comparison, we first consider the L -shaped method with ξi chosen by crude
Monte Carlo from the original uniform density on [0,1]× [0,1] and by the im-
portance sampling method with distribution gx(ξ) in (1.13). The results appear in
Figure 1 for the solution xs at each iteration s of the crude Monte Carlo and im-
portance sampling L -shaped method with ν = 500 on each L -shaped iteration.
The figures show up to 101 L -shaped iterations, which involve more than 50,000
recourse problem solutions.

In Figure 1, the crude Monte Carlo iteration values x appear as x(crude) while
the importance sampling iterations appear as x(imp) . We also include the optimal
solution x∗ =

√
2 − 1 on the graph. Note that x(imp) is very close to x∗ from

just over 40 iterations while x(crude) does not appear to approach this accuracy
within 100 iterations. Note that x(imp) begins to deteriorate after 80 iterations as
the accumulation of cuts increases the probability that some cuts are actually above
Q(x) . If each cut is generated independently, this adds a bias to the results since the
expectation of the outer linearization is the expectation of the maximum of a set of
random approximations, which is greater than the maximum of the expectations of
those cuts in an exact procedure. This problem is reduced but not eliminated with
importance sampling. As a remedy, a fixed set of samples can be used to obtain
convergence for that sample set and then checked for convergence using sequential
sampling procedures as discussed in Section 9.5.

The advantage of importance sampling can also be seen in Figure 2, which com-
pares the optimal value Q(x∗) with sample values, Qν(xν) , with crude Monte
Carlo denoted as Q (crude) and Qν

imp(x
ν) with importance sampling denoted as

Q (imp). Note that the crude Monte Carlo values have a much wider variance, in
fact, double the variance of the importance sampling results. Also note that in both
sampling methods, the estimates have a mean close to the optimal value after 40
iterations.

394 9 Monte Carlo Methods

Fig. 1 Solutions for crude Monte Carlo and importance sampling.

Fig. 2 Objective values for crude Monte Carlo and importance sampling.

9.2 Stochastic Decomposition 395

The results in Figures 1 and 2 indicate that sampled cuts in the L -shaped method
can produce fairly accurate results but that convergence to optimal values may re-
quire large numbers of samples for each cut even for small problems and may yield
inaccurate results with independent samples for each cut due to the bias issue. This
difficulty is particularly an issue if initial cuts are generated with small numbers
of samples since these may be particularly inaccurate and limit convergence unless
they are removed in favor of more accurate cuts. A procedure to avoid this problem
is gradually to remove initial cuts as the algorithm progresses. This is the intent of
the approach in the next section.

Exercises

1. Show how to sample from the density gx(ξ) as the sum of the absolute values
|x− ξi| , i = 1,2 for Example 1.

2. Consider Example 1 in Section 5.1 with ξ uniformly distributed on [1,5] . Ap-
ply the crude Monte Carlo L -shaped method to this problem for 100 iterations
with 100 samples per cut. What would the result be with importance sampling
in this case?

3. Apply both the crude Monte Carlo and importance sampling approaches to
Example 1 with both x1 and x2 decision variables. First, use 100 samples for
each cut for 100 iterations and then compare to results with an increase to 500
samples per cut.

9.2 Stochastic Decomposition

An alternative approach to using cuts produced with multiple samples in the L -
shaped method is to use cuts constructed from small but increasing numbers of
samples. This approach from Higle and Sen [1991b] generates many cuts with small
numbers of additional samples on each cut and adjusts these cuts to drop away as the
algorithm continues processing. The method is called stochastic decomposition. We
will give a basic development here and refer to Higle and Sen [1996] for more de-
tails. For simplicity, we assume complete recourse, a known (probability one) lower
bound on Q(x,ξ) (e.g., 0), and a bounded set of dual solutions to the recourse
problem (3.1.1). We also assume that K1 and Ξ are compact.

With these assumptions, the basic stochastic decomposition method generates
iterates, xk , and observations, ξ k . We can state the basic stochastic decomposition
method in the following way.

Basic Stochastic Decomposition Method

Step 1. Set ν = 0 , ξ 0 = ξ̄ , and let x1 solve

396 9 Monte Carlo Methods

min
Ax=b,x≥0

{cT x + Q(x,ξ 0)} . (2.1)

Step 2. Let ν = ν+1 and let ξ ν be an independent sample generated from ξ . Find
Qν(xν) = 1

ν ∑
ν
s=1 Q(xν ,ξ s) = 1

ν ∑
ν
s=1(πνs)T (ξ s − T xν) . Let Eν = 1

ν ∑
ν
s=1(πνs)T T

and eν = 1
ν ∑

ν
s=1(πνs)T ξ s .

Step 3. Update all previous cuts by Es ← ν−1
ν Es and es ← ν−1

ν es for s = 1, . . . ,ν−
1 .

Step 4. Solve the L -shaped master problem as in (1.8) to obtain xν+1 . Go to Step 2.

This method differs slightly from the basic method in Higle and Sen [1991b] in
our assuming πνs to be optimal dual solutions in each iteration. Higle and Sen allow
a restricted set of dual optima that may decrease the solution effort (with perhaps
fewer effective cuts).

The main convergence result is contained in the following theorem.

Theorem 1. Assuming complete recourse, Q(x,ξ) ≥ 0 , bounded dual solutions to
(3.1.1), K1 and Ξ compact, there exists a subsequence, {xν j} , of the iterates of the
basic stochastic decomposition method such that every limit point of {xν j} solves
the recourse problem (3.1.1) with probability one.

Proof: We follow the proof of Theorem 4 in Higle and Sen [1991b]. We use their
Theorem 3 (Exercise 1), which gives the existence of a subsequence of {xν} such
that

lim
ν→∞

θν − max
l=1,...,ν

(el
ν−1 −El

ν−1xν) = 0 . (2.2)

Suppose {xν j} is a subsequence of the subsequence achieving (2.2) such that
lim j xν j = x̂ where Ax̂ = b , x ≥ 0 . This occurs for some subsequence by com-
pactness. From x∗ optimal,

cT x∗ +Q(x∗) ≤ cT x̂ +Q(x̂) . (2.3)

Note that because Q(x,ξ) ≥ 0 for all ξ ∈ Ξ and Q(x,ξ i) ≥ πT (hi −Tx) for any
πTW ≤ q and any sample ξ i , for any 1 ≤ s ≤ ν ,

ν

∑
i=1

Q(x,ξ i) ≥
s

∑
i=1

πT (hi −Tx) , (2.4)

where π is any feasible multiplier in the recourse problem for ξ i . From (2.4), it
follows that 1

ν ∑
ν
i=1 Q(x,ξ i) ≥ eνl − Eν

l x for all l and ν , where Eν
l and eνl are

the components of Cut l on Iteration ν . Therefore,

9.2 Stochastic Decomposition 397

cT x + max
l=1,...,ν

(eνl −Eν
l x) ≤ cT x +

1
ν

ν

∑
i=1

Q(x,ξ i) . (2.5)

As ν increases, 1
ν ∑i=1ν Q(x,ξ i) → Q(x) , so

limsup
ν

[cT x∗ + max
l=1,...,ν

(eνl −Eν
l x∗)] ≤ cT x∗ +Q(x∗) , (2.6)

with probability one. We can also show that (Exercise 2)

lim
j

cT xν j + max
l=1,...,ν

(eνl −Eν
l xν j) = cT x̂ +Q(x̂) , (2.7)

with probability one. Thus, (2.6), (2.7), and the fact that xν j minimizes cT x +
maxl=1,...,ν−1(eν−1

l −Eν−1
l x) over feasible x yield

cT x∗ +Q(x∗) ≤ cT x̂ +Q(x̂)

≤ limsup
ν

[cT x∗ + max
l=1,...,ν

(eνl −Eν
l x∗)]

≤ cT x∗ +Q(x∗) , (2.8)

which proves the result.

One difficulty in this basic method is that convergence to an optimum may only
occur on a subsequence. To remedy this, Higle and Sen suggest retaining an in-
cumbent solution that changes whenever the objective function falls below the best
known value so far. The incumbent is updated each time a sufficient decrease in the
ν th iteration objective value is obtained. They also show that the sequence of in-
cumbents contains a subsequence with optimal limit points, and then show how this
subsequence can be identified. Various approaches may be used for practical stop-
ping conditions, such as the statistical verification tests for optimality conditions in
Higle and Sen [1991a].

Example 1 (continued)

We again consider Example 1 from Section 8.2. The basic stochastic decomposition
method results appear in Figures 3 and 4. In Figure 3, both the basic result xν

and the incumbent solution, xν (incumbent), which is adjusted whenever a solution
after the first 100 iterations improves the previous best estimate by 1%. Figure 3
also gives the optimal solution, x∗ . The total number of iterations yields about
50,000 subproblem solutions, which is approximately equal to the total number of
iterations in Figures 1 and 2. Note that the raw solutions xν oscillate rapidly, while
the incumbent solutions settle close to x∗ quite quickly after their initiation at ν =
100 .

398 9 Monte Carlo Methods

The objective value estimates, θν , Qν , and Qν(xν (inc)) for the incumbent,
and the optimal objective value, Q(x∗) , appear in Figure 4. Note that the θν values
from the master problem have wide oscillations. The Qν(xν) values have lower but
significant variation. The incumbent objective values, however, show low variation
that begins to approach the optimum.

Fig. 3 Solutions for the stochastic decomposition method.

Exercises

1. Prove Theorem 1. Show first that eventually the objective value of (1.8) for xνn

at iteration νn is the same as the objective value of (1.8) for xνn at iteration
νn−1 .

2. Prove that there exists a subsequence of iterates {xν} in the basic stochastic
decomposition method with the assumptions so that (2.2) holds.

3. Suppose a subsequence of iterates xν j → x̂ in the basic stochastic decomposi-
tion method. Prove that (2.7) holds.

4. Apply the basic stochastic decomposition method to Example 1 in Section 5.1
with ξ uniformly distributed on [1,5] . Record the sequence of iterations until
10 consecutive iterations are within 1% of the optimal objective value.

9.3 Stochastic Quasi-Gradient Methods 399

Fig. 4 Objective values for the stochastic decomposition method.

9.3 Stochastic Quasi-Gradient Methods

Stochastic quasi-gradient methods represent one of the first computational devel-
opments in stochastic programming. They apply to a broad class of problems and
represent extensions of stochastic approximation methods (see, e.g., Dupač [1965]
and Kushner [1971]). Our treatment will be brief because the emphasis in this book
is on methods that exploit the structure of deterministic equivalent or approximation
problems. Ermoliev [1988] provides a more complete survey of these methods.

Stochastic quasi-gradient methods (SQG) apply to a general mathematical pro-
gram of the form:

min
x∈X⊂ℜn

g0(x)

s. t. gi(x) ≤ 0 , i = 1, . . . ,m , (3.1)

where we assume that each gi is convex. We suppose that an initial point, x0 ∈ X ,
is given. The method generates a sequence of points, {xν} , that converges to an
optimal solution of (3.1).

Given a history at time ν , (x0, . . . ,xν) , the method selects function estimates,
ηi(ν) , and subgradient estimates, βi(ν) , such that

E [ηi(ν) | (x0, . . . ,xν)] = gi(xν)+ ai(ν) (3.2)

and
E [βi(ν) | (x0, . . . ,xν)]+ bi(ν) ⊂ ∂gi(xν) , (3.3)

400 9 Monte Carlo Methods

where ai(ν) , bi(ν) may depend on (x0, . . . ,xν) but must satisfy

ai(ν) → 0 and ‖bi(ν)‖ → 0 . (3.4)

When bi(ν) �= 0 , βi(ν) is called a stochastic quasi-gradient. Otherwise, βi(ν) is
a stochastic subgradient.

We first consider the method when all constraints are deterministic and repre-
sented in X. Thus, Problem 3.1 becomes

min
x∈X⊂ℜn

g0(x) . (3.5)

The method requires a projection onto X represented by

∏
X

(y) = argmin
x

{‖x− y‖2 | x ∈ X} .

In the basic method, a sequence of step sizes {ρν} is given. The stochastic quasi-
gradient method defines a stochastic sequence of iterates, {xν} , by

xν+1 =∏
X

[xν −ρνβ0(ν)] , (3.6)

where we interpret the projection as operating separately on each element ω ∈ Ω ,
so that xν+1(ω) =∏X [(xν (ω)−ρνβ0(ω)(ν))] .

To place all these results into the two-stage recourse problem as in (1.1.2), let
X = {x | Ax = b, x ≥ 0} , g0(x) =

∫
g0(x,ξ)P(dξ) where

g0(x,ξ) = inf
y
{qT y | Wy = h−Tx, y ≥ 0} .

Thus, we can use βi
0(x) such that βi

0(x)
T (hi − Tix) = g0(x,ξi) ,

W T βi
0(x) ≤ qi for a sample ξi composed of the components, hi , Ti , and qi .

The stochastic quasi-gradient method takes a step in this direction and then projects
back onto X . In the following example and the exercises, we explore the use of this
approach.

For these examples, we use an estimate of the objective value by taking a moving
average of the last 500 samples, Qν−ave(xν) = ∑499

i=0 Q(xν−i,ξ ν−i)/500 . Changes
in this estimate (or the lack thereof) can be used to evaluate the convergence of
stochastic quasi-gradient methods. Gaivoronski [1988] discusses various practical
approaches in this regard.

Example 1 (continued)

We consider the same example and apply the stochastic quasi-gradient method. On
each step ν , a random sample ξ ν is taken with β0(ν) ∈ ∂Q(xν ,ξ ν) . For X = {x |
0 ≤ x ≤ 1} , the projection operation yields xν+1 = min(1,max(xν +ρνβ0(ν),0)) .

9.3 Stochastic Quasi-Gradient Methods 401

Figures 5 and 6 show these iterations for solutions xν and objective estimates,
Qν−ave for every multiple of 500 iterations up to 50,000 so that total numbers of
recourse problem solutions are the same as in Figures 1 to 4.

Fig. 5 Solutions for the stochastic quasi-gradient method.

Note that the iterations in Figure 5 appear to approach x∗ much more quickly
than the results in Figures 1 to 4. They also seem to show lower variances in the
objective estimates in Figure 6, although these results are not converging to zero
variance because the sample length 500 is not changing. To achieve convergence
or greater confidence in a solution, the number of samples in the estimate must
increase.

While the results in Figures 5 and 6 indicate that stochastic quasi-gradient meth-
ods may be more effective than the decomposition methods, we should note that
this example is quite low in dimension. For higher dimensions, the results are often
quite different. In general, stochastic quasi-gradient methods exhibit similar behav-
ior to subgradient optimization methods that often have slow convergence properties
in higher dimensions. They are, nonetheless, easy to implement and can give good
results, especially in small problems.

In the rest of this section, we discuss the theory behind the stochastic quasi-
gradient method convergence. The exercises consider examples for using SQG.

The basic method in (3.6) traces back to the unconstrained methods of Robbins-
Monro [1951]. The main device in demonstrating convergence of {xν} to a point

402 9 Monte Carlo Methods

Fig. 6 Objective values for the stochastic quasi-gradient method.

in X∗ is the use of a stochastic quasi-Feyer sequence (see Ermoliev [1969]), a
sequence of random vectors, {wν} , defined in (Ω ,Σ ,P) such that for a set W ⊂
ℜn , E [‖w0‖2] < +∞ , and any w ∈ W ,

E{‖w−wν+1‖2 | w0, . . . ,wν} ≤ ‖w−wν‖2 +γν ,

ν = 0,1, . . . , γν ≥ 0 ,
∞

∑
ν=0

E [γν] < +∞ . (3.7)

The following result shown in Ermoliev [1976] is the basis for the convergence
results.

Theorem 2. If {wν} is a stochastic quasi-Feyer sequence for a set W , then

(a) {‖w− wν+1‖2} converges with probability one for any w ∈ W , and E [‖w−
wν‖2] < c < +∞ ;

(b) the set of limit points of {wν (ω)} is nonempty for almost all ω ∈Ω ;

(c) if w̄1(ω) and w̄2(ω) are two distinct limit points of {wν(ω)} such that
w̄1(ω) �∈ W , w̄2(ω) �∈ W , then W ⊂ H , a hyperplane such that η = {w |
αT w = α0} , ‖w̄1(ω)−∏η (w̄1(ω))‖ = ‖w̄2(ω)−∏η(w̄2(ω))‖ , where ∏η
denotes projections onto η .

With this result, we can obtain the most basic convergence result, given below
without proof.

Theorem 3. Given the following:

9.3 Stochastic Quasi-Gradient Methods 403

(a) g0(x) is convex and continuous,

(b) X is a convex compact set,

(c) the parameters, ρν , and γ0(ν) = inf
x∗∈X∗β0(ν)T (xν − x∗) , satisfy with proba-

bility one,

ρν > 0 ,
∞

∑
ν=0

ρν = +∞ ,

∞

∑
ν=0

E [ρν | γ0(ν) | +(ρν)2‖β0(ν)‖2] < ∞ , (3.8)

then, with probability one, for any x̄(ω) = lim
νi

xνi(ω) , x̄(ω) ∈ X∗ .

The general method can be amplified in a variety of ways. Condition (c) can

be relaxed to remove the finiteness of
∞

∑
ν=0

ρ2
ν when γ(ν) = 0 for all ν , but the

convergence is for ∑ν xνρν
∑ν ρν

(see Uriasiev [1988]).
Two important aspects of stochastic quasi-gradient implementations are the de-

terminations of step sizes and stopping rules. Various adaptive step sizes are consid-
ered by Mirzoachmedov and Uriasiev [1983]. For stopping rules, we refer to Pflug
[1988], where details appear. The results describe the use of stopping times {τε} ,
to yield uniform asymptotic level α confidence regions, defined by

lim
ε→0

inf
x0

P{‖xτε − x∗‖ ≤ ε} ≥ 1−α . (3.9)

Deterministic step size rules do not, unfortunately, produce such uniform confidence
intervals. Instead, Pflug shows that an oscillation test stopping rule does obtain such
confidence regions. In this rule, a test is performed to check whether the iterates are
oscillating without objective improvement. The key is building consistent estimates
of the objective Hessian at x∗ and the covariance matrix of objective errors. For
other issues concerning implementation, we refer to Gaivoronski [1988].

The use of sample subgradients can also produce results for efficient computation
with some confidence level. Nesterov and Vial [2008] give one of these results for
a stochastic subgradient method in which the values of multiple algorithm paths are
combined to achieve efficient computation. Dyer,Kannan, and Stougie [2002] and
Shmoys and Swamy [2006] both use stochastic subgradients in a different way to
define regions of improvement over which the ellipsoid optimization method can be
applied. Combining this approach and a search step can for many stochastic linear
programs in fact find a solution within ε of optimal with effort on the order of 1

ε
and a factor depending on the problem input size (Shmoys and Swamy [2006]).

404 9 Monte Carlo Methods

Exercises

1. Consider Example 1 in Section 5.1. Find the projection of a point onto X = {x |
0 ≤ x ≤ 10} . Solve this problem using the stochastic quasi-gradient method
until 20 consecutive iterations are within 1% of the optimal solution.

2. Consider Example 1, where both x1 and x2 can be chosen instead of x =
x1 = x2 . Follow the stochastic quasi-gradient method again until 20 consecutive
iterations are within 1% of the optimal solution.

3. Prove Theorem 2.

4. Consider Example 1 in Section 5.1. Find the projection of a point onto X = {x |
0 ≤ x ≤ 10} . Solve this problem using the stochastic quasi-gradient method
until three consecutive iterations are within 1% of the optimal solution.

9.4 Sampling Methods for Probabilistic Constraints and
Quantiles

Monte Carlo sampling methods can also be quite useful for general types of proba-
bilistic constraints, such as:

P{gi(x,ξ) ≤ 0, i = 1, . . . ,m} ≥ α, (4.1)

where the functions gi, i = 1, . . . ,m are all convex in x ∈ ℜn . In this case, a
simple procedure is to select a random independent sample of ν realizations,
{ξ 1, . . . ,ξ ν} , of ξ and, with a linear objective, to solve the sample problem:

min cT x (4.2)

s. t. gi(x,ξ k) ≤ 0, i = 1, . . . ,m;k = 1, . . . ,ν.

As shown in Califiore and Campi [2005], we have the following:

Theorem 4. If ν ≥ n
εβ −1 for any ε ∈ (0,1−α] and β ∈ (0,1) , then with prob-

ability at least 1 −β , the solution xν to (4.2) also satisfies the probabilistic con-
straint (4.1).

Other results for general conditions on x , such as in de Farias and Van Roy
[2005] can also be useful in this context. To see how these approximations can work,
consider Example 8.3 for a single period where each Ai j is a Bernoulli random
variable that each loan has a value of one at maturity if not in default and has value
zero otherwise. To include correlation, we suppose the Merton [1974] model where
default occurs for loan j if (the natural logarithm of) its underlying asset value sat-
isfies the inequality,

√ρξ0 +
√

1−ρξi ≤ d j for some default point d j , where ρ
is the correlation between any pair of underlying asset values, and ξ0 and ξ j are
independent and normally distributed random variables with zero mean with unit

9.4 Sampling Methods for Probabilistic Constraints and Quantiles 405

variance. In terms of the probabilistic constraint, A j = 1{√ρξ0+
√

1−ρξ j>d j} where
1 is the indicator with value one on the given set. The probability of a default for
loan j(= 1, . . . ,n) is p = p j = 1−E [A j] =Φ(d j) , where Φ is the standard nor-
mal cumulative distribution function. (In this development, which follows Vasiček
[1987, 1991, 2002], the time to maturity is normalized to one and the information
about the drift and volatility of the underlying asset values are subsumed in d j .)

We can evaluate the probability of satisfying the constraint with liability level h
as

P{Ax ≥ h} = P{
n

∑
j=1

A j ≥ hn
b

}, (4.3)

and then use the probability mass function of ∑n
j=1 A j given by (Exercise 1):

P{
n

∑
j=1

A j = n− k} =
(

n
k

)∫ ∞

−∞

(
Φ

(
1√

1−ρ
(Φ−1(p)−√

ρs)
))k

(
Φ

(
1√

1−ρ
(Φ−1(p)−√

ρs)
))n−k

dΦ(s). (4.4)

Using (4.4) to solve:

minb s. t. P{Ax ≥ h} ≥ α,x =
b
n
, (4.5)

may not be practical for large n (e.g., when n = 125 as in the example). Instead,
we can use the sample approximation in (4.2). Exercise 2 asks for this computation
for typical default probabilities and correlations.

The sampling approximation in (4.2) can be relaxed with some allowable frac-
tion of constraint violations to achieve more precise approximations. Luedtke and
Ahmed [2008] use Hoeffding’s inequality to achieve bounds from this sampling ap-
proach. Other approximations for probabilistic constraints appear in Deák [1980],
Gassmann [1988], Szántai [1986], and elsewhere. We briefly describe Szántai’s
method here. The basic idea is to use Bonferroni-type inequalities to write the prob-
ability of a set with many constraints in terms of sums and differences of integrals of
subsets of the constraints, as we described in Section 8.5. In sampling procedures,
these alternative estimates allow for significant variance reduction.

For Szántai’s approach, suppose we wish to find

p = P [A = A1 ∩·· ·∩Am] =
∫

A
dF(ξ) . (4.6)

Szántai takes three estimates of p :

1. p̂1 —a direct Monte Carlo sample;

2. p̂2 —finding the first-order Bonferroni terms, 1−
m

∑
i=1

P(Âi) , directly and sam-

pling from higher-order terms;

406 9 Monte Carlo Methods

3. p̂3 —Calculating the first- and second-order terms explicitly, 1 −
m

∑
i=1

P(Âi) +

∑
i< j

P(Âi ∩ Â j) , and sampling from higher order terms.

Sampling from all higher order terms may be difficult, but Szántai shows that the
effort may be reduced at each sample ξ j to finding n̂(j) defined as the number

of constraints violated by ξ j , i.e., n̂(j) =
N

∑
i=1

1{ξ j �∈Ai} . With this quantity defined,

we can define unbiased estimates, i.e., estimates whose expectations have no error,
using the following:

γ1 =
1
ν

ν

∑
j=1

max{0,1− n̂(j)} , (4.7)

γ2 =
1
ν

ν

∑
j=1

max{0, n̂(j)−1} , (4.8)

and γ3 =
1
ν

ν

∑
j=1

max{0, n̂(j)−1}n̂(j)−2)
2

· (4.9)

These quantities are then used to form unbiased estimates:

p̂1 = γ1 , (4.10)

p̂2 = 1−
m

∑
i=1

P [Âi]+ γ2 , (4.11)

p̂3 = 1−
m

∑
i=1

P [Âi]+∑
i< j
∑P[Âi ∩ Â j]− γ3 . (4.12)

These three estimators are combined to form

p̂4 = λ1 p̂1 +λ2 p̂2 +(1−λ1 −λ2)p̂3 , (4.13)

where the weights λ1 and λ2 are chosen to minimize the variance of p̂4 . They are
calculated using the sample covariance matrix of (γ1,γ2,γ3) , which we denote as
C = [ci j] . In this case, λ1 = μ1

μ1+μ2+μ3
, λ1 = μ2

μ1+μ2+μ3
, where

μ1 = c12(c33 − c23)+ c22(c13 − c33)+ c23(c23 − c13) , (4.14)

μ2 = c11(c23 − c33)+ c12(c33 − c13)+ c13(c123 − c23) , (4.15)

and μ3 = c11(c23 − c22)+ c12(c12 − c23)+ c13(c22 − c12) . (4.16)

The result is that p̂4 can have significantly lower variance than standard Monte
Carlo. In fact, Szántai obtains efficiencies (variance ratios) of 100 and higher, im-
plying that the same error can be obtained with p̂4 in 1% of the number of samples
for using p̂1 alone.

9.4 Sampling Methods for Probabilistic Constraints and Quantiles 407

This approach combines analytical techniques with simulation to produce lower
variance. Another approach is to use empirical sample information. This is the area
studied in Jagganathan [1985], where some sample information can be used in a
Bayesian framework to determine probabilities of underlying distributions. These
may be used for probabilistic constraints, for recourse functions, or for both.

As an example, consider the basic two-stage model in (3.1.1), where the distribu-
tion function of ξ is F(ξ,η) , where η is a k -vector of unknown parameters with
prior distribution function, G(·) . Given an observation, ξ̂ l = (ξ 1, . . . ,ξ l) , we can
define a posterior distribution, Gl(· | ξ̂ l) . Using this, we may obtain an improved
solution.

Without sample information, we would have the solution to (3.1.1) as

R(G) = min
x∈K1

{
cT x +

∫
η

∫
ξ

Q(x,ξ)F(ξ,η)G(dη)
}

. (4.17)

However, using ξ̂l , which we assume has a conditional distribution given by
W (ξ̂l,η) for some value η of η , we obtain a value with sample information as

Rl(G) =
∫

η

[
min
x∈K1

{
cT x

+
∫

η

∫
ξ

Q(x,ξ)F(dξ,η)Gl(dη | ξ̄ l)
}]

W (dξ̂l ,η)G(dη) . (4.18)

The difference Rl(G) − R(G) is the expected value of sample information. This
represents the additional expected value from observing the sample information.
This type of analysis can also be extended to problems with probabilistic constraints.

A different use of sample information is for dynamic problems that may change
over time. In these cases, future characteristics, such as product demand, may not be
known with certainty but they can be predicted roughly using past experience. These
problems were examined by Cipra [1991], who also considered the possibility that
more recent information might be more valuable than older information.

For example, consider the news vendor problem in Section 1.1. Suppose the
demand occurs as ξt for periods t = 1, . . . ,H . At time H , suppose that ξH =
(ξ1, . . . ,ξH) have been observed. The news vendor wishes to place an order based
on these observations. One solution might be to use a discount factor, β ∈ (0,1) , to
choose x(H) to

min
x≥0

(
H−1

∑
i=0

β i((a− s)x +(s− r)(x− ξH−i)+)

)
. (4.19)

The solution of this problem is straightforward (Exercise 5). Alternative perspec-
tives on the value of empirical observations can also be introduced, as could
Bayesian approaches as in (4.18). For another view of decisions made over time,
refer to Jagganathan [1991].

408 9 Monte Carlo Methods

Exercises

1. Derive (4.4) (Vasiček [1987]).

2. Use a sufficient number of samples ν from Theorem 4 for the sample approxi-
mation, (4.2), to ensure that the probabilistic constraint in (4.5) is satisfied with
a confidence level of 1 − β = 0.99 with target reliability level, α = 0.95 ,
h = 0.95 , n = 125 , p = 0.01 for the probability of default on any single loan,
and correlation coefficient ρ = 0.5 . (Since b is the only decision parameter
to consider when all the loans are symmetric, you can assume the dimension to
use in computing ν is one.) Find the minimum b∗ for 100 different sample
problems. Verify the result in Theorem 4 empirically by constructing a sample
of 10,000 sample portfolios and solving (4.5) for this large sample. What would
you expect to happen if the problem is interpreted as making 125 separate deci-
sions x j on the initial size of loan j ?

3. In Exercise 2, you should have noticed that Theorem 4 provides an estimate
of b∗ that appears quite conservative. An alternative approximation is to use a
limiting distribution when a portfolio contains many loans. Suppose Fn is the
cumulative distribution of the fractional loss of a portfolio of n loans so that

Fn(δ) = ∑�δn�
k=1 P{∑n

j=1 A j = n − k} . Substituting y for Φ(1√
1−ρ (Φ−1(p) −√ρs)) and dG(y) = dΦ(s) , Fn(δ) can be written as:

Fn(δ) =
�δn�
∑
k=1

(
n
k

)∫ 1

0
yk(1− y)n−kdG(y). (4.20)

Take the limit n → ∞ in (4.20) to show:

F∞(δ) = G(δ), (4.21)

and find G (Vasiček [1991]). Compare this approximation to your simulation
results in Exercise 2.

4. Show that p̂i are unbiased estimators of the probability p in (4.6).

5. Suppose that γi , i = 1,2,3 , are independent standard gamma random variables
with parameters, ηi , i = 1,2,3 . Let xi = γ1 +γi+1 for i = 1,2 . Give a one di-
mensional integral that represents P [xi ≤ wi, i = 1,2] using cumulative gamma
distribution functions in the integrand.

6. The result in Exercise 2 allows calculations of p̂2 . For example, suppose that
yi , i = 1,2,3,4 in Exercise 2 and xi = y1 + yi+1 for i = 1,2,3 . Find p̂4 for
p = P [xi ≤ zi, i = 1,2,3] when zi = 6 , i = 1,2,3 , and ηi = 3 , i = 1,2,3,4 .
Also, find sample variances for increasing sample sizes and compare to the sam-
ple variances for p̂1 .

7. Suppose that ξ is known to take on a finite number K of possible values but
the probabilities η i of these values are not known but have a Dirichlet prior
distribution. Show how to find R(G) and Rl(G) in this case.

9.5 General Results for Sample Average Approximation and Sequential Sampling 409

8. Find the solution to (4.19). (Hint: Order the observed demands.)

9.5 General Results for Sample Average Approximation and
Sequential Sampling

We will give a brief overview of general sampling results. For this analysis, we
consider a stochastic program in the following basic form:

inf
x∈X

∫
Ξ

g(x,ξ)P(dξ) , (5.1)

where X ⊂ℜn and ξ is now defined on the probability space (Ξ ,B,P) so that we
can work directly with ξ instead of through ω . Suppose that (5.1) has an optimal
solution, x∗ , and value, z∗ .

A direct sampling approach to solving (5.1) is to consider an approximate prob-
lem derived by taking ν samples from ξ . The discrete distribution with these sam-
ples could be Pν , which would allow us to apply the results in Chapter 9 to obtain
convergence of the ν problem optimal solutions to the optimal solution in (5.1). It
can be even more valuable to describe distributional properties of these solutions so
that we can construct confidence intervals in place of the (probability one) bounds
found in Chapter 8.

We therefore wish to consider a sample {ξ i} of independent observations of ξ
that are used in the general sample average approximation (SAA) problem:

zν = inf
x∈X

1
ν

ν

∑
i=1

g(x,ξ i) . (5.2)

Suppose that xν is the random vector of solutions to (5.2) with independent random
samples, ξi , i = 1, . . . ,ν . The general question considered in King and Rockafellar
[1993] is to find a distribution u such that

√
ν(xν − x∗) converges to u in distri-

bution. Properties of u can then be used to derive confidence intervals for x∗ from
an observation of xν .

We give the main result without proof. The interested reader can refer to King
and Rockafellar [1993] and, for the statistical origin, Huber [1967].

Theorem 5. Suppose that g(·,ξ) is convex and twice continuously differentiable,
X is a convex polyhedron, ∇g : Ξ ×ℜn "→ℜn :

i. is measurable for all x ∈ X ;

ii. satisfies the Lipschitz condition that there exists some a : Ξ "→ ℜ ,∫
Ξ |a(ξ)|2P(dξ) < ∞ , |∇g(x1,ξ) − ∇g(x2,ξ)| ≤ a(ξ)|x1 − x2| , for all x1,

x2 ∈ X ;

410 9 Monte Carlo Methods

iii. satisfies that there exists x ∈ X such that
∫
Ξ |g(x,ξ)|2P(dξ) < ∞ ; and, for

G∗ =
∫
∇2g(x∗,ξ)P(dξ) ,

iv. (x1 − x2)T G∗(x1 − x2) > 0 , ∀x1 �= x2,x1,x2 ∈ X .

Then the solution xν to (5.2) satisfies:

√
ν(xν − x∗) "→ u , (5.3)

where u is the solution to:

min
1
2

uT G∗u + cT u

s. t. Ai·ui ≤ 0 , i ∈ I(x∗) ,uT∇ḡ∗ = 0 , (5.4)

X = {x | Ax ≤ b} , (x∗,π∗) solve ∇
∫
Ξ g(x∗,ξ)P(dξ) + (π∗)T A = 0 , π∗ ≥ 0 ,

Ax∗ ≤ b , I(x∗) = {i | Ai·x∗ = bi} , ∇ḡ∗ =
∫
∇g(x∗,ξ)P(dξ) , and c is distributed

normally N(0,Σ∗) with Σ∗ =
∫
(∇g(x∗,ξ)−∇ḡ∗)(∇g(x∗,ξ)−∇ḡ∗)T P(dξ) .

Example 2

Suppose that X = [a,∞) , ξ is normally distributed N(0,1) , and g(x,ξ) = (x −
ξ)2 . Problem (5.1) then becomes:

inf
x≥a

∫
Ξ

(x− ξ)2
√

2π
e− ξ2

2 dξ , (5.5)

where we substituted for P the standard normal density with mean zero and unit
standard deviation.

Because the expectation in (5.5) is just x2 + 1 , for a ≥ 0 , the clear solution is
x∗ = a . For a < 0 , x∗ = 0 . In this case, ∇g(x∗,ξ) = 2(x∗ − ξ) , G∗ = 2 , A =
[−1] , and ∇ḡ∗ = 2x∗ . The variance of c is Σ∗ = Eξ[(2ξ)2] = 4 . The asymptotic
distribution u then solves:

min u2 + cT u

s. t. u ≥ 0 if x∗ = a ,u(2x∗) = 0 . (5.6)

For a > 0 , the solution of (5.6) is u∗ = 0 so that asymptotically
√
ν(xν − x∗) "→ 0

in distribution. If a = 0 , then note that because c/2 is N(0,1) , the overall result is
that asymptotically the estimate,

√
νxν , for (5.5) approaches a distribution with a

probability mass of 0.50 at 0 and the density of the normal distribution, N(0,1) ,
over (0,∞) . Exercise 1 asks the reader to find the asymptotic distribution for a <
0 . In each case, the actual distribution of xν can be found and compared to the
asymptotic result (see Exercise 2).

9.5 General Results for Sample Average Approximation and Sequential Sampling 411

Many other results along these lines are possible (see, e.g.,
Dupačová and Wets [1988]). They often concern the stability of the solutions with
respect to the underlying probability distribution. For example, one might only have
observations of some random parameter but may not know the parameter’s distri-
bution. This type of analysis appears in Dupačová [1984], Römisch and Schultz
[1991a], and the survey in Dupačová [1990].

Another useful result is to have asymptotic properties of the optimal approxi-
mation value. For this, suppose that z∗ is the optimal value of (5.1) and zν is the
random optimal value of (5.2). We use properties of g and ξ i so that each g(x,ξ i)
is an independent and identically distributed observation of g(x,ξ) , and g(x,ξ)
has finite variance, Var(g(x)) =

∫
Ξ |g(x,ξ)|2P(dξ)− (Eg(x,ξ))2 . We can thus ap-

ply the central limit theorem to state that
√
ν
[(1

ν
)
∑ν

i=1 g(x,ξ i)− ∫
Ξ g(x,ξ)P(dξ)

]
converges to a random variable with distribution, N(0,Var(g(x))) . Moreover, with
the condition in Theorem 5, the random function on x defined by√
ν
[(1

ν
)
∑ν

i=1 g(x,ξ i)− ∫
Ξ g(x,ξ)P(dξ)

]
is continuous. We can then derive the fol-

lowing result of Shapiro [1991, Theorem 3.3].

Theorem 6. Suppose that X is compact and g satisfies the following conditions:

i. g(x, ·) is measurable for all x ∈ X ;
ii. there exists some a : Ξ "→ ℜ ,

∫
Ξ |a(ξ)|2P(dξ) < ∞ , |g(x1,ξ)− g(x2,ξ)| ≤

a(ξ)|x1 − x2| , for all x1,x2 ∈ X ;
iii. for some x0 ∈ X ,

∫
g(x0,ξ)P(dξ) < ∞ ;

and Eg(x) has a unique minimizer x0 ∈ X . Then
√
ν[zν − z∗] converges in distri-

bution to a normal N(0,Varg(x0)) .

Further results along these lines are possible using the specific structure of g
for the recourse problem as in (3.1.1). For example, if K1 is bounded and Q has
a strong convexity property, Römisch and Schultz [1991b] show that the distance
between the optimizing sets in (5.1) and (5.2) can be bounded.

Given the results in Theorems 5 and 6 and some bounds on the variances and
covariances, one can construct asymptotic confidence intervals for solutions using
(5.2). We discuss this use in a sequential sampling method below. In addition, note
that all previous discrete methods can be applied to (5.2) to obtain solutions as ν
increases. Various procedures can be used to increment ν and solving the resulting
approximation (5.2) using a previous solution.

Stronger results than Theorem 6 are possible when the minimum in (5.1) is a
sharp minimum in the following sense:

Eg(x,ξ) ≤ Eg(x∗,ξ)+ k‖x− x∗‖, (5.7)

for some k > 0 for all x ∈ X . In this case, with probability one, xν = x∗ for all ν
sufficiently large, i.e., the convergence is exact, and, for two-stage stochastic linear
programs with relatively complete recourse, the rate of convergence is exponentially
fast, i.e., the probability of not converging in ν iterations is bounded by αe−βν for
some constants α > 0 and β > 0 (Shapiro and Homem-de-Mello [2000]). Similar

412 9 Monte Carlo Methods

convergence results in general cases are possible using large-deviation theory such
that the probability of error in the objective value and in the solution (under certain
conditions) is greater than any tolerance decreases exponentially fast in the number
of samples. We state these results in the following theorem (see Theorems 3.1 and
3.2 in Dai, Chen, and Birge [2000] for the proof).

Theorem 7. Assume that there exist a > 0 , θ0 > 0 , η(·) : ℜm →ℜ1 such that

|g(x,ξ)| ≤ aη(ξ), E [eθη(ξ)] < ∞

for all x ∈ X and for all 0 ≤ θ ≤ θ0 ; then, for any ε > 0 , there are α > 0,β > 0
such that

P [E [zν − z∗)] ≥ ε] ≤ αe−βν , (5.8)

for all ν > 0 , and, if x∗ is unique,

P [||xν − x∗|| ≥ ε] ≤ αe−βν (5.9)

for all ν ≥ 1 .

Theorem 7 provides the possibility of some stopping criteria for sampling meth-
ods to achieve approximate optimality with some confidence. Exercise 4 asks for es-
timates of the parameters α and β for Example 1. In some cases (with a quadratic
objective) discussed in Dai, Chen, and Birge [2000], these parameters can be found
explicitly (although these analytical values of the parameters often result in loose
bounds). These results provide asymptotic results that may be used in an algorithm
to obtain convergence within some tolerance of the optimal solution value with a
given level of confidence. A key aspect of these procedures is that they need to
include increasingly large sample sizes to ensure that the algorithm does not ter-
minate prematurely. We give a basic algorithm from Bayraksan and Morton [2009]
that follows earlier results in Morton [1998] and Mak, Morton, and Wood [1999].

We wish to use convergence for the two-stage, sample-average linear program
with ν samples. In this case, x∗ may not be unique. In that case, we let the set
of optima be X∗ and let x∗

min(x) = argminx′∈X∗ Var[g(x,ξ)−g(x′,ξ)] . For the two-
stage model, we have g(x,ξ)= cT x+{min qT y|Wy = h−Tx,y ≥ 0} , which means
that we can write the sample-average approximation problem (5.2) as follows:

zN = min cT x +
1
ν

ν

∑
i=1

qT
i yi (5.10)

s. t. Ax = b,

Tix +Wyi = hi,

x ≥ 0,y ≥ 0,

with optimal solution (xν ,yν1 , . . . ,yνν) . We would like to estimate the gap to opti-
mality,

Δ(xν) = E [g(x,ξ)]− z∗, (5.11)

9.5 General Results for Sample Average Approximation and Sequential Sampling 413

and the smallest variance of the objective difference among the optimal solutions,

σ2(x) = Var[g(x,ξ)−g(x∗
min(x),ξ)]. (5.12)

We then define an optimality gap estimator and its sample variance estimator as
follows:

Gν(x) =
1
ν

ν

∑
i=1

(g(x,ξ i)−g(xν ,ξ i)) (5.13)

s2
ν(x) =

1
ν−1

ν

∑
i=1

[(g(x,ξ i)−g(xν ,ξ i))−Gν(x)]2. (5.14)

The goal in sequential sampling is to obtain, for any given confidence level α ∈
(0,1) and tolerance ε > 0 , xν after ν samples such that

liminf
l↓l′

P(E [g(xν ,ξ)−g(x∗,ξ)] ≤ lb + ε ′) ≥ 1−α (5.15)

for some parameters l > l′ > 0 , b > 0 and ε > ε ′ . For defining an algorithm, we
use additional parameters: k f , the frequency of re-sampling, and p > 0 , which is
used in determining a minimum sample size for k iterations as follows:

νk ≥
(

1
l − l′

)2
(

max

(
2ln

(
∞

∑
j=1

j−p ln j/
√

2πα

)
,1

)
+ 2p ln2 k

)
(5.16)

(following Bayraksan and Morton [2009] who use p ≈ 2×10−1,ε ≈ 2×10−7,ε ′ ≈
10−7, l ≈ 0.045, l′ ≈ 0.015). There are also two sequences of sample numbers: νk

for checking optimality and μk (e.g., μk = 2νk) for choosing the next candidate.
The candidate solution is xμk that solves (5.10) with ν = μk samples.

Sequential Sampling Method (SSM)

Step 0. Initialize with k = 1 , ν1 from (5.16).

Step 1. Generate μk samples to obtain x̂k = xμk . (These can start with the pre-
vious μk−1 samples to use the previous solution as a starting point, but they are
independent from the νk samples for gap estimates.)

Step 2. Generate νk samples (IID) to form Gk = Gνk(x̂
k) and s2

k = s2
νk

(x̂k) .

Step 3. If sk > b or Gk > l′b + ε ′ , then: set k = k + 1 , find new νk , re-sample
if k is a multiple of k f , and return to Step 1. Else, xν = x̂k (with, for μk = 2νk ,
3∑k

i=1 νi total samples, including re-samples).

The convergence result for this method is contained in the following theorem,
where P refers to the probability measure over the sampling distribution.

414 9 Monte Carlo Methods

Theorem 8. For a two-stage stochastic linear program (3.1.1) with relatively com-
plete recourse, almost surely finite second-stage value, and compact non-empty fea-
sible region X ,

1. for ε > ε ′ > 0 , p > 0 , and 0 < α < 1 fixed values, if the method stops at
iteration ν , then

liminf
l↓l′

P (Δν(xν) ≤ lsν (xν)+ ε) ≥ 1−α; and, (5.17)

2. for fixed ε ′ > 0 and l > l′ > 0 where the sequential sampling method stops at
iteration ν , P (ν <∞) = 1 .

Proof: The proof follows Bayraksan and Morton [2009], Theorem 3 and Proposi-
tion 4, with additional observations about characteristics of the estimates for sample-
average approximations of two-stage stochastic linear programs (see, e.g, Römisch
[2003]).

As a final note, we should mention that analogous procedures can be built around
quasi-random sequences that seek to fill a region of integration with approximately
uniformly spaced points. The result is that errors are asymptotically about of the
order log(ν)/ν instead of 1/

√
ν (see Niederreiter [1978]). The difficulty is in

the estimation of the constant term but quasi-Monte Carlo appears to work quite
well in practice (see Fox [1986] and Birge [1994]). In terms of expected perfor-
mance over broad function classes, quasi–Monte Carlo performs with the same or-
der of complexity (Woźniakowski [1991]). For the methods used in this chapter, we
may substitute quasi-random sequences for pseudo-random sequences for practical
implementations. Other generalizations known as sparse grid (from Smolyak
[1960]) can also be used to obtain efficient characterizations of the integrals in
stochastic programs (see Chen and Mehrotra [2007]).

The sample average approximation method has also been used for stochastic in-
teger programs. An SAA problem for an SIP is similar to the program (1.2), with
integer requirements in the first- and/or the second-stage programs. An SAA with
a moderate sample size can be solved using classical deterministic MIP techniques.
The process can be repeated with different samples to obtain candidate solutions
along with statistical estimates of their optimality gaps. These various candidate
solutions cannot be combined (or averaged) as they would produce non-integer so-
lutions. Instead, a new and independent large sample is created to form an estimated
objective function. The various first-stage candidate solutions are evaluated using
this estimated objective solution. These evaluations still require several second-stage
optimizations. The computational burden remains low as the first-stage is given. At
the end, the best candidate first-stage solution is selected. A detailed computational
study of the application of the SAA method to solve three classes of stochastic rout-
ing problems can be found in Verweij et al. [2003].

9.5 General Results for Sample Average Approximation and Sequential Sampling 415

Exercises

1. For Example 2, find the asymptotic result from Theorem 5 for
√
ν(xν −x∗) for

a < 0 .

2. For Example 2, derive the actual distribution of
√
ν(xν − x∗) for a feasible

region x ≥ a in each case of a , a < 0 , a = 0 and a > 0 . Find the limits of
these distributions and verify the result from Theorem 5.

3. Consider a news vendor problem as in Section 1.1. Suppose this problem is
solved using a sampling approach. The sampled problem with continuous cu-
mulative distribution function Fν has a solution at (Fν)−1

(
s−a
s−r

)
= xν . Find

the distribution of this quantile and show how to construct a confidence interval
around x∗ .

4. Consider Example 1. First, verify the assumptions in Theorem 7. Solve 100
samples each for ν = 10 + 10i for i = 0,1, . . . ,10 . Use these observations to
estimate values for α and β in Theorem 7 for ε = 0.03 .

5. Implement the sequential sampling method for the continuous distribution ver-
sion of the two-stage stochastic linear program for the farming example in Sec-
tion 1.1. Start with the parameter recommendations above. Vary them to observe
the impact of the parameters on the convergence behavior.

Chapter 10
Multistage Approximations

Most decision problems involve effects that carry over from one time to another.
Sometimes, as in the power expansion problem of Section 1.3, random effects can be
confined to a single period so that recourse is block separable. In other cases, how-
ever, this separation is not possible. For example, power may be stored by pumping
water into the reservoir of a hydroelectric station when demand is low. In this way,
decisions in one period are influenced by decisions in previous periods.

Problems with this type of linkage among periods are the subject of this chapter.
We again wish to derive approximations that can be used to bound the error involved
in any decision based on the approximate problem solution. In Chapter 9, we saw
that the number of random variables can lead to rapidly growing problems. In this
chapter, we have the additional effect that the number of periods leads to exponential
increases in problem size even if the number of realizations in each period remains
constant (see Figure 3.4).

We can again construct bounds based on the properties of the multistage recourse
functions. These analogues of the basic Jensen and Edmundson-Madansky bounds
are given in Section 10.1. They correspond to fixing values at means or extreme
values of the support of the random vectors in each period.

Keeping the number of periods fixed may not lead to sufficient reductions in
problem size, especially if no time is clearly the end of the problem. This case would
mean facing either an uncertain or an infinite horizon decision problem. These prob-
lems can also be approximated by aggregating several periods together. Section 10.2
describes this procedure to obtain both upper and lower bounds.

Sampling methods that apply generally to multistage methods are described in
Section 10.3. Section 10.4 then describes methods based on decomposition ap-
proaches.

The bounds of Sections 10.1 and 10.2 and the sampling methods used in in Sec-
tions 10.3 and 10.4 can be viewed as discretization procedures. We can also con-
struct separable bounds that do not require discretization as in Chapter 8. These
bounds correspond to separable responses to any changes in the problem and are
part of a general approach to value-function approximation known as approximate
dynamic programming. They are described in Section 10.5. In multistage problems,

J.R. Birge and F. Louveaux, Introduction to Stochastic Programming, Springer Series 417
in Operations Research and Financial Engineering, DOI 10.1007/978-1-4614-0237-4 10,
c© Springer Science+Business Media, LLC 2011

418 10 Multistage Approximations

specific problem forms and structures can also lead to substantial savings. These
structures are particularly valuable for approximations of the value function. We
also describe such special cases for network revenue management, production, and
vehicle allocation in this concluding section.

10.1 Extensions of the Jensen and Edmundson-Madansky
Inequalities

The basic Jensen and Edmundson-Madansky inequalities can be extended to mul-
tiple periods directly. The principle is to use Jensen’s inequality (or a feasible dual
solution) to derive the lower bound and construct a feasible primal solution using
extreme points to construct the upper bound. To present these results, we consider
the linear case first, although extensions to nonlinear, convex problems are directly
possible. We use concepts from measure theory in the following discussion. Readers
without this background may skip to the declarations to find the major results for
actual implementations.

The multistage stochastic linear program is to find x = (x1,x2, . . . ,xH) (where
we suppress transposes as earlier when they can be implied from the context) in the
following:

min c1x1 + EΩ [c2x2 + · · ·+ cHxH]

s. t. W 1x1 = h1 ,

Tt−1xt−1 +Wtxt = ht , t = 2, . . . ,H , a.s.,

xt −EΩ t [xt] = 0 , t = 2, . . . ,H , a.s.,

xt ≥ 0 , t = 1, . . . ,H , a. s. ,

(1.1)

where we have used explicit nonanticipativity constraints as in (3.5.11). We have
also assumed that the recourse within each period Wt is known and not random.

The basic Jensen bound again follows by assuming a partition of Ω , the support
vector of all random components. Here, we write Ω as Ω = Ω1 × ·· ·×ΩH . We
suppose that Ω t = {ωt = (ω1, . . . ,ωt) | ωi ∈ Ωi, i = 1, . . . ,t} . In this way, we can
characterize all events up to time t by measurability with respect to the Borel field
defined by Ω t , Σ t . We assume that Ω t is partitioned as Ω t = St

1 ∪·· · ∪St
νt and

that St
i = ∪ j∈D t+1(i){ωt | (ωt ,ωt+1) ∈ St+1

j } so that the partitions are consistent
from one period to another. We construct measurable decisions at time t if they are
constant over each St, j .

Next, assume that pt
i = P[St

i] , ct = ct , and that E St
i
[(ht ,Tt)] = (h̄t

i, T̄
t
i) for all t

and i . The problem then is to find:

min c1x1 +
ν2

∑
i=2

p2
i c2x2

i + · · ·+
νH

∑
i=1

pH
i cHxH

i

10.1 Extensions of the Jensen and Edmundson-Madansky Inequalities 419

s. t. W 1x1 = h1 ,

T̄ t−1
i xt−1

i +Wtxt
j = h̄t

j , t = 2, . . . ,H , i = 1, . . . ,νt−1 ,

j ∈ D t+1(i) ,

xt
i ≥ 0 , i = 1, . . . ,νt , t = 1, . . . ,H .

(1.2)

The first result is that (1.2) provides a lower bound on the optimal solution in (1.1)
provided the expectations of (h̄t

i, T̄
t
i) are independent of the past. If not, then the

conditional expectation form in (1.2) may not actually achieve a bound.

Theorem 1. Given that E St
i
[(ht ,Tt)] = (h̄t

i, T̄
t
i) = E St

j
[(ht ,Tt)] for all St

i and St
j

that have a common outcome at time t , i.e., such that (ωt−1,ωt) ∈ St
j if and only

if there exist some (ω̂t−1,ωt) ∈ St
j . The optimal value of (1.2) with the definitions

given earlier provides a lower bound on the optimal value of (1.1).

Proof: Suppose an optimal solution x∗ to (1.2) with optimal dual variables π t∗
i

corresponding to constraints in (1.2) with right-hand sides, h̄t
i .By dual feasibility in

(1.2),
pt

ic
t ≥ π t∗

i Wt + ∑
j∈D t+1(i)

π t+1∗
j T̄ t+1

j , (1.3)

for every (t, i) . Let π t(ω) = ∑νt

i=1 1{ωt∈St
i}[π

t∗
i /pt

i] .We also have

ρ t(ω) = −
νt

∑
i=1

1{ωt∈St
i}[π

t∗
i T t

i (ω)/pt
i]+ ∑

i′|i′∈D t−1(A t−1(i))

[π t∗
i′ T̄ t

i /pt−1,A t−1(i)].

Note how the ρ variables represent nonanticipativity. The condition for dual feasi-
bility from the multistage version of Theorem 3.13 (see Exercise 1) is that

ct(ω)−π t(ω)Wt −π t+1(ω)Tt+1(ω)−ρ t+1(ω) ≥ 0 , a.s., (1.4)

and
EΣ t [ρ t+1(ω)] = 0 . (1.5)

Substituting in the right-hand side of (1.4) yields:

ct − (π t∗
i /pt

i)W
t − [π t+1∗

j /pt+1
j]Tt+1

j (ω)

+

[
[π t+1∗

j /pt+1
j]Tt+1

j (ω)− ∑
j| j∈D t(i)

[π t+1∗
j T̄ t+1

j /pt
i]

]
(1.6)

for each St
i and j ∈ D t(i) , which is non-negative from (1.3). Also, by their def-

inition and the assumption that integration of Tt+1
j (ω) over varying St

i does not
change its conditional outcome,

420 10 Multistage Approximations

EΣt [ρt+1(ω)] = ∑
j∈D t(i)

[
(π t+1∗

j /pt+1
j)T̄ t+1

j pt+1
j − ∑

j| j∈D t(i)
pt

i(π
t+1∗
j T̄ t+1

j /pt
i)

]
= 0

(1.7)
yielding (1.5). Hence, we have constructed a dual feasible solution whose objective
value is a lower bound on the objective value of (1.1) by the multistage version
of Theorem 3.13. Because this value is the same as the optimal value in (1.2), we
obtain the result.

Thus, lower bounds can be constructed in the same way for multistage problems
as for two-stage problems, provided the data have serial independence. Such inde-
pendence is not necessary if only right-hand sides vary because the dual feasibility
is not affected in that case. The key procedure is in developing a dual feasible so-
lution (lower bounding support function). Upper bounds can follow as before by
constructing primal feasible solutions. These bounds can also be used in conjunc-
tion with the lower bounds to obtain bounds when objective coefficients (ct) are
also random.

To develop the upper bounds, the basic result is an extension of Theorem 8.2. We
assume the following general form in which the decision variables x are explicit
functions of the random outcome parameters, ξ :

inf
x∈N

EΞ

[
T

∑
t=0

f t(xt (ξ),xt+1(ξ),ξt+1)

]
, (1.8)

where we use the convention for the general nonlinear objective formulation that
subscript t corresponds to decisions or parameters within period t while super-
script t refers to all periods from 1 to t . The random vector ξ = (ξ1, . . . ,ξH) has
an associated probability space, (Ξ ,Σ ,P) , N is the space of nonanticipative deci-
sions, f t is convex, and ξt+1 is measurable with respect to Σt+1 and ξt+1 ∈Ξt+1 ,
which is compact, convex, and has extreme points, extΞt+1 , with Borel field, Et+1 .
In this representation, x nonanticipative means that xt(ξ (ω)) is Σt -measurable
for all t . It could also be described in terms of measurability with respect to Σ t ,
the Borel field defined by the history process ξt = (ξ1, . . . ,ξt) .

Suppose that e = (e1, . . . ,eH)T where each et ∈ extΞt . The set of all such ex-
treme points is written extΞ . Suppose x′ = (x′

1, . . . ,x
′
H) , where x′

t : extΞt → ℜnt .
We say that x′ is extreme point nonanticipative, or x′ ∈ N ′ , if x′

t is measur-
able with respect to the Borel field, Et , on extΞ , defined by (e1, . . . ,et) , where
e j ∈ extΞ j (for t = 1 , this will be with respect to { /0,extΞ}). With these defini-
tions, we obtain the following result.

Theorem 2. Suppose that ξ "→ f t (xt ,xt+1,ξt+1) is convex for t = 0, . . . ,H , Ξt is
compact, convex, and has extreme points, extΞt . For all ξt ∈ Ξt , let φ(ξ , ·) be a
probability measure on (extΞ ,E) where E is the Borel field of extΞ , such that

∫
e∈extΞ

eφ(ξ ,de) = ξ , (1.9)

10.1 Extensions of the Jensen and Edmundson-Madansky Inequalities 421

and ξ "→ φ(ξ ,A) is measurable with respect to Σt for all A ∈ E t . Then there
exists, x ∈ N , such that xt(ξ) =

∫
e∈extΞ x′

t(e)φ(ξ ,de) ,

E

[
T

∑
t=0

f t (xt ,xt+1,ξt+1)

]
≤

∫
e∈extΞ

T

∑
t=0

f t ((x′)t ,x′
t+1,et+1) λ (de) , (1.10)

where x′ is extreme point nonanticipative and λ is the probability measure on E
defined by

λ (A) =
∫
Ξ
ν(ξ ,A)P(dξ) . (1.11)

Proof: We must first show that x as defined in the theorem is nonanticipative, or
that xt(ξ) is Σt -measurable. This follows because x′

t(e) is Et -measurable, and,
for any A ∈ Et , φ(ξ ,A) is Σt -measurable. Because each f t is convex, for any ξ ,

f t(xt(ξ),xt+1(ξ),ξt+1)

= f t
(∫

e∈extΞ
(x′)t(e)φ(ξ ,de),

∫
e∈extΞ

x′
t+1(e)φ(ξ ,de),

∫
e∈extΞ

et+1φ(ξ ,de)
)

≤
∫

e∈extΞ
f t((x′)t(e),x′

t+1(e),et+1)φ(ξ ,de) . (1.12)

Integrating with respect to P , the result in (1.10) is obtained.

As in Chapter 8, we implement the result in Theorem 2 by finding an appropriate
φ and then solving the following approximation problem.

inf
x∈N ′

∫
extΞ

[
H

∑
t=0

f t (xt(e),xt+1(e),et+1)

]
λ (de) (1.13)

to find an upper bound on the value in (1.8). One can also refine these bounds by
taking partitions of Ξ .

The simplest type of bound from Theorem 2 is the extension of the Edmundson-
Madansky bound on rectangular regions with independent components. For this
bound, we assume that all components, ξt(i) , are stochastically independent and
distributed on [at(i),bt(i)] . In this case, we can define

νEM−I(ξ ,e) =
H

∏
t=1

mt

∏
i=1

|ξt(i)− et(i)|
(bt(i)−at(i))

, (1.14)

so that

λEM−I(e) =
H

∏
t=1

mt

∏
i=1

|ξ̄t(i)− et(i)|
(bt(i)−at(i))

. (1.15)

It is easy to check that this ν meets the nonanticipative measurability requirements.
Problem (1.13) now can be written as:

422 10 Multistage Approximations

inf
x

[
H

∑
t=0

[
I1

∑
i1=1

· · ·
It+1

∑
it+1=1

[
It+2

∑
it+2=1

+ · · ·+
IH+1

∑
iH+1=1

λ (ei1 , . . . ,eiH+1)

]

f t (xt(i1, . . . , it),xt+1(i1, . . . , it+1),eit+1)

]
· · ·

]
, (1.16)

where xt(i1, . . . , it) corresponds to the t th-period decision depending on the out-
comes in extreme point combination eis from each period s = 1, . . . ,H . This places
the nonanticipativity back into the problem implicitly.

Example 1

To see how this bound might be implemented, consider Example 1 in Section 6.1.
Suppose that demand is uniformly and independently distributed on [1,3] in each
period. In this case, we obtain a decision vector (xt

s,w
t
s,y

t
s) in period t for scenario

s = 2i1 + i2 for i1 and i2 in {1,2} . Problem (7.1.7) is, therefore, the upper bound-
ing problem (1.16) for this uniform distribution case, yielding an upper bound of
6.25 . In this case, the lower bound using the expected demand value of two in each
period is three. In Exercise 2, you are asked to refine these bounds until they are
within 25% of each other.

Other extreme point combinations are clearly also possible in multiperiod prob-
lems as they are in single-period problems. Extensions to dependent random vari-
ables and f t concave in some arguments can also be made.

The bounds given in this section so far apply only to fixed numbers of periods.
When periods are combined, we call the resulting problem an aggregated problem.
These problems are described in the next section.

Exercises

1. Consider the multistage stochastic linear program in the form of (1.1). Prove the
multistage version of Theorem 3.13.

2. Refine the extreme point (Edmundson-Madansky) and conditional expectation
(Jensen) bounds on partitions for Example 1 from Section 6.1 until the upper
bound is within 25% of the lower bound.

10.2 Bounds Based on Aggregation

The main motivation for aggregation bounds is to deal with problems with many
(perhaps an infinite number of) periods by combining periods to obtain a simpler

10.2 Bounds Based on Aggregation 423

approximate problem with fewer periods. The basic procedures in this chapter ap-
pear in Birge [1985a] and Birge [1984]. They follow the general aggregation results
in Zipkin [1980a, 1980b]. Similar methods, especially for dealing with infinite hori-
zon problems, appear in Grinold ([1976, 1983, 1986]). Generalizations appear in
Wright [1994] and Kuhn [2008].

To derive both upper and lower bounds in this framework, we consider a special
form for the multistage problem in (3.4.1). We allow feasibility by adding a penalty
variable yt that can achieve feasibility in each period. This notion of model robust-
ness is quite common, although the penalty parameter q may be quite high. The
form of the multistage stochastic linear program in this case is:

minz = cT x1 + Eξ[
H

∑
t=2

ρ t−1(cT xt(ξ2, . . . ,ξt)+ qT yt(ξ2, . . . ,ξt))]

s. t. W x1 ≥ h1 ,

T xt−1(ξ2, . . . ,ξt−1)+Wxt(ξ2, . . . ,ξt)+ yt(ξ2, . . . ,ξt) ≥ ξt ,

t = 2, . . . ,H ,

x1 ≥ 0 ; xt(ω) ≥ 0 , a.s., t = 2, . . . ,H ,

yt(ω) ≥ 0 , a.s., t = 2, . . . ,H ,

(2.1)

where superscript t again represents the variables or parameters for period t (i.e.,
not the full history), c is a known vector in ℜn1 , h1 is a known vector in ℜm1 ,
ξ t(ω) = ht(ω) is a random m -vector defined on (Ω ,Σ t ,P) (where Σ t ⊂ Σ t+1)
for all t = 2, . . . ,H , and T and W are known m× n matrices. We also suppose
that Ξ t is the support of ξ t . The parameter ρ is a discount factor.

Note that in (2.1), we assume that the parameters T , W , c , and q are all con-
stant across time (with objective coefficients varying only with the discount factor).
This assumption is basically made to simplify the following presentation. Varying
parameters are possible with little additional work.

The key observation for these bounds is that an optimal solution in (2.1) is no
lower than

π1h1 + Eξ

[
H

∑
t=2

(π t(ξ2, . . . ,ξt))T ξt

]
(2.2)

for any (π1, . . . ,π t(ξ2, . . . ,ξt), . . . ,πT (ξ2, . . . ,ξT)) ≥ 0 a.s. that satisfies

(π1)TW + Eξ[π2(ξ2)]T T ≤ cT ,

π t(ξ2, . . . ,ξt)TW + Eξ|(ξ2,...,ξt [π t+1(ξ2, . . . ,ξt+1)]T T ≤ ρ t−1cT ,

t = 2, . . . ,H −1 ,

π(ξ2, . . . ,ξH)TW ≤ ρH−1cT ,

π(ξ2, . . . ,ξH)TW ≤ ρH−1qT . (2.3)

You are asked to show that (2.2) subject to (2.3) provides a bound in Exercise 1.

424 10 Multistage Approximations

The basic idea behind the aggregation bounds is that we can either construct
either solutions (x,y) that are feasible in (2.1) or solutions π that are feasible in
(2.3). As before, the former provide upper bounds, while the latter provide lower
bounds.

The other assumption we make is that some set of finite upper bounds exists in
xt so that for any x∗ optimal in (2.1):

xt∗(ξ2, . . . ,ξt) ≤ ut(ξ2, . . . ,ξt) . (2.4)

In most problems, some form of bound satisfying (2.4) can be found. The tightness
of this bound may, however, significantly affect the bounding results.

The basic bound is first to assume that the Jensen type of conditional expectation
bound has been applied in each period. We illustrate this with a single partition,
although finer partitions are possible. We also collapse everything into a two-period
problem. Less aggregated models are constructed in the same way. Note in the fol-
lowing that H is quite arbitrary and, assuming finite sums, could even be infinite.

The problem is formed by defining aggregate variables, X̂1 , X̂2 , and Ŷ 2 , and
parameters,

Ŵ =

(
H

∑
t=2

ρ t−2

)
W +

(
H

∑
t=2

ρ t−2

)
T , Î =

(
H

∑
t=2

ρ t−2I

)
,

ĉ =

(
H

∑
t=2

ρ t−1

)
c , q̂ =

(
H

∑
t=2

ρ t−1

)
q , ξ̂ =

(
H

∑
t=2

ρ t−2ξ̄ t

)
.

The resulting aggregate approximation problem is:

min cT X̂1 + ĉT X̂2q̂T Ŷ 2

s. t. W X̂1 ≥ h1 ,

T X̂1 +ŴX̂2 + T̂Ŷ 2 ≥ ξ̂ ,

X̂1, X̂2,Ŷ 2 ≥ 0 .

(2.5)

Suppose (2.5) has an optimal solution (X1,∗,X2,∗,Y 2,∗) with multipliers, ∏∗ .
These solutions are not directly feasible in (2.1) or (2.3), but feasible solutions
can be easily constructed from them. To do so, we need only let x̂1 = X1,∗ ,
x̂t(ξ 2, . . . ,ξ t) = X2,∗ , and ŷt(ξ 2, . . . ,ξ t) = Y 2,∗ for all t and ξ . We also let
π̂1 = ∏∗

1 and π̂ t(ξ 2, . . . ,ξ t) = ρ t−2∏∗
2 for all t and ξ . In this way, the value

of (2.5) is the same as

ẑ = cT x̂1 + EΞ

[
H

∑
t=2

ρ t−1(cT x̂t(ξ2, . . . ,ξt)+ qT ŷt(ξ2, . . . ,ξt))

]
, (2.6)

which forms the basis for our bounds. The result is contained in the following theo-
rem.

10.2 Bounds Based on Aggregation 425

Theorem 3. Let z∗ be a finite optimal value for (2.1). Then

ẑ+ ε+ ≥ z∗ ≥ ẑ− ε− , (2.7)

where

ε− = −
H

∑
t=2

n

∑
j=1

[∫
Ξ

[
min

{
ρ t−1c j −ρ t−2Π ∗

2 W· j

−ρ t−1Π ∗
2 T· j,0

}
ut(j)(ξ)

]
P(dξ)

]

and

ε+ =
H

∑
t=2

n

∑
j=1

[∫
Ξ

[
max

{−W· jX
2,∗ −T· jX

2,∗

−Y 2,∗(j)+ξt ,0

}
ρ t−1q(j)

]
P(dξ)

]
.

The proof of this theorem is Exercise 2. The basic idea is to write out z∗ in terms
of (x∗,y∗) and to add on π̂ t(ξ)T (ξ t −Wxt∗(ξ)− yt∗ − Txt−1,∗(ξ)) terms, which
are all nonpositive. This yields ε− . The upper bound comes from showing that
{x̂t(ξ), ŷt(ξ) + max{−W· jX2,∗ − T· jX2,∗ −Y 2,∗(j) + ξt ,0}} is always feasible in
(2.1).

These bounds can be quite useful, but the penalty and variable bound assump-
tions may not be apparent in many problems. Sometimes bounds on groups of vari-
ables are possible and can be useful. In other cases, properties of the constraint
matrices can be exploited to obtain other bounds similar to those in Theorem 3.
Several of these ideas are presented in Birge [1985a].

Example 2

In production/inventory problems, these values are especially easy to find, as in
Birge [1984]. Consider a basic problem of the form

minz = Eξ[
H

∑
t=1

ρ t−1(−ctxt(ξ)+ qtyt
+(ξ)+ rtst(ξ))]

s. t. xt − st ≤ kt , a.s., wt−1 + xt −wt = 0 , a.s.,

wt ≥ bt , a.s., yt−1
+ + xt −yt

+ + yt
− = ξt , a.s.,

t = 1, . . . ,H ,

yt−1
+ ,yt

−,xt ,st ,wt ≥ 0 , a.s., t = 1, . . . ,H ;

yt
+,yt

−,xt ,st ,wt , all Σ t measurable t = 1, . . . ,H ,

(2.8)

426 10 Multistage Approximations

where xt represents total production, st represents overtime production, wt is cu-
mulative production, yt

+ is inventory, yt− is lost sales (i.e., no backordering), bt

is a lower bound to achieve a service reliability criterion (see Bitran and Yanasse
[1984]), ct is the unit margin, qt , and rt are cost parameters, and ξt is the ran-
dom demand.

For problems with the form in (2.8), it is possible to find bounds on all primal
and dual variables for an optimal solution. These bounds can then be used with
Theorem 3. Exercises 3, 4, and 5 explore the aggregation bounds in this context
more fully.

Exercises

1. Verify that a non-negative π satisfying the conditions in (2.3) provides a bound
on (2.1)’s optimal value through (2.2).

2. Prove Theorem 3.

3. Find bounds on all optimal variable values in (2.8) as functions of the parameters
and previous realizations.

4. Using the bounds in (2.3), construct bounds based on Theorem 3 for a problem
as in (2.8) with four periods, uniform demand on [8000,10,000] , bt = t(9500) ,
ct = 19 , rt = 4 , k = 9000 , for t = 1,2,3,4 , and qt = 9.5 for t = 1,2,3 ,
q4 = 30 (to account for unsold products at the end of the horizon), and ρ = 0.9 .

5. It is not necessary to take expectations before aggregating periods. Using the ex-
ample in (2.8), construct bounds with a two-period problem that uses a weighted
sum of future demands in the first period. What type of stochastic program is
this?

10.3 Scenario Generation and Distribution Fitting

Sampling methods are a common approach for multistage stochastic programs, just
as they are for two-stage models. Due to the exponential increase in the number of
possible scenarios as the horizon length increases, multistage scenario generation
approaches place a greater emphasis on reducing the number of required samples.
The result is that the sampling procedure often involves considerable effort to ensure
that the samples provide similar solution characteristics to a true underlying model.
Main concerns are that the sample distribution has similar moments to the underly-
ing distribution, that the sample distribution is not too distant from the underlying
in terms of the probability of any event, and that the solution of the model using the
sample distribution is consistent with practical limitations, such as the absence of
arbitrage. Under mild conditions, these criteria can ensure that the sampling model

10.3 Scenario Generation and Distribution Fitting 427

solution converges asymptotically to a solution of the model with the underlying
distribution.

In the following, we assume that an underlying distribution is known, although,
as elsewhere in this book, this can be interpreted in the Bayesian sense that the
underlying distribution represents the prior belief of the decision maker. For the
development here, we assume the structure of the multistage stochastic linear pro-
gram in (3.4.1), although extensions to nonlinear models are straightforward. The
random parameters in period t are ξt = ξ t(ω) . A basic sampling method would
be to take K1 independent and identically distributed draws, ξ 1

1 , . . . ,ξ 1
K1

, from

ξ1 and then recursively to draw Kt samples from ξt conditional on ξ 1
k1

, . . . ,ξ t−1
kt−1

where 1 ≤ ks ≤Π s
i=1Ki , s = 1, . . . ,t −1 for each of the K t−1 =Π t−1

i=1 Ki possible
scenarios in the sampled decision tree through period t − 1 . When ξt is serially
independent (i.e., the distribution is the same for all realizations of the history pro-
cess at time t −1 for all t), the same ξt samples may be used along any branch of
the tree, but, in stochastic programming, we assume that optimal decisions may be
path-dependent and, therefore, that the exponential increase in the size of the tree is
necessary to capture all possible future actions.

To keep the sizes of decision trees manageable for computation, stochastic pro-
gramming models generally limit the size of the sample tree so that Kt is relatively
small (and may be decreasing in t). To help ensure that the solution of the sample
problem suffers as little as possible from small-sample bias, sample scenario gener-
ation in multistage models often aims to ensure that the sample distribution shares
important characteristics, such as moments and quantiles, with the underlying dis-
tribution of ξ .

To see how multistage sampling works in practice, we consider the investment
model from Section 1.2, where instead of the two possible values in each period, we
suppose that the returns ξt are lognormally distributed where logξt ∼ N(μ ,Σ) , a

bivariate normally distributed random vector with mean μ =
(

0.141
0.122

)
and vari-

ance/covariance matrix Σ = 10−3

(
6.740 0.291
0.291 0.0784

)
. This distribution gives the

same mean and variance for each component of ξt as in Section 1.2, but, instead
of being perfectly correlated, the correlation between the stock and bond is 0.4. In
particular, the mean return of each asset i is ξ̄i = eμi+ 1

2σii , written as

ξ̄ =
(

1.155
1.130

)
, (3.1)

and the covariances are E [(ξ(i) − ξ̄ (i))(ξ(j) − ξ̄ (j))] = eμi+μ j+
σii+σ j j

2 (eσi j − 1) ,
which we write collectively as the matrix V , where

V = 10−3
(

9.027 0.380
0.380 0.100

)
, (3.2)

428 10 Multistage Approximations

To create samples of ξt for the stochastic program, we first start by taking a ran-
dom sample of K1 values, using, for example, independent standard normal draws
z1, . . . ,zK1 where each component zk

j , j = 1,2 , k = 1, . . . ,K1 , is an independent

standard normal draw as well. We then have an initial set of samples ξ̂ k = eμ+Σ0.5zk
,

where the exponential operator is interpreted as operating separately on each com-
ponent of μ +Σ0.5zk and where Σ0.5 is the Cholesky factor of Σ (i.e., the up-
per triangular matrix such that Σ = (Σ0.5)TΣ0.5). Here is a possible sample with

K1 = 6 1: The mean of this sample is ˆ̄ξ = (1.236,1.131)T and the covariance of

Table 1 Original sample values.

ξ̂ (1) ξ̂ (2)
1.113 1.124
1.195 1.136
1.185 1.129
1.236 1.130
1.234 1.129
1.452 1.137

the sample is V̂ = 10−3

(
11.01 0.343
0.343 0.020

)
, which may differ enough from ξ̄ and V

to bias the stochastic program results. To correct for this problem, as long as K1

is sufficiently large that V̂ has full rank, we can update the sample as follows to
produce a sample with mean ξ̄ and covariance V :

ξ̃ = ξ̄ +V 0.5(V̂ −0.5(ξ̂ − ˆ̄ξ)), (3.3)

which results in the values in Table 10.3, which now has mean ξ̄ and covariance V .

Table 2 Adjusted sample values.

ξ̃1 ξ̃2

1.044 1.116
1.118 1.148
1.109 1.127
1.155 1.127
1.153 1.125
1.351 1.137

These samples can then be used again to generate K2 = 6 samples for period 2 (as-
suming serial independence). For a three period model, this results in K1K2 = 36
total scenarios. Including a third set of realizations as in Section 1.2 would yield

1 Much larger samples are often used in practice for K1 , but, since ΠH
t=1Kt grows quickly for

larger values of H , sample sizes for larger values of t are often small.

10.3 Scenario Generation and Distribution Fitting 429

63 = 216 scenarios, but often fewer scenarios are used in later periods. (In Exer-
cise 2, we use K3 = 2 for 72 total scenarios.)

This procedure of modifying a random sample to match moments of an assumed
underlying distribution is called adjusted random sample generation. Results in
Kouwenberg [2001] suggest that this procedure can improve outcomes relative to
using random samples alone. Exercises 2 and 3 explore this issue for the financial
planning example.

In addition to fitting the mean and second moments, improved scenario trees
may result from fitting higher moments, such as through fits of skewness and kur-
tosis. Høyland and Wallace [2001] describe how to use an optimization procedure
to fit these moments, which may include extreme values to represent tail risk and
inter-period moments to represent serial dependence. In experiments in Kouwenberg
[2001], the use of additional moment information provides minor improvement over
adjusting only for first and second moments.

In longer horizon problems, an initial sampling procedure often still yields sce-
nario trees that are too large for efficient direct computation. To simplify these trees
further, scenarios may be collapsed while retaining as much moment information
as possible (e.g., Cariño, et al. [1994]). Other alternatives in reducing scenario trees
are to ensure that the reduced tree stays as close as possible in a distribution metric
to the original (possibly sample-based) scenario tree (see Dupačová, Gröwe, and
Römisch [2003]). Alternatively, a tree can be constructed directly that minimizes
the distance in the distribution metric to the original underlying distribution (Pflug
[2001]) or the tree can be adjusted (to be smaller or larger) in the process of so-
lution by examining the expected value of perfect information at each node of the
tree to collapse branches with small EVPI and to expand branches with large EVPI
(Dempster [2006]).

An important consideration for generating scenarios in financial applications is,
unless conditions are known not to be in equilibrium, for the scenario trees not to
admit arbitrage in which trading among different assets could earn positive returns in
all scenarios without any initial investment. Arbitrage most often occurs in models
when derivative securities are included that depend on the same underlying security,
but their prices are not consistent with the set of scenarios.

Example 3

As an example, we again consider the financial planning in Section 1.2 but with the
original two branches in each period and where short-selling (negative positions) of
the stock and bond are allowed. We now add an additional asset as a call option that
gives the holder of the option the right (but not the obligation) to buy the stock at
1.15 times its original price at the end of the first period. In this way, the call option
has the following contingent payoff, C1 , for each unit of stock value at time 0 ,
such that:

430 10 Multistage Approximations

C1 =

{
0.10 if ξ1(1) = 1.25,

0 if ξ1(1) = 1.10.
(3.4)

Suppose that the model includes a price for each unit of this call option of C0 =
0.02 of the value of one unit of the stock. This would mean that the return value
ξ1(3) corresponding to the call option asset follows:

ξ1(3) =

{
5 if ξ1(1) = 1.25,

0 if ξ1(1) = 1.10.
(3.5)

Now, an initial investment strategy can include the following (x1(1),x1(2),x1(3)) =
(−18 2

3 ,17 2
3 ,1)α , for any α ≥ 0 since this requires no additional wealth. The

wealth at the end of the first period is then

ξ1(3) =

{
1.8067α = (−(18 2

3)1.25 +(17 2
3)1.14 + 5)α if ξ1(1) = 1.25,

0 if ξ1(1) = 1.10,
(3.6)

which, as α →∞ , leads to infinite wealth in the state where stocks increase in value
by 25%. The problem in this case is that C0 = 0.02 is inconsistently low or ξ1(3) =
5 in the high-stock-value case is too high. Note that if instead ξ1(3) = 3.1933 in
the high-stock-value scenario (corresponding to C0 = 0.031524), then the wealth
is zero under both scenarios. This is the no-arbitrage condition that the future value
of a net initial investment of zero cannot be non-negative in all states and strictly
positive in some states (with probability greater than zero).

Consistent equilibrium prices (in a market with zero transaction costs and al-
lowable short sales) should satisfy the no-arbitrage condition; otherwise, investors
would exploit the price differences to create unlimited riskless profits. To main-
tain this condition requires precise agreement of prices within a model. Transaction
costs, which are present to some degree in practice (for example, in the bid-ask
spread), allow for a range of consistent prices. Other restrictions, such as no-short-
sale constraints, can eliminate unbounded solutions in the model, but inconsistent
prices, even without pure arbitrage, can lead to solutions that are far from the op-
timal choice for a model with consistent prices. In the financial planning example
considered here, for example, the optimal initial investment (Exercise 5) choices
are given in Table 3. The solution with the consistent high-stock-value return of
ξ(3) = 3.1933 results in a balanced initial portfolio, while the solution of the model
using ξ(3) = 5 for the high-stock-value scenarios places almost the entire portfolio
into the call option. Such wide swings can occur with small changes in the model
data from values consistent with equilibrium prices (see Exercise 5). Ensuring con-
sistent prices can then be a critical part of proper model generation.

The process we used to eliminate arbitrage can be simplified by using the equiv-
alent martingale measure or risk-neutral measure, i.e., a probability distribution
that weights scenarios based on their state prices to reflect a premium for non-
diversifiable risk such that the value of all financial market assets equals the expected
value under this distribution of all future payoffs discounted by the risk-free rate

10.3 Scenario Generation and Distribution Fitting 431

(see Harrison and Kreps [1979]). Klaassen [1998] describes how this process ap-
plies for stochastic programming scenario trees, including important considerations
for maintaining consistency while aggregating states and periods as in Section 10.2.
Various methods can be used to represent the equivalent martingale measure by en-
suring consistency in the expectation and fitting parameters to be consistent with
market prices. Alternatively, in some cases, it is possible instead to modify the con-
straints and to use the natural probability measure (again ensuring consistency) (see
Birge [2000]).

Theoretical results for obtaining convergence of solutions from a sample prob-
lem to that of the original problem are also possible for multistage problems as they
are for two-stage problems, but including adjustments such as matching moments
makes the analysis more difficult and the theoretical bounds on convergence are of-
ten worse than what is actually observed. The basic multistage results are direct ex-
tensions of the two-period results. As shown in Shapiro [2003], under suitable con-
ditions (e.g., finite expecations, bounded sets of optimal solutions, and a pointwise
Strong Law of Large Numbers holding for the sample values, Qt,Kt (xt) → Qt(xt) ,
a.e.), then, as Kt → ∞,t = 1, . . . ,H ,

• the sample average approximation value, zK H → z∗ , the true optimal value;
• the distance between first-stage optimal solution sets decreases to zero with

probability one;
• if the support of the true distribution is finite, then the first-stage optimal solution

set is a nonempty face of the true optimal solution set with probability one.

For a special class of problems with non-negative objective values and non-negative
constraint matrices (except possibly in the first and last stage), Swamy and Shmoys
[2005] show that, for any tolerance ε > 0 , the required number of samples in a
multistage sample average approximation to achieve a high probability of a solution
within a 1 + ε multiple of the optimal value is polynomial in 1

ε and a parameter
that depends on cost growth across time.

Table 3 Initial values of x∗
1 for different returns on a call option.

ξ(3) = 3.1933 5.0
Asset
Stock 16.82 0.0
Bond 16.54 2.86
Call 21.64 52.14

432 10 Multistage Approximations

Exercises

1. Show that the assumption that logξt ∼ N(μ ,Σ) , μ =
(

0.141
0.122

)
and Σ =

10−3

(
6.740 0.291
0.291 0.0784

)
matches the mean and variance of the stock and bond

returns for the financial planning example in Section 1.2 and that the correlation
between the two assets is 0.4.

2. Solve the financial planning example with a 72-scenario event tree correspond-
ing to two periods with returns given by ξ̂ in Table 1 and one period with the
original two return realizations given in Chapter 1. Let the first period solution
be x̂1 . Solve also for the 72-scenario event tree given by ξ̃ in Table 2 and let
the first period solution be x̃1 . To test for their relative performance of these
solution, perform a simulation with 1000 runs, where the initial allocations are
x̂1 and x̃1 respectively and the random returns are ξ t

k for stage t drawn from
the underlying lognormal distribution. For each run k = 1, . . . ,1000 , for the
second-period allocation, re-solve a two-stage model with input wealth (ξ 1

k)T x̂1

and (ξ 1
k)T x̃1 respectively for the two alternatives and then obtain solutions on

the remaining (36-node) sample trees as x̂k2 and x̃k2 ; then, use the second-
period return ξ 2

k , and repeat for the third and final periods to obtain sample
objective values ẑk and z̃k . Compare the distributions of ẑ and z̃ for these
samples by plotting their percentiles. What does this suggest about the use of
adjusted samples?

3. Repeat Exercise 2 by randomly drawing ten additional random samples ξ̂ and
adjusting to fit the mean and covariance in ξ̃ (so that now the tree has 2 ·162 =
512 scenarios). (Warning: this requires fast subproblem optimization.)

4. Suppose that instead of a call option to buy the stock at 15% above its current
value, the option is buy the stock at 10% above its current value. If this is in-
cluded in the financial planning example with two branches per period, what
should the initial call price or premium C0 be for this option to avoid arbitrage
possibilities?

5. Solve the 8-scenario, 3-period financial planning example with the addition of
a call option. First, solve with the consistent high-stock-increase return on the
call option of 3.1933 and then with a high-stock-increase return of 5 . Verify
the solutions x1∗ that are given in Table 3. Re-solve with ξ1(3) = 3.20 in the
high-stock-return scenario. What is the value of initial investments x1∗ now?

10.4 Multistage Sampling and Decomposition Methods

In this section, we consider algorithms that incorporate sampling into decomposition
methods for multistage stochastic programs with explicit confidence intervals on
the convergence of the sample problem value to an optimal solution value. For the

10.4 Multistage Sampling and Decomposition Methods 433

exposition here, we consider multistage stochastic linear programs with relatively
complete recourse and a finite optimal objective value.

Assume that the stochastic elements are defined over a discrete probability space
(Ξ ,σ(Ξ) ,P), where Ξ = Ξ 2 ⊗·· ·⊗ΞH is the support of the random data in stages
two through H , with Ξ t = {ξ t

i = (ht(ξ t
i),c

t(ξ t
i),T

t−1
·,1 (ξ t

i), . . . ,T
t−1
·,nt−1(ξ t

i), i =
1, . . . ,Mt)} . Further, assume that the random parameters are serially independent.
Thus, the probability of a particular stage t realization ξ t

i is constant from all pos-
sible (t −1) -stage scenarios.

For the following, we describe the strategy of abridged nested decomposition
(AND) (Donohue and Birge [2006]), which is an extension of the sampling strat-
egy of stochastic dual dynamic programming (SDDP) in Pereira and Pinto [1991].
Both algorithms use sampling to generate an upper bound on the expected value
(over an H -stage planning horizon) of a given first stage solution and to use de-
composition to generate a lower bound. The algorithm terminates when the two
bounds are sufficiently close. As in the nested decomposition algorithm, each itera-
tion of SDDP and AND algorithm begins by solving the first stage subproblem, after
which, K H -stage scenarios are sampled. Let xt

k and ξ t
k denote the stage t solu-

tion vector and the stage t random parameter realization, respectively, in sampled
scenario k . A forward pass through a sampled version of the scenario tree solves the
nested decomposition subproblem (6.1.1–1.5) for stages t = 2, . . . ,H and scenarios
k = 1, . . . ,K .

The algorithm uses an upper bound estimate on z∗ based on individual scenario
objective values, zk , where

zk = c1x1
k +

H

∑
t=2

ct(ξ t
k)x

t
k, (4.1)

where x1
k is the same for all values of k . The zk values are combined to form an

estimate with K samples as:

ẑK =
1
K

K

∑
k=1

zk, (4.2)

with standard deviation of the estimate given by,

σzK =

√√√√
(

1
K2

K

∑
k=1

(ẑK − zk)2

)
. (4.3)

Using these values, a confidence interval on the upper bound estimate can be con-
structed.

After the forward pass is completed, the method follows a backward pass as in
the nested decomposition algorithm, but, without considering all branches of the

434 10 Multistage Approximations

tree. The essential difference between AND and SDDP is that, in AND, instead of
considering the full sample-path tree, a set of branching solutions, Bt , are used to
generate new cuts in the backward pass. The branching solutions are quite flexi-
ble under the assumption of serial independence since the cuts generated for any
values of xt yield valid cuts. These solutions may correspond to solutions along
the previous sample-paths, combinations of solutions, or some other set of possible
state values. In the backward pass, all child scenarios of each branching solutions
are solved to ensure that the solutions of each subproblem (6.1.1–1.5) obtain a valid
lower bound on Qt+1(xt) for each xt in Bt .

The backward pass progresses for periods t = H − 1, . . . ,1 generating a new
optimality cut for each branching solution in Bt . Once a new optimality cut has
been added to the first-stage subproblem, the backward pass completes, followed
again by a new generation of a new set of sample paths and the forward pass to
construct an upper bound estimate.

Finite convergence of this algorithm follows from the finite convergence of the
nested decomposition algorithm, since the scenarios from which the optimality cuts
are generated are re-sampled each iteration (see Donohue [1996] and the detailed
proof in Philpott and Guan [2008]). Since the accuracy of the optimal solution de-
pends on the accuracy of the estimated upper bound, the performance of the algo-
rithm depends on the number of scenarios sampled in each iteration.

The Abridged Nested Decomposition Algorithm

Step 0. For t = 1, . . . ,H −1 , set st = 0 , and add the constraint θ t = 0 to the stage
t subproblem. Choose initial values for |Ft | (forward branching values) and |Bt |
for t = 2, . . . ,N −1 . Go to Step 1.

Step 1. Solve the first stage problem. Let x̃1 be the current optimal solution and θ̃ 1

be the current expected recourse approximation value. Let z̃1 be the current optimal
objective value. Let x̃1 be the first stage branching value. Go to Step 2.

Step 2. Forward Pass.
For t = 2, . . . ,H −1 ,

For j = 1, . . . , |Bt−1| ,
For k = 1, . . . , |Ft | ,

Solve the stage t subproblem (6.1.1–1.5) with input value xt−1
j ∈ Bt−1

and sample realization ξ t
k ∈ Ft .

Select |Bt | branching values xt from subproblem solutions.
Go to Step 3.

Step 3. Backward Pass.
For t = N, . . . ,2 ,

For j = 1, . . . , |Bt−1| ,
For i = 1, . . . ,Mt ,

Solve stage t subproblem (6.1.1–1.5) with input value xt−1
j ∈ Bt−1 for

scenario ξ t
i . Let (π t

i,m,σ t
i,m) denote the optimal dual vector values.

10.4 Multistage Sampling and Decomposition Methods 435

Compute

Et−1 =
Mt

∑
i=1

pt
kπ

t
i,mTt−1

i , et−1 =
Mt

∑
i=1

pt
k

(
π t

i,mht
i +σ t

i,met
i

)

The new cut is then: Et−1xt−1 +θ t−1 ≥ et−1 .
If the constraint θ t−1 = 0 appears in the stage t − 1 subproblem, then
remove it. Increment st−1 by one and add the new cut to the stage t − 1
subproblem. If t = 2 , then the updated first stage expected recourse func-
tion upper bound is: θ̄ 1 = e1 −E1x̃1 . If θ̃ 1 is within a relative tolerance
of θ̄ 1 , then go to Step 4. Otherwise, go to Step 1.

Step 4. Sampling Step.
Let x1

k = x̃1 , for k = 1, . . . ,K .
For k = 1, . . . ,K ,

Generate H -stage sample scenario, (ξ 2
k , . . . ,ξH

k) .
For t = 2, . . . ,H ,

Given stage t − 1 solution xt−1
k and realization ξ t

k , solve the stage t
subproblem (6.1.1–1.5). Let xt

k denote the optimal solution.
Using Equations (4.1), (4.2), and (4.3), obtain a confidence interval on the expected
objective value of the current first stage solution. If c1x̃1 + θ̃ 1 is in the confidence
interval, stop with x̃1 as the optimal solution. Else, increase Ft and Bt for stage
t = 2, . . . ,N and go to Step 1.

To ensure that the algorithm terminates with a valid confidence interval on z∗ ,
a procedure such as the sequential sampling method in Section 8.5 should be used.
For this algorithm to be effective, the branching values in Bt also must be chosen
carefully. As shown in Donohue and Birge [2006], however, any convex combina-
tion of feasible values at time t has a feasible completion in period t + 1 . This
observation allows for consolidation in the branching step. Various fixed rules can
be used for selecting branches or branching solution values can be chosen randomly.
This strategy gives an unbiased sample of stage t solution values, which may have
advantages. We note that this general approach can also be extended to problems
with infinite horizons (see Exercise 2).

Exercises

1. Generate 50 random samples from the distribution given in Section 10.3 for the
three-period financial planning example from Section 1.2. Implement AND on
this problem using the following strategies starting with |Bt | = 3 and |Ft | =
6 , increasing each by one whenever required, and terminating whenever ẑK ≤
c1x̃1 + θ̃ 1 + 2σzk(x

1) .

(a) Choose Bt randomly from the set of period t solutions.

436 10 Multistage Approximations

(b) Choose Bt initially corresponding to solutions with the maximum, median,
and minimum wealth in each period. If Bt increases, choose additional
branching solutions randomly from the set of solutions.

2. For an infinite-horizon problem with stationary data (i.e., ξt has the same distri-
bution ξ for all t), the goal is to find a function Ψ∞ such that Ψ∞ = T (Ψ∞) ,
where T is the dynamic programming operator defined by

T (Ψ∞(h0 −T0x0,c0)) = min
x|W x=h0−T0x0

cT
0 x +βE [Ψ∞(h−Tx,c)], (4.4)

where 0 < β < 1 is a fixed discount factor. Given a linear lower bound

Ψ0(y,z) = e0 +E0

(
y
z

)
≤Ψ∞(y,z) , for any y and z , describe a sampling-based

outer-linearization method to find Ψ∞ . (Birge and Zhao [2007]).

10.5 Approximate Dynamic Programming and Special Cases

The approaches discussed in the previous sections have focused on sampling and
state or tree aggregation to obtain tractable formulations. Another alternative is to
use approximations of the value function Qt constructed in other ways. The outer
linearization approach in the AND method is one possible value function approxi-
mation. In this section, we discuss other value-function approximations that collec-
tively are often called approximate dynamic programming (ADP) or neuro-dynamic
programming (see, e.g., Bertsekas [2007], Bertsekas and Tsitsiklis [1995], and Pow-
ell [2007]). As noted earlier, other approximations may include approximations of
the actions (or policy) (as, for example, a parameterized function of the state vari-
ables), but the discussion here focuses on value-function approximations.

The general approach in ADP is to replace the value function Qt+1(xt) , or the
subproblem (scenario-conditional) value functions, Qt+1(xt ,ξ t) , with an approxi-
mation that does not require full optimization of the sub-tree corresponding to ξ t

given xt . In general, the functions are constructed recursively over time, possibly
with some iteration to update the approximations,

A common approach is to construct an approximation Q̂t+1(xt ,ξ t) as a linear
combination of known basis functions Φt(·, ·) = (φ t

1(·, ·), . . . ,φ t
Mt (·, ·)) that are fit-

ted with weights, λ t , so that

Q̂t+1(xt ,ξ t) =Φt(xt ,ξ t)λ t . (5.1)

The φ t functions can be chosen quite generally to provide close approximation
for a wide range of possible value functions. The λ t values can be chosen with
a backward recursion to simulate xt and ξ t values at samples (xt

k,ξ
t
k) for k =

1, . . . ,K and then to choose λ t to fit (e.g., using regression) Φt(xt ,ξ t)λ t to the
values (for a multistage stochastic linear program):

10.5 Approximate Dynamic Programming and Special Cases 437

Q̃t+1(xt
k,ξ

t
k) = minct+1

k xt+1 + E [Φt+1(xt+1,ξt+1)λ t+1|ξ t
k] (5.2)

s. t. Wt+1xt+1 = ht
k −Tt

k xt ,

xt+1 ≥ 0.

For the integration of Φt+1 , if the integral is easily calculated (as in the separable
approximations below), then this can be evaluated directly; otherwise, additional
samples of ξt+1 can be used to find an approximate value. For specific forms of the
Φ functions, independent samples of paths can be used without requiring that the
tree structure be maintained in each period with effort just increasing in a number K
of paths instead of ΠH

t=1Kt as in tree-generation methods. Suppose, for example,
a multistage stochastic linear program such that each Φt+1 is an affine function of
χ t = ht − Ttxt (which is most applicable when only ht and Tt are random). We
consider a set of K sample paths, ξ1, . . . ,ξK . The approximate value at period t of
sample k in (5.2) can then be written with explicit dependence on the λ values as:

Q̃t+1(xt
k,ξ

t
k,λ

t+1) = minct+1
k xt+1 + (λ t+1)T (h̄t+1 − T̄ t+1xt+1)+λ t+1

0 (5.3)

s. t. Wt+1xt+1 = ht
k −Tt

k xt
k,

xt+1 ≥ 0,

where h̄t+1 and T̄ t+1 are understood as conditional expectations of ht and Tt

given ξ t
k and xt

k respectively and λ t+1
0 is the scalar value in the affine approxi-

mation. For a dual solution to (5.3), π t
k , Q̃t+1(xt

k,ξ
t
k ,λ

t+1) = (hk −Tt
k xt)Tπ t

k(λ)+
(λ t+1)T h̄t+1 + λ t+1

0 . We can then define the linear approximation with λ to be
consistent with these dual values in each period t :

(λ t)T (h̄t − T̄ t xt+1)+λ t
0 =

1
K

K

∑
k=1

(ht
k −Tt

k xt
k)

Tπ t
k(λ)+ (λ t+1)T h̄t+1 +λ t+1

0 ,

which then yields a dual bounding problem with additional constraints to ensure
consistent future period values in (5.2) and (5.3) to find z̃K

L =

max
π

h1π1 +
1
K

H

∑
t=1

K

∑
k=1

ht
kπ

t
k (5.4)

s. t. (Wt)Tπ t
k +

1
K

K

∑
l=1

(Tt+1
l)Tπ t+1

l ≤ qt , t = 1, . . . ,H −1;k = 1, . . . ,K;

(W H)TπH
k ≤ qH ;k = 1, . . . ,K;

with optimal value π̃ . Since π is a dual feasible solution of (3.4.1), this pro-
cess produces a lower bound estimate on the optimal value z∗ of (3.4.1) such that
E [z̃K

L] ≤ z∗ (Exercise 1). In fact, any feasible solution of (5.4) provides a lower
bound on z∗ . The approximation comes on any path k from restricting the subse-
quent period multipliers π t+1

l to be the same across all paths instead of depending
explicitly on each path (or, in the primal view, on each solution xt

k). Relaxations of

438 10 Multistage Approximations

this restriction are possible by for example allowing some conditioning in the values
of π t+1

l used in the constraints with each π t
k . In general, the method can also be

viewed as a version of nested decomposition in which only a single cut is added in
each period.

Upper bound estimates are available directly using

z̃K
U = c1x1 +

1
K

H

∑
t=2

K

∑
k=1

ctxt
k, (5.5)

such that E [z̃K
U] ≥ z∗ . Increasing the number of samples does not necessarily bring

the lower and upper bound estimates together, but the ability to improve the lower
bounding estimate through some use of conditional information in π suggests a
possible approach to convergence. In any event, this method for estimates has sub-
stantially reduced complexity from full-tree generation methods and can be quite
effective in practice, as we discuss below for problems in network revenue manage-
ment.

a. Network revenue management

A typical application where ADP can be applied is in network revenue management,
which represents decisions on allocating capacity to different products (e.g., fare
classes and itineraries) that use common resources (e.g., seats on a flight, rooms in
a hotel on a given night, or cars of a given class on a given day). The decision vector
includes xt and yt at time t where xt is an n+m -vector of n product reservation
acceptances in the current period and m cumulative resource commitments and yt

an n -vector of penalized acceptances (due to insufficient demand) which is used
to allow for relatively complete recourse. The demand is given by dt , an n -vector
of current period demand. The full problem (where y variables are included for
completeness only) is to find z∗ =

minc1x1 + E [
T

∑
t=1

ctxt − ctyt] (5.6)

s. t. W 1x1
1,...,n + x1

n+1,...,n+m = h1;

Wtxt
1,...,n + xt

n+1,...,n+m = xt−1
n+1,...,n+m, t = 2, . . . ,T ;

xt
1,...,n −yt ≤ dt , t = 1, . . . ,T ;

xt ,yt ≥ 0, t = 1, . . . ,T, a.s.;

xt ,ytnonanticipative, t = 1, . . . ,T, a.s.;

where we can assume for simplicity that W = Wt , t = 1, . . . ,H , the resource-usage
matrix, in each period is the same. A common approximation to (5.6) is the bid-
price linear program (see Williamson [1992] and Talluri and van Ryzin [2004])

10.5 Approximate Dynamic Programming and Special Cases 439

which solves the aggregated expected value problem as in (2.5) as: ẑ =

min C1X̂1 (5.7)

s. t. A(HX̂1
1,...,n)+ X̂1

n+1,...,n+m = h1,

HX̂1
1,...,n ≤

H

∑
t=1

d̄t ; ,

X̂1
1,...,n ≥ 0,

where note that HX̂1 can be replaced by a different variable X ′ as is commonly
given. In comparison to (2.5), we have collapsed everything into the first period (or
have an empty initial period). We omitted the Ŷ variables which would be zero in
an optimal solution. From (5.6), we obtain a feasible dual solution to (5.6) so that
ε− = 0 in Theorem 3 and z∗ ≥ ẑ (Exercise 2). For an upper bound, we could use
the solution xt = X1 in each period t (and then compute penalties in ε+ whenever
xt > dt) or we can define xt recursively as x1 = min{d1,HX̂1} and then xt =
min{HX̂1 − xt+1,dt} , and xH = HX̂1 − xH−1 to obtain a sharper bound, which
amounts to using HX̂1 as a static booking limit vector (Exercise 3).

An upper bound can also be obtained (as done in practice) by using the optimal
dual multipliers Π̂ = (Π̂1,Π̂2) of (5.7) to determine whether to accept a reservation
or not. In this process, if ct

i −AT·i Π̂1 ≤ 0 , then a reservation for product i is accepted
if there is sufficient demand and available capacity. This is the notion of bid-prices
in which the −Π̂1 values are prices on the resources bid against the revenue of each
product. Generally, new versions of (5.7) are re-solved in each period with updated
information to obtain new prices to determine acceptance.

Still another possible disaggregation is to use X̂1
i

∑T
t=1 d̄t

i
as the probability of ac-

cepting a reservation for product i and again to define the values sequential in time
with repeated solution of the updated version of (5.7). This approach is described
in Jasin and Kumar [2010], who obtain an a priori bound on the loss in value from
this approximate policy and then show how to choose re-solving times such that
asymptotically as the system size grows, the relative loss in performance from using
the approximation goes to zero.

Another interpretation of (5.7) is in its dual, in which case, it represents an ag-
gregation of the linear ADP formulation in (5.4), which then implies that the lower
bound in (5.7) is not as sharp as would be obtained using (5.4) (Exercise 4). This
is the observation in Adelman [2007], which also presents a method to obtain an
approximate solution with bounded accuracy for a linearization of the full problem.

b. Vehicle allocation problems

Vehicle allocation problems provide a different structure that allows specific bound
construction. These problems can be represented as multistage network problems

440 10 Multistage Approximations

with only arc capacities random. A formulation would then be the same as (1.1). The
matrices Wt correspond to flows leaving nodes in period t while Tt corresponds
to flow entering nodes in period t + 1 . The only exception is in the last period for
which W H just gathers flow into ending nodes. For simplicity, this model assumes
that all flow requires one period to move between nodes.

The xt(i j) decisions are then flows from i in period t to j in period t +1 . The
randomness involves the demand from i to j in period t . We assume that xt(i j) =
xt, f (i j) + xt,e(i j) , where xt, f (i j) represents full loads (or vehicles) and xt,e(i j)
represents empty vehicles (assuming that fractional vehicle loads are feasible). For
demand of ξt(i j) , we would have xt, f (i j) ≤ ξt(i j) . The costs ct, f (i j) and ct,e(i j)
then correspond to the unit values of moving full and empty vehicles from i to j at
t . The result is that vehicles are conserved in (5.8). The decisions generally depend
on the locations of vehicles at any point in time.

Frantzeskakis and Powell [1993] consider several alternative approximations of
(5.8). First, one could solve the expected value problem to obtain x̂t values. These
corresponding decisions can be used regardless of realized demand (as, e.g., in Bi-
tran and Yanasse [1984]). Then the xt values could be split into full and empty
parts, xt = x̄t , xt, f (i j) = max{x̄t(i j),ξt (i j)} , according to realized demand to pro-
duce both upper and lower bounds. This could be viewed as a generalization of a
simple recourse strategy; hence Powell and Frantzeskakis refer to it as the simple
recourse strategy.

Another approach is simply to solve the mean value problem, but only actually to
send a vehicle from i to j at t if there is sufficient demand. In this way, xt, f (i j) =
max{x̄t(i j),ξt (i j)} , but xt(i j) = xt, f (i j) whenever i �= j . This strategy is called
null recourse.

A further strategy is called nodal recourse, in which a set of decisions or a policy,
δ t(i) , is defined for each node i at all times t . This policy would be a list of options
for flow from i at t . The list would be a ranking of full loads (i.e., preferred nodes,
j1(i), . . . jk(i)) if capacity is available followed by an alternative for any remaining
empty vehicles.

This preference structure can be constructed using a separable approximation
from period t +1 to H . In period H , we can begin by assigning some salvage/final
value −cH(i) to vehicles on the arcs corresponding to travel from one node to itself.

At period H − 1 , the value of sending a full load from i to j is simply
−cH−1, f (i j) − cH(j) . Including empty loads in the obvious way and ordering in
decreasing orders for each p determines the strategy at H − 1 . Now, given the
distributions of ξH−1 , these values yield an expected value function for vehicles
at i at t . The argument of this function is a new (state) variable, yH−1(i) . With
the function defined, similar decisions on expected values of loads from i to j
can be made in period H −2 . A dynamic programming recursion would be to find
Qt(yt) = Eξt [Qt(yt ,ξt)] where:

Qt(yt ,ξt) = min
xt ,yt

ctxt +Qt+1(yt+1)

10.5 Approximate Dynamic Programming and Special Cases 441

s. t. Wtxt = yt ,

Ttxt −yt+1 = 0 ,

ξt ≥ xt ≥ 0 .

(5.8)

If Qt+1(yt+1) is linear with coefficients, Q̄t+1(i) in each component i of yt+1 as
it is for t = H −1 , then the optimal solution to (5.8) is given by the increasing or-
dering of ct, f (i j)+ Q̂t+1(j) with each successive xt, f (i j) used up to the minimum
of yt(i) and ξ t(i j) according to this realization of ξt . The key is then to construct
a linear approximation to Qt+1(yt+1) .

With a linearization, the entire strategy can be simply carried back to the first
period. As in other ADP methods, this represents a feasible but not optimal strategy
because it avoids calculating the full nonlinear value function. One way to compute
the linearization is to assume an input value ŷt(i) and to find the probability of each
option multiplied by the expected linearized value of that option. Using this to de-
termine the recourse value at each stage can lead to a lower bound at each stage and
overall when the first-period problem is solved (see Exercise 4). An upper bound-
ing linearization is also possible. This is analogous to the Edmundson-Madansky
approach (Exercise 5).

Frantzeskakis and Powell [1993] mention that extensions of nodal recourse can
apply to general network problems. These procedures are similar to the separable
bounding procedures presented next. They again rely on building responses to ran-
dom variation that depend separately on the random components and that are also
feasible.

c. Piecewise-linear separable bounds

Another approach to ADP is to extend the basic separable bounds presented in Sec-
tion 8.5b. to multistage problems. The main idea is to use the two-stage method
repeatedly to approximate the objective function by separable functions (and not
just single affine functions as in (5.2)). For linear problems, this leads to sublin-
ear or piecewise linear functions as in Section 8.5b. Functions without recession
directions (e.g., quadratic functions) would require some type of nonlinear (e.g.,
quadratic) function that should again be easily integrable, requiring, for example,
limited moment information (second moments for quadratic functions). We con-
sider the linear case (following Birge [1989]).

The goal is to construct a problem that is separable in the components of the
random vector. In each period t , a decision, xt , is made subject to the constraints,
Wtxt = ξ t − Tt−1xt−1 , xt ≥ 0 , where ξ t is the realization of random constraints
and xt−1 was the decision in period t − 1 . The objective contribution from this
decision is ctxt . We can view this decision as a response to the input, ηt = ξ t −
Tt−1xt−1 . The period t decision, xt , then becomes a function of this input, so
xt(ω) becomes xt(ηt) . Problem (2.2) becomes

442 10 Multistage Approximations

min c1x1 + E [c2x2(η2)+ · · ·+ cHxH(ηH)]

s. t. W 1x1 = h1 ,

Wtxt(ηt) = ηt , t = 2, . . . ,H , a.s.,

ηt = ξt −Tt−1xt−1(ηt−1) , t = 2, . . . ,H , a.s.,

xt(η) ≥ 0 , t = 1, . . . ,H .

The optimization problem is to determine the correct response to ηt . The two-stage
method given in Section 8.5b. gives a response that is separable in the components
of ξ = η2 . In multiple stages, ξ is replaced by ηt for period t . The response
must consider future actions and costs; so, it is no longer simply optimization of the
second-period problem.

The dimension of η = (η2, . . . ,ηH) makes direct solution difficult in general.
An upper bound is, however, obtained for any feasible response, i.e., decision
vectors, xt(ηt) , that satisfy Wtxt(ηt) = ηt , xt(ηt) ≥ 0 , a.s., where ηt = ξt −
Tt−1xt−1(ηt−1) for all t . The two-stage method can be used to obtain feasible re-
sponses that are separable in the components of ηt , i.e., where xt(ηt) = ∑i xt

i(η
t
i) .

One choice is to let xt
i(ηt

i) solve

min ctxt s. t. Wtxt = ηt
i ei , xt ≥ β , (5.9)

where ei is the i th unit vector and β depends on choices for the other xt
i . Program

(5.9) is a parametric linear program in ηt
i . It is particularly easy to solve if β = 0 .

In this case, xt
i(ηt

i) is linear for positive and negative ηt
i . We suppose this case and

let the optimal solutions be xt,±
i when ηt

i = ±1 .
A solution can be obtained if we can find the distribution of the ηt

i given re-
sponses determined by solutions of (5.9). The resulting problem to solve is

(SL) min c1x1 +
H

∑
t=2

mt

∑
i=1

∫
ψt

i (η
t
i)P(dηt

i)

s. t. W 1x1 = h1 , x1 ≥ 0 ,

where ψt
i (ηt

i) = ctxt+
i ηt

i if ηt
i ≥ 0 , and ψt

i (ηt
i) = ctxt−

i (−ηt
i) if ηt

i ≤ 0 . Assum-
ing that the distribution of ηt is known in this approximation, we can find ηt+1 .
Initially, η2 = ξ2 −T 1x1 , which has the same distributional form as ξ2 . In general,
ηt+1

j is given by:

ηt+1
j = ξt+1

j −Tt
j,·

[
mt

∑
i=1

(xt+
i 1ηt

i≥0 + xt−
i 1ηt

i<0)(|ηt
i |)

]
. (5.10)

Note that the values in (5.10) are linear functions of ηt on the regions where ηt has
constant sign. We can, therefore, construct ηt+1 as a function of ηt by overlaying
these linear transformations of random variables. For normally distributed data, this
may be possible because the transformation does not affect the distribution class. For

10.5 Approximate Dynamic Programming and Special Cases 443

other distributions, it is more difficult. Even in the normal case, however, we have
different distribution parameters for all possible sign combinations of all random
variables in previous period inputs. Exponential growth of the calculations in the
number of periods is not avoided.

Because the approximation given earlier may be difficult to compute even with
normal distributions, it may be necessary to approximate the distribution of ηt+1 .
We can use bounds on P{ηt

i ≥ 0} and on the moments conditional on ηt
i ≥ or < 0 .

Given these values, moment problems can be solved to calculate corresponding val-
ues for ηt+1 and to bound ψt

i (see Birge and Wets [1989]). Any other bounds on
the input (Ttxt) from period t to period t + 1 can also be used to obtain crude
bounds on the ψ values. Also, note that certain problems, such as networks, may
have few nonzeros in the Tt terms and close-to-simple recourse structure. The ran-
dom input vector ηt+1 may be easily calculable for these problems.

Another looser but more implementable bound can be obtained by forcing a fea-
sible and separable response in all future periods depending on a single random
variable in the current period. This eliminates the problem of characterizing the dis-
tribution of inputs to all periods. It does, however, force a dependency in future
periods that may increase the bound.

To develop this response function, let Xt(±i) be an optimal solution,
(xt , . . . ,xH) , (t > 1), to:

min ctxt + · · ·+ cHxH

s. t. Wtxt = ±ei ,

Ttxt +Wt+1xt+1 = 0 ,

· · · ...

W HxH = 0 ,

xτ ≥ 0 , τ = t, . . . ,H .

(5.11)

Now define

zt
i(ξ̂

t
i) =

∫
ξt−ξ̂ t

i >0
CtXt+

i (ξt
i − ξ̂ t

i)P(dξt)+
∫

ξt−ξ̂ t
i ≤0

CtXt−
i (−ξt

i + ξ̂ t
i)P(dξ), (5.12)

where Ct = (ct , . . . ,cH) . An upper bound on the objective value of (5.9) is ob-
tained by solving the separable nonlinear program:

min c1x1 + · · ·+ cHxH +
H

∑
t=2

mt

∑
i=1

zt
i(ξ̂

t
i)

s. t. W 1x1 = h1 ,

Ttxt +Wt+1xt+1 − ξ̂ t+1 = 0 , t = 1, . . . ,H −1 ,

xt ≥ 0 , t = 1, . . . ,H , ξ̂ ∈ Ξ ,

(5.13)

444 10 Multistage Approximations

where Ξ is the support set of the random variables. Note that if we drop the non-
linear term in the objective and replace ξ̂ in the constraints with a fixed valued
of E [ξ] , then we can obtain a lower bound on the optimal objective value in (5.9)
(see Birge and Wets [1986]). We should note that in some cases, we may not have a
solution to (5.11) for ±ei but may only have a solution for +ei , e.g. In this case,
ξ̂ t+1

i could be constrained to be less than the minimum possible value of ξt
i .

In (5.13), we are solving to determine a centering point, ξ̂ , that obtains mini-
mum cost if we assume the response to any variation from ξ̂ is a solution of (5.11).
By allowing some variation of the choice of centering point, a “best” approximation
of this type is found. The value of (5.13) is an upper bound because the composi-
tion of the xt solutions from (5.13) and the Xt values used in the z terms yield a
feasible solution for all ξ .

This procedure may also be implemented as responses to several scenarios. In
this case, the random vectors are partitioned as in Section 10.1. The partitions may
also be part of the higher-level optimization problem so that in some way a “best”
partition can be found. The points used within the partitions may be chosen as ex-
pected values, in which case the solution without penalty terms is again a lower
bound on the optimal objective value. For an upper bound, this vector may be al-
lowed to take on any value in the partition.

The use of multiple scenarios enters directly into the progressive hedging ap-
proach of Rockafellar and Wets (see Section 5.3). This can be used to solve the top-
level problem and to approach a solution that is optimal for a given set of partitions
and the piecewise linear penalty structure presented here. Computations are then
restricted to optimizing separable nonlinear functions subject to linear constraints.
Implementations can be based on previous procedures (such as decomposition).

The basic framework for the upper bounding procedures given earlier is to con-
struct a feasible solution that is easily integrated. Other procedures for constructing
such feasible responses are possible. For example, Wallace and Yan [1993] sup-
pose two types of restrictions of the set of solutions to obtain bounds. The first is
to suppose only a subset of variables is used within a period, as, for example, with
the penalty terms used for aggregation bounds in Section 10.2. The other approach
is to suppose that all realizations from period to period must meet some common
constraint on values passed between periods. This procedure effectively divides the
multistage problem into a sequence of two-stage problems. It appears to work well
on problems with many stages.

d. Nonlinear bounds and a production planning example

As noted earlier, many multistage stochastic program approximations can take ad-
vantage of the specific problem structure. For Example 2 in Section 10.2, we consid-
ered a basic production problem that allows the construction of bounds on optimal
primal and dual variables that can then be used in constructing optimal objective
value bounds as in (2.7). Other bounds and approximations using similar production

10.5 Approximate Dynamic Programming and Special Cases 445

problem structures are also possible. We explore some of those bounds developed
by Ashford [1984], following Beale, Forrest, and Taylor [1980], and Bitran and
Yanasse [1984], and Bitran and Sarkar [1988]. These bounds can be viewed as ex-
tensions of the aggregation-type bounds in Section 10.2.

The first type of extension of the production problem we consider is the model
used in Ashford [1984] which is a slight generalization of (2.8). It is also an exten-
sion of similar work by Beale, Forrest, and Taylor [1980] on a production problem
similar to (2.8). The model is to

minz = E ξ

[
T

∑
t=1

(−ctxt(ξ)−qtyt(ξ))

]

s. t. Tt−1yt−1 +Wtxt −yt ≤ ξt , a.s., t = 1, . . . ,H ,

yt ≥ lt , ut ≥ xt ≥ 0 , a.s., t = 1, . . . ,H ,

(5.14)

where xt represents production and related variables and yt represents the state
(e.g., inventory) after realizing demands, ξt . Both variables are bounded, although
yt may only have trivial bounds. One upper bound directly analogous to that in
Theorem 3 can be constructed using this structure (see Exercise 1).

A lower bound on the optimal value of (5.14) can be obtained simply by substi-
tuting expected values for the random elements in (5.14). Ashford also presents an
improved lower bound, however, that forms the basis for an approximation proce-
dure. This bound consists of solving a reduced problem:

min zRED(G1, . . . ,GH) =
T

∑
t=1

(−ctxt −qtyt)

s. t. Tt−1yt−1 +Wtxt −wt = ξ̄t , t = 1, . . . ,H ,

−yt −wt ≤ − f t(wt − lt) , t = 1, . . . ,H ,

ut ≥ xt ≥ 0 , a.s., t = 1, . . . ,H ,

(5.15)

where the Gt are mt -vectors of given distribution functions, Git , i = 1, . . . ,mt ,
and f t = (f1t , . . . , fmt ,t) , with

fit (ηi) =
∫ −ηi

∞
(ηi + ζ)dGit(ζ) , (5.16)

for i = 1, . . . ,mt .
The bound in (5.15) is chosen by first determining the distribution function, Git .

If G∗
t is the vector of distribution functions of ZTt−1yt−1,∗ +Wtxt,∗ − ξt for an

optimal solution (y∗,x∗) of (5.14), then the following theorem holds.

Theorem 4. The solution zRED(G∗
1, . . . ,G

∗
H) provides a lower bound on the optimal

solution z∗ in (5.14) and zRED(G∗
1, . . . ,G

∗
H) ≥ z(ξ̄) , the solution of the expected

value problem, i.e., (5.14) with all random variables replaced by their expectations.

Proof: Exercise 2.

446 10 Multistage Approximations

It is possible to make the approximation in (5.15) into a deterministic equivalent
of (5.14) if appropriate penalties are placed on the violation of bound constraints on
xt , but the calculation of this and of the bound given by Theorem 1 requires infor-
mation about the optimal solutions which is not known. Another bound is, however,
obtainable by substituting Gξ (t) , the distribution function vector, corresponding to
(ξt − ξ̄ t) (see Exercise 3).This represents the beginning of an approximation when
the ξt vectors are normally distributed. The approximation successively estimates
parameters of a normal approximation of the distribution of Tt−1yt−1,∗+Wtxt,∗−ξt

from t to t + 1 . This procedure continues until little improvement occurs in this
updating procedure. Computational results with this procedure show significant sav-
ings over dynamic programming calculations.

This process can be viewed as a form of dynamic programming approximation
using the input to each period’s decisions as the quantity, Tt−1yt−1,∗ +Wtxt,∗ −ξt .
In this way, it is also similar to the response method given above. An alternative
approach is to build approximations of the value function from period to period.
One application to problems with uncertainties in the Wt matrix in (5.14) appears
in Beale, Dantzig, and Watson [1986]. The bounds developed by Bitran et al. follow
these production examples closely. The model is again of the form in (2.8).

e. Extensions

Other structures can also yield bounds in specific cases. For PERT networks (see,
e.g., Taha [1992]), for example, a typical problem is to balance the benefits of early
completion against the possible penalty costs of exceeding a due date or promise
date. In these problems, a natural separation occurs that allows calculation despite
the interconnected structure of paths and possibly correlated times. Klein Haneveld
[1986] considers bounds on expected tardiness penalties with mean constraints.
Maddox and Birge extend this analysis to bounds with second moment informa-
tion (Birge and Maddox [1995, 1996]) and to bounding probabilities of tardiness
(Maddox and Birge [1991]).

The basic principle throughout this and previous chapters on approximations is
to use convexity of objective and constraints. Relax the problem and substitute ex-
pectations properly to obtain a lower bound. Restrict the problem and maintain a
feasible solution (as perhaps a combination of extremal solutions) to obtain an up-
per bound. Many more bounding approximations are possible based on these fun-
damental observations.

Exercises

1. Show that the ADP estimate satisfies the inequality, E [z̃K] ≤ z∗ , for the multi-
stage stochastic linear program with randomness only in ht and Tt .

10.5 Approximate Dynamic Programming and Special Cases 447

2. Show that ẑ ≤ z∗ for the bid-price linear program (5.7).

3. Show that the alternative booking limit disaggregate solution provides a sharper
upper bound than the bound using Theorem 3.

4. Show that (5.4) provides a sharper lower bound on (5.6) than the bid-price linear
program (5.7).

5. Consider a network revenue management model with A =
(

1 1 0
1 0 1

)
, ct =

[−200− 150− 100]T , and dt
i = 1 for i = 1,2,3 with probability 0.5 , 0.3 ,

and 0.4 respectively with b0 = [1510]T . Let H = 20 .

(a) Solve the bid-price linear program (5.7) and the ADP linear approximation
(5.4) with 100 random sample paths to obtain lower bound estimates on z∗ .

(b) Construct upper bounds using (i) Theorem 3 for the bid-price linear pro-
gram; (ii) the modified booking limit upper bound.

(c) Construct a simulation to test the use of: (i) re-solving the bid-price linear
program in each period; (ii) re-solving the ADP linear approximation (5.4);
(iii) using the probability interpretation in the re-solving step as in Jasin and
Kumar [2010].

6. Use the separable function approach and (5.12) to construct an upper bound on
Example 1 with uniform demand distributions.

7. Let At+ be the matrix composed of the positive elements of Wt in (5.14) (with
zeros elsewhere). Use this to construct a bound on any feasible dual variable
value with β t =∑H

τ=t

(
∏τ−1

s=t (As+)T
)

qτ , where ∏t−1
s=t (A

s+)T = I . Combine this
with Theorem 3 to obtain an upper bound on the optimal objective value using
the solution to the mean value problem.

8. Prove Theorem 4.

9. Show that zRED(Gξ
1 , . . . ,Gξ

H) ≤ z∗ .

10. To construct a lower bound for nodal recourse, assume a projected value, ŷt(i)
of yt(i) (as, e.g., an average of incoming and outgoing loads). Find an expres-
sion (in terms of the demand distributions on the ranked full load alternatives)
for the expected value (assuming linearized future costs) of an additional vehi-
cle beyond ŷt(i) . Show that this procedure gives a lower bound on (5.8) when
t = 1 .

11. Show how an upper bounding linearization can be constructed for (5.8) using a
linearization of Qt+1(yt+1) . (Note: You can assume a constant number of total
vehicles.)

12. Consider a three-period example with five total vehicles, three nodes (cities),
and salvage values, c3(1) = −2 , c3(2) = −1 , and c3(3) = −4 . Currently, two
vehicles are at A , two vehicles are at B , and one vehicle is at C . Suppose
demand in each period is uniform on the integers from zero to ξmax(i j) , where
ξmax(i j) has the following values:

448 10 Multistage Approximations

To j = 1 2 3
From i =

1 0 2 3
2 2 0 2
3 3 3 0.

Suppose the costs (negative of profits) on each route for a full truck are

To j = 1 2 3
From i =

1 0 −1 −2
2 −1 0 −3
3 −2 −3 0.

Empty load costs are
To j = 1 2 3

From i =
1 0 1 2
2 1 0 3
3 2 3 0.

Use the lower and upper bounding procedures in Exercises 4 and 5 to construct
upper and lower bounds on (5.8) for these data.

Appendix A
Sample Distribution Functions

This appendix gives the basic distributions used in the text. We provide their means
and variances. Tables of numerical data for these distributions are easily available
on the web. One such website is http://stattrek.com/.

A.1 Discrete Random Variables

Uniform: U [1,n]

P(ξ = i) =
1
n

, i = 1, . . . ,n , n ≥ 1 ,

with E [ξ] = n+1
2 and Var[ξ] = n2−1

12 .

Binomial: Bi(n, p)

P(ξ = i) =
(

n
i

)
pi(1− p)n−i , i = 0,1, . . . ,n ; 0 < p < 1 ,

with E [ξ] = np and Var[ξ] = np(1− p) .

Poisson: P(λ)

P (ξ = i) = e−λ λ i

i!
, λ > 0 , i = 0,1, . . . ,

with E [ξ] = λ and Var[ξ] = λ .

J.R. Birge and F. Louveaux Introduction to Stochastic Programming, Springer Series 449
in Operations Research and Financial Engineering, DOI 10.1007/978-1-4614-0237-4,
c© Springer Science+Business Media, LLC 2011

http://stattrek.com/

450 A Sample Distribution Functions

A.2 Continuous Random Variables

Uniform: U [0,a]

f (ξ) =
1
a

, 0 ≤ ξ ≤ a , a > 0 ,

with E [ξ] = a and Var[ξ] = a2

12 .

Exponential: exp(λ)

f (ξ) = λe−λξ , 0 ≤ ξ , λ > 0 ,

with E [ξ] = 1
λ and Var[ξ] =

(1
λ
)2

.

Normal: N(μ , σ2)

f (ξ) =
1√

2πσ2
e
− (ξ−μ)2

2σ2 , σ > 0 ,

with E [ξ] = μ and Var[ξ] = σ2 .

Gamma: G(α,β)

f (ξ) =
1

β 2Γ (α)
ξα−1e

− ξ
β , α > 0 , β > 0 ,

where Γ (α) =
∫ ∞

0 xα−1e−x dx , α > 0 , E [ξ] = αβ and Var[ξ] = αβ 2 .

References

1. P.G. Abrahamson, “A Nested Decomposition Approach for Solving Staircase Linear Pro-
grams,” Ph.D. Dissertation, Stanford University (Stanford, CA, 1983).

2. D. Adelman, “Dynamic bid prices in revenue management,” Operations Research 55 (2007)
pp. 647–661.

3. S. Ahmed, “Convexity and decomposition of mean-risk stochastic programs,” Mathematical
Programming Series A 106 (2006) pp. 433–446.

4. S. Ahmed, M. Tawarmalani, and N. V. Sahinidis, “A finite branch and bound algorithm for
two-stage stochastic integer programs,” Mathematical Programming 100 (2004) pp.355-377.

5. E.D. Andersen, “ The homogeneous and self-dual model and algorithm for linear optimiza-
tion,” MOSEK Technical report: TR-1-2009, Copenhagen, DK, 2009.

6. S.A. Andreou, “A capital budgeting model for product-mix flexibility,” Journal of Manufac-
turing and Operations Management 3 (1990) pp. 5–23.

7. K.M. Anstreicher, “A combined Phase I–Phase II projective algorithm for linear program-
ming,” Mathematical Programming 43 (1989) pp. 209–223.

8. K.A. Ariyawansa and D.D. Hudson, “Performance of a benchmark parallel implementa-
tion of the Van Slyke and Wets algorithm for two-stage stochastic programs on the Se-
quent/Balance,” Concurrency Practice and Experience 3 (1991) pp. 109–128.

9. P. Artzner, F. Delbaen, J-M. Eber and D. Heath, “Coherent measures of risk,” Mathematical
Finance 9 (1999) pp. 203-228.

10. R. Ashford, “Bounds and an approximate solution method for multistage stochastic produc-
tion problems,” Warwick Papers in Industry, Business and Administration, No. 15, University
of Warwick, Coventry, UK (1984).

11. S. Asmussen and P. Glynn, Stochastic Simulation: Algorithms and Analysis, Springer, New
York, 2007.

12. H. Attouch and R.J-B Wets, “Approximation and convergence in nonlinear optimization”
in: O.L. Mangasarian, R.R. Meyer and S.M. Robinson, Eds., Nonlinear programming, 4
(Academic Press, New York–London, 1981) pp. 367–394.

13. M. Avriel and A.C. Williams, “The value of information and stochastic programming,” Op-
erations Research 18 (1970) pp. 947–954.

14. O. Bahn, J.-L. Goffin, O. du Merle, and J.-Ph. Vial, “A cutting plane method from analytic
centers for stochastic programming,” Mathematical Programming, 69 (1995) pp. 45–73.

15. G. Bayraksan and D.P. Morton, “A sequential sampling procedure for stochastic program-
ming,” Working Paper, University of Arizona, July, 2009.

16. M.S. Bazaraa and C.M. Shetty, Nonlinear Programming: Theory and Algorithms (John Wi-
ley, Inc., New York, NY, 1979).

17. M.S. Bazaraa, J.J. Jarvis, and H.D. Sherali, Linear Programming and Network Flows (John
Wiley, Inc., New York, NY, 1990).

451

452 References

18. E.M.L. Beale, “On minimizing a convex function subject to linear inequalities,” J. Royal
Statistical Society, Series B 17 (1955) pp. 173–184.

19. E.M.L. Beale, “The use of quadratic programming in stochastic linear programming,” Rand
Report P-2404-1, The Rand Corporation (1961).

20. E.M.L. Beale, J.J.H. Forrest, and C.J. Taylor, “Multi-time-period stochastic programming”
in: M.A.H. Dempster, Ed., Stochastic Programming (Academic Press, New York, NY, 1980)
pp. 387–402.

21. E.M.L. Beale, G.B. Dantzig, and R.D. Watson, “A first order approach to a class of
multi-time-period stochastic programming problems,” Mathematical Programming Study 27
(1986) pp. 103–117.

22. R. Bellman, Dynamic Programming (Princeton University Press, Princeton, NJ, 1957).
23. Ben-Tal, A., Boyd, S., Nemirovski, A., Extending the Scope of Robust Optimization: Com-

prehensive Robust Counterparts of Uncertain Problems, Mathematical Programming 107:1-2
(2006), 63–89.

24. Ben-Tal, A. and Arkadi Nemirovski, A. (2002). Robust optimizationmethodology and appli-
cations, Mathematical Programming, Series B 92, 453–480.

25. A. Ben-Tal and M. Teboulle, “Expected utility, penalty functions, and duality in stochastic
nonlinear programming,” Management Science 32 (1986) pp. 1445–1466.

26. J. F. Benders, “Partitioning procedures for solving mixed-variables programming problems,”
Numerische Mathematik 4 (1962) pp. 238–252.

27. B. Bereanu, “Some numerical methods in stochastic linear programming under risk and un-
certainty” in: M.A.H. Dempster, Ed., Stochastic Programming (Academic Press, New York,
NY, 1980) pp. 169–205.

28. J.O. Berger, Statistical Decision Theory and Bayesian Analysis (Springer-Verlag, New York,
NY, 1985).

29. O. Berman, R.C. Larson, and S.S. Chiu, “Optimal server location on a network operating as
a M/G/1 queue,” Operations Research 33 (1985) pp. 746–770.

30. D.P. Bertsekas, Dynamic Programming and Optimal Control, Volume II, Third Edition
(Athena Scientific, Boston, 2007).

31. D.P. Bertsekas and J.N. Tsitsiklis, Neuro-Dynamic Programming (Athena Scientific, Boston,
1995).

32. D. Bertsimas, D.A. Iancu, and P.A. Parrilo, “Optimality of affine policies in multistage robust
optimization,” Mathematics of Operations Research 35 (2010) pp. 363–394.

33. D. Bertsimas, P. Jaillet, and A. Odoni, “A priori optimization,” Operations Research 38
(1990) pp. 1019–1033.

34. D. Bertsimas, K. Natarajan, and C-P. Teo, “Probabilistic combinatorial optimization: Mo-
ments, semidefinite programming and asymptotic bounds,” SIAM J. of Optimization 15
(2004) pp. 185-209.

35. D. Bertsimas and I. Popescu, “ Optimal inequalities in probability: A convex programming
approach,” SIAM Journal of Optimization, 15 (2004) pp. 780–804.

36. D. Bertsimas and M. Sim, “Tractable approximations to robust conic optimization problems,”
Mathematical Programming 107 (2006) pp. 5–36.

37. D. Bienstock and J.F. Shapiro, “Optimizing resource acquisition decisions by stochastic pro-
gramming,” Management Science 34 (1988) pp. 215–229.

38. P. Billingsley, Convergence of Probability Measures (John Wiley, Inc., New York, NY, 1968).
39. J.R. Birge, “Solution Methods for Stochastic Dynamic Linear Programs,” Ph.D. Dissertation

and Technical Report SOL 80-29, Systems Optimization Laboratory, Stanford University
(Stanford, CA, 1980).

40. J.R. Birge, “The value of the stochastic solution in stochastic linear programs with fixed
recourse,” Mathematical Programming 24 (1982) pp. 314–325.

41. J.R. Birge, “Using sequential approximations in the L-shaped and generalized programming
algorithms for stochastic linear programs,” Technical Report 83-12, Department of Industrial
and Operations Engineering, University of Michigan (Ann Arbor, MI, 1983); available at
http://hdl.handle.net/2027.42/3642.

http://hdl.handle.net/2027.42/3642

References 453

42. J.R. Birge, “Aggregation in stochastic production problems,” Proceedings of the 11th IFIP
Conference on System Modelling and Optimization (Springer-Verlag, New York, 1984).

43. J.R. Birge, “Aggregation in stochastic linear programming,” Mathematical Programming 31
(1985a) pp. 25–41.

44. J.R. Birge, “Decomposition and partitioning methods for multi–stage stochastic linear pro-
grams,” Operations Research 33 (1985b) pp. 989–1007.

45. J.R. Birge, “Exhaustible recourse models with uncertain returns from exploration invest-
ment” in: Y. Ermoliev and R. Wets, Eds., Numerical Techniques for Stochastic Optimization
(Springer-Verlag, Berlin, 1988a) pp. 481–488.

46. J.R. Birge, “The relationship between the L-shaped method and dual basis factorization for
stochastic linear programming” in: Y. Ermoliev and R. Wets, Eds., Numerical Techniques for
Stochastic Optimization (Springer-Verlag, Berlin, 1988b) pp. 267–272.

47. J.R. Birge, “Multistage stochastic planning models using piecewise linear response func-
tions” in: G. Dantzig and P. Glynn, Eds., Resource Planning under Uncertainty for Electric
Power Systems (NSF, 1989).

48. J.R. Birge, “Quasi-Monte Carlo methods for option evaluation,” Technical Report, Depart-
ment of Industrial and Operations Engineering , University of Michigan (Ann Arbor, MI,
1994); available at http://hdl.handle.net/2027.42/3632.

49. J.R. Birge, “Option methods for incorporating risk into linear capacity planning models,”
Manufacturing and Service Operations Management 2 (2000), pp. 189–194.

50. J.R. Birge and M.A.H. Dempster, “Optimality conditions for match-up strategies in stochas-
tic scheduling and related dynamic stochastic optimization problems,” Technical Report 92-
58, Department of Industrial and Operations Engineering, University of Michigan (Ann Ar-
bor, MI, 1992); available at http://hdl.handle.net/2027.42/3645.

51. J.R. Birge, C.J. Donohue, D.F. Holmes, and O.G. Svintsiski, “A parallel implementation of
the nested decomposition algorithm for multistage stochastic linear programs,” Mathematical
Programming 75 (1996) pp. 327–352.

52. J.R. Birge and J. Dulá, “Bounding separable recourse functions with limited distribution
information,” Annals of Operations Research 30 (1991) pp. 277–298.

53. J.R. Birge, R.M. Freund, and R.J. Vanderbei, “Prior reduced fill-in in the solution of equa-
tions in interior point algorithms,” Operations Research Letters 11 (1992) pp. 195–198.

54. J.R. Birge and D.F. Holmes, “Efficient solution of two-stage stochastic linear programs using
interior point methods,” Computational Optimization and Applications 1 (1992) pp. 245–
276.

55. J.R. Birge and F.V. Louveaux, “A multicut algorithm for two-stage stochastic linear pro-
grams,” European Journal of Operations Research 34 (1988) pp. 384–392.

56. J.R. Birge and M.J. Maddox, “Bounds on expected project tardiness,” Operations Research
43 (1995) pp. 838–850.

57. J.R. Birge and M.J. Maddox, “Using second moment information in stochastic scheduling”
in: G. Yin and Q. Zhang, Eds., Recent Advances in Control and Manufacturing Systems
(Springer-Verlag, New York, NY, 1996) pp. 99–120.

58. J.R. Birge and L. Qi, “Computing block-angular Karmarkar projections with applications to
stochastic programming,” Management Science 34 (1988) pp. 1472–1479.

59. J.R. Birge and L. Qi, “Semiregularity and generalized subdifferentials with applications to
optimization,” Mathematics of Operations Research 18 (1993) pp. 982–1006.

60. J.R. Birge and L. Qi, “Subdifferential convergence in stochastic programs,” SIAM J. Opti-
mization 5 (1995) pp. 436–453.

61. J.R. Birge and C.H. Rosa, “Parallel decomposition of large-scale stochastic nonlinear pro-
grams,” Annals of Operations Research 64 (1996), pp. 39–65.

62. J.R. Birge and M. Teboulle, “Upper bounds on the expected value of a convex function using
subgradient and conjugate function information,” Mathematics of Operations Research 14
(1989) pp. 745–759.

63. J.R. Birge and S.W. Wallace, “Refining bounds for stochastic linear programs with linearly
transformed independent random variables,” Operations Research Letters 5 (1986) pp. 73–
77.

http://hdl.handle.net/2027.42/3632
http://hdl.handle.net/2027.42/3645

454 References

64. J.R. Birge and S.W. Wallace, “A separable piecewise linear upper bound for stochastic linear
programs,” SIAM Journal on Control and Optimization 26 (1988) pp. 725–739.

65. J.R. Birge and R.J-B Wets, “Approximations and error bounds in stochastic programming”
in: Y. Tong, Ed., Inequalities in Statistics and Probability (IMS Lecture Notes—Monograph
Series, 1984) pp. 178–186.

66. J.R. Birge and R.J-B Wets, “Designing approximation schemes for stochastic optimization
problems, in particular, for stochastic programs with recourse,” Mathematical Programming
Study 27 (1986) pp. 54–102.

67. J.R. Birge and R.J-B Wets, “Computing bounds for stochastic programming problems by
means of a generalized moment problem,” Mathematics of Operations Research 12 (1987)
pp. 49–162.

68. J.R. Birge and R.J-B Wets, “Sublinear upper bounds for stochastic programs with recourse,”
Mathematical Programming 43 (1989) pp. 131–149.

69. J.R. Birge and G. Zhao, “Successive linear approximation solution of infinite horizon dy-
namic stochastic programs,”SIAM Journal on Optimization 18 (2007) pp. 1165–1186.

70. G.R. Bitran and D. Sarkar, “On upper bounds of sequential stochastic production planning
problems,” European Journal of Operational Research 34 (1988) pp. 191–207.

71. G.R. Bitran and H. Yanasse, “Deterministic approximations to stochastic production prob-
lems,” Operations Research 32 (1984) pp. 999–1018.

72. C.E. Blair and R.G. Jeroslow, “The value function of an integer program,” Mathematical
Programming 23 (1982) pp. 237–273.

73. F. Black and M. Scholes, “The pricing of options and corporate liabilities,” Journal of Polit-
ical Economy 81 (1973) pp. 737–654.

74. D. Blackwell, “Discounted dynamic programming,” Annals of Mathematical Statistics 36
(1965) pp. 226–235.

75. C. Borell, “Convex set functions in d -spaces,” Periodica Mathematica Jungarica 6 (1975)
pp. 111–136.

76. S.L. Brumelle and J.I. McGill, “Airline seat allocation with multiple nested fare classes,”
Operations Research 41 (1993) pp. 127–137.

77. G. Calafiore and M.C. Campi, “Uncertain convex programs: randomized solutions and con-
fidence levels,” Mathematical Programming 102(2005) pp. 25-46.

78. D.R. Cariño, T. Kent, D.H. Myers, S. Stacy, M. Sylvanus, A.L. Turner, K. Watanabe, and
W.T. Ziemba, “The Russel- Yasuda Kasai model: An asset/liability model for a Japanese
insurance company using multistage stochastic programming,” Interfaces 24 (1994) pp. 29-
49.

79. C.C. Carøe and J. Tind, “L-shaped decomposition of two-stage stochastic programs with
integer recourse,” Mathematical Programming 83 (1998) pp. 451-464.

80. T. Carpenter, I. Lustig, and J. Mulvey, “Formulating stochastic programs for interior point
methods,” Operations Research 39 (1991) pp. 757–770.

81. H.P. Chao, “Exhaustible resource models: the value of information,” Operations Research
29 (1981) pp. 903–923.

82. A. Charnes and W.W. Cooper, “Chance-constrained programming,” Management Science 5
(1959) pp. 73–79.

83. A. Charnes and W.W. Cooper, “Deterministic equivalents for optimizing and satisficing under
chance constraints,” Operations Research 11 (1963) pp. 18–39.

84. A. Charnes and W.W. Cooper, “Response to ‘Decision problems under risk and chance con-
strained programming: dilemmas in the transition’,” Management Science 29 (1983) pp. 750–
753.

85. A. Charnes, W.W. Cooper, and G.H. Symonds, “Cost horizons and certainty equivalents:
an approach to stochastic programming of heating oil,” Management Science 6 (1958) pp.
235–263.

86. M. Chen and S. Mehrotra, “Epi-convergent scenario generation method for stochas-
tic problems via sparse grid,” Technical Report 8, Northwestern University, December
2007 (Stochastic Programming E-print Series,http://edoc.hu-berlin.de/docviews/abstract.
php?lang=ger&id=28882).

http://edoc.hu-berlin.de/docviews/abstract.php?lang=ger&id=28882
http://edoc.hu-berlin.de/docviews/abstract.php?lang=ger&id=28882

References 455

87. I.C. Choi, C.L. Monma, and D.F. Shanno, “Further development of a primal-dual interior
point method,” ORSA Journal on Computing 2 (1990) pp. 304–311.

88. K. L. Chung, A Course in Probability Theory (Academic Press, New York, NY, 1974).
89. V. Chvátal, Linear Programming (Freeman, New York/San Francisco, CA, 1980).
90. T. Cipra, “Moment problem with given covariance structure in stochastic programming,”

Ekonom.-Mat. Obzor 21 (1985) pp. 66–77.
91. T. Cipra, “Stochastic programming with random processes,” Annals of Operations Research

30 (1991) pp. 95–105.
92. F. Clarke, Optimization and Nonsmooth Analysis (John Wiley, Inc., New York, NY, 1983).
93. A.R. Conn, N.I.M. Gould, and P.L. Toint, Trust-Region Methods (SIAM/MPS, Philadelphia,

PA, 2000).
94. J. Cox and S. Ross, “The valuation of options for alternative stochastic processing,” Journal

of Financial Economics 3 (1976) pp. 145–166.
95. L. Dai, C. Chen, and J.R. Birge, “Convergence Properties of Two-Stage Stochastic Program-

ming,” Journal Of Optimization Theory And Applications 106 (2000) pp. 489-509.
96. G.B. Dantzig, “Linear programming under uncertainty,” Management Science 1 (1955) pp.

197–206.
97. G.B. Dantzig, Linear Programming and Extensions (Princeton University Press, Princeton,

NJ, 1963).
98. G.B. Dantzig and P. Glynn, “Parallel processors for planning under uncertainty,” Annals of

Operations Research 22 (1990) pp. 1–21.
99. G.B. Dantzig and G. Infanger, “Large-scale stochastic linear programs—Importance sam-

pling and Benders decomposition” in: C. Brezinski and U. Kulisch, Eds., Computational and
applied mathematics, I (Dublin, 1991) (North-Holland, Amsterdam, 1991) pp. 111–120.

100. G.B. Dantzig and A. Madansky, “On the solution of two–stage linear programs under un-
certainty,” Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and
Probability, (University of California Press, Berkeley, CA, 1961).

101. G.B. Dantzig and A. Wald, “On the fundamental lemma of Neyman and Pearson,” The Annals
of Mathematical Statistics 22 (1951) pp. 87–93.

102. G.B. Dantzig and P. Wolfe, “The decomposition principle for linear programs,” Operations
Research 8 (1960) pp. 101–111.

103. D. Dawson and A. Sankoff, “An inequality for probabilities,” Proceedings of the American
Mathematical Society 18 (1967) pp. 504–507.

104. I. Deák, “Three-digit accurate multiple normal probabilities,” Numerische Mathematik 35
(1980) pp. 369–380.

105. I. Deák, “Multidimensional integration and stochastic programming,” in: Y. Ermoliev and
R. Wets, Eds., Numerical Techniques for Stochastic Optimization (Springer-Verlag, Berlin,
1988) pp. 187–200.

106. I. Deák, Random Number Generators and Simulation (Akadémiai Kiadó, Budapest, 1990).
107. D.P. de Farias and B. Van Roy, “ On constraint sampling in the linear programming approach

to approximate dynamic programming,”Mathematics of Operations Research 29 (2004) pp.
462-478.

108. M.H. DeGroot, Optimal Statistical Decisions (McGraw-Hill, New York, NY, 1970).
109. M.A.H. Dempster, “Introduction to Stochastic Programming” in: M.A.H. Dempster, Ed.,

Stochastic Programming (Academic Press, New York, NY, 1980) pp. 3–59.
110. M.A.H. Dempster, “The expected value of perfect information in the optimal evolution of

stochastic problems” in: M. Arato, D. Vermes, and A.V. Balakrishnan, Eds., Stochastic Dif-
ferential Systems (Lecture Notes in Information and Control, Vol. 36, 1981) pp. 25–40.

111. M.A.H. Dempster, “On stochastic programming II: dynamic problems under risk,” Stochas-
tics 25 (1988) pp. 15–42.

112. M.A.H. Dempster, “Sequential importance sampling algorithms for dynamic stochastic pro-
gramming,” Jounral of Mathematical Sciences 133 (2006), pp. 1422–1444.

113. M.A.H. Dempster and A. Papagaki-Papoulias, “Computational experience with an approxi-
mate method for the distribution problem” in: M.A.H. Dempster, Ed., Stochastic Program-
ming (Academic Press, New York, NY, 1980) pp. 223–243.

456 References

114. V.F. Demyanov and L.V. Vasiliev, Nedifferentsiruemaya optimizatsiya (Nondifferentiable op-
timization) (Nauka, Moscow, 1981).

115. D. Dentcheva and A. Ruszczyński, “Robust stochastic dominance and its application to risk-
averse optimization,”Mathematical Programming, Series B 123 (2010) pp. 85–100.

116. C.J. Donohue, “Stochastic Network Programming And The Dynamic Vehicle Allocation
Problem,” Ph.D. Dissertation, University of Michigan (Ann Arbor, MI, 1996).

117. Christopher J. Donohue and John R. Birge, “The Abridged Nested Decomposition Method
for Multistage Stochastic Programs,” Algorithmic Operations Research 1 (2006) pp. 20–30.

118. J.H. Dulá, “An upper bound on the expectation of simplicial functions of multivariate random
variables,” Mathematical Programming 55 (1991) pp. 69–80.

119. V. Dupač, “A dynamic stochastic approximation method,” Annals of Mathematical Statistics
6 (1965) pp. 1695–1702.

120. J. Dupačová, “Minimax stochastic programs with nonconvex nonseparable penalty func-
tions” in: A. Prékopa, Ed., Progress in Operations Research (Janos Bolyai Math. Soc., 1976)
pp. 303–316.

121. J. Dupačová, “The minimax approach to stochastic linear programming and the moment
problem,” Ekonom.-Mat. Obzor 13 (1977) pp. 297–307.

122. J. Dupačová, “Stability in stochastic programming with recourse-contaminated distribu-
tions,” Mathematical Programming Study 28 (1984) pp. 72–83.

123. J. Dupačová, “Stability and sensitivity analysis for stochastic programming,” Annals of Op-
erations Research 27 (1990) pp. 115–142.

124. J. Dupačová, N. Gröwe-Kuska and W. Römisch, “Scenario reduction in stochastic program-
ming: An approach using probability metrics,” Mathematical Programming, Ser. A 95 (2003)
pp. 493–511.

125. J. Dupačová and R.J-B Wets, “Asymptotic behavior of statistical estimators and of optimal
solutions of stochastic optimization problems,” Annals of Statistics 16 (1988) pp. 1517–1549.

126. S. Dye, L. Stougie, and A. Tomasgard, “The stochastic single resource service-provision
problem,”Naval Research Logistics 50 (2003) pp. 869887.

127. M. Dyer, R. Kannan, and L. Stougie, “A simple randomised algorithm for convex optimisa-
tion,” SPORReport 2002-05, Dept. of Mathematics and Computer Science, Eindhoven Tech-
nical University, Eindhoven, 2002.

128. M. Dyer and L. Stougie, “Computational complexity of stochastic programming problems,”
Mathematical Programming, Ser. A 106 (2006) pp. 423–432.

129. B.C. Eaves and W.I. Zangwill, “Generalized cutting plane algorithms,” SIAM J. Control 9
(1971) pp. 529–542.

130. N.C.P. Edirisinghe, “Essays on Bounding Stochastic Programming Problems,” Ph.D. Disser-
tation, The University of British Columbia (Vancouver, BC, 1991).

131. N.C.P. Edirisinghe, “New second-order bounds on the expectation of saddle functions with
applications to stochastic linear programming,” Operations Research 44 (1996) pp. 909–922.

132. H.P. Edmundson, “Bounds on the expectation of a convex function of a random variable,”
RAND Corporation Paper 982, Santa Monica, CA (1956).

133. M. Eisner and P. Olsen, “Duality for stochastic programming interpreted as l.p. in Lp -space,”
SIAM Journal of Applied Mathematics 28 (1975) pp. 779–792.

134. G.D. Eppen, R.K. Martin, and L. Schrage, “A scenario approach to capacity planning,” Op-
erations Research 37 (1989) pp. 517–527.

135. Epstein, L. and S. Zin, “Substitution, risk aversion and the temporal behavior of consumption
and asset returns: A theoretical framework,” Econometrica 57 (1989), pp. 937-969.

136. Y. Ermoliev, “On the stochastic quasigradient method and quasi-Feyer sequences,” Kiber-
netika 5 (2) (1969) pp. 73–83 (in Russian; also published in English as Cybernetics 5 (1969)
pp. 208–220).

137. Y. Ermoliev, Methods of Stochastic Programming (Nauka, Moscow (in Russian) 1976).
138. Y. Ermoliev, “Stochastic quasigradient methods and their applications to systems optimiza-

tion,” Stochastics 9 (1983) pp. 1–36.
139. Y. Ermoliev, “Stochastic quasigradient methods” in: Y. Ermoliev and R. Wets, Eds., Numer-

ical Techniques for Stochastic Optimization (Springer-Verlag, Berlin, 1988) pp. 141–186.

References 457

140. Y. Ermoliev, A. Gaivoronski, and C. Nedeva, “Stochastic optimization problems with par-
tially known distribution functions,” SIAM Journal on Control and Optimization 23 (1985)
pp. 377–394.

141. Y. Ermoliev and R. Wets, “Introduction” in: Y. Ermoliev and R. Wets, Eds., Numerical Tech-
niques for Stochastic Optimization (Springer-Verlag, Berlin, 1988).

142. L.F. Escudero, P.V. Kamesam, A.J. King, and R.J-B Wets, “Production planning via scenario
modeling,” Annals of Operations Research 43 (1993) pp. 311–335.

143. W. Feller, An Introduction to Probability Theory and Its Applications (John Wiley, Inc., New
York, NY, 1971).

144. A. Ferguson and G.B. Dantzig, “The allocation of aircraft to routes: an example of linear
programming under uncertain demands,” Management Science 3 (1956) pp. 45–73.

145. S.D. Flåm, “Nonanticipativity in stochastic programming,” Journal of Optimization Theory
and Applications 46 (1985) pp. 23–30.

146. S.D. Flåm, “Asymptotically stable solutions to stochastic problems of Bolza” in: F. Archetti,
G. Di Pillo, and M Lucertini, Eds., Stochastic Programming (Lecture Notes in Information
and Control 76, 1986) pp. 184–193.

147. A.D. Flaxman, A. Frieze, and M. Krivelevich, “On the random 2-stage minimum spanning
tree,” Random Structures and Algorithms 28 (2006) pp. 24–36.

148. A. Flaxman, A.T. Kalai, and H.B. McMahan, “Online convex optimization in the bandit set-
ting: gradient descent without a gradient,” In Proceedings of the Sixteenth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2005, Vancouver, British Columbia, Canada, Jan-
uary 23-25, 2005 (SIAM, Philadelphia, PA, 2005) pp. 385-394.

149. W. Fleming and R. Rischel, Deterministic and Stochastic Control (Springer-Verlag, New
York, NY, 1975).

150. R. Fourer, “A simplex algorithm for piecewise-linear programming. I: derivation and proof,”
Mathematical Programming 33 (1985) pp. 204–233.

151. R. Fourer, “A simplex algorithm for piecewise-linear programming. II: finiteness, feasibility,
and degeneracy,” Mathematical Programming 41 (1988) pp. 281–315.

152. R. Fourer, D.M. Gay, and B.W. Kernighan, AMPL: A Modeling Language for Mathematical
Programming (Scientific Press, South San Francisco, CA, 1993).

153. B. Fox, “Implementation and relative efficiency of quasirandom sequence generators,” ACM
Transactions on Mathematical Software 12 (1986) pp. 362–376.

154. L. Frantzeskakis and W. Powell, “A successive linear approximation procedure for stochastic,
dynamic vehicle allocation problems,” Transportation Science 24 (1990) pp. 40–57.

155. L.F. Frantzeskakis and W.B. Powell, “Bounding procedures for multistage stochastic dy-
namic networks,” Networks 23 (1993) pp. 575–595.

156. K. Frauendorfer, “Solving SLP recourse problems:The case of stochastic technology ma-
trix, RHS, and objective,” Proceedings of 13th IFIP Conference on System Modelling and
Optimization (Springer-Verlag, Berlin, 1988a).

157. K. Frauendorfer, “Solving S.L.P. recourse problems with arbitrary multivariate distributions
– the dependent case,” Mathematics of Operations Research 13 (1988b) pp. 377–394.

158. K. Frauendorfer, “A simplicial approximation scheme for convex two-stage stochastic pro-
gramming problems,” Manuskripte, Institut für Operations Research, University of Zurich
(Zurich, 1989).

159. K. Frauendorfer, Stochastic Two-Stage Programming (Lecture Notes in Economics and
Mathematical Systems 392, 1992).

160. K. Frauendorfer and P. Kall, “A solution method for SLP recourse problems with arbitrary
multivariate distributions—the independent case,” Problems in Control and Information The-
ory 17 (1988) pp. 177–205.

161. A.A. Gaivoronski, “Implementation of stochastic quasigradient methods” in: Y. Ermoliev and
R. Wets, Eds., Numerical Techniques for Stochastic Optimization (Springer-Verlag, Berlin,
1988) pp. 313–352.

162. J. Galambos, The Asymptotic Theory of Extreme Order Statistics (John Wiley, Inc., New
York, 1978).

458 References

163. S.J. Gartska, “An economic interpretation of stochastic programs,” Mathematical Program-
ming 18 (1980) pp. 62–67.

164. S.J. Gartska and D. Rutenberg, “Computation in discrete stochastic programs with recourse,”
Operations Research 21 (1973) pp. 112–122.

165. S.J. Gartska and R.J-B Wets, “On decision rules in stochastic programming,” Mathematical
Programming 7 (1974) pp. 117–143.

166. H.I. Gassmann, “Conditional probability and conditional expectation of a random vector” in:
Y. Ermoliev and R. Wets, Eds., Numerical Techniques for Stochastic Optimization (Springer-
Verlag, Berlin, 1988) pp. 237–254.

167. H.I. Gassmann, “Optimal harvest of a forest in the presence of uncertainty,” Canadian Jour-
nal of Forest Research 19 (1989) pp. 1267–1274.

168. H.I. Gassmann, “MSLiP: a computer code for the multistage stochastic linear programming
problem,” Mathematical Programming 47 (1990) pp. 407–423.

169. H.I. Gassmann and W.T. Ziemba, “A tight upper bound for the expectation of a convex func-
tion of a multivariate random variable,” Mathematical Programming Study 27 (1986) pp.
39–53.

170. D.M. Gay, “A variant of Karmarkar’s linear programming algorithm for problems in standard
form,” Mathematical Programming 37 (1987) pp. 81–90.

171. M. Gendreau, G. Laporte, and R. Séguin, “Stochastic vehicle routing,” European Journal of
Operational Research 88 (1996) pp. 3–12.

172. M. Gendreau, G. Laporte, and R. Séguin, “An exact algorithm for the vehicle routing problem
with stochastic demands and customers,” Transportation Science 29 (1995) pp. 143–155.

173. A.M. Geoffrion, “Elements of large-scale mathematical programming,” Management Science
16 (1970) pp. 652–675.

174. A.M. Geoffrion, “Duality in nonlinear programming: a simplified applications-oriented de-
velopment,” SIAM Rev. 13 (1971) pp. 1–37.

175. I. Gilboa and D. Schmeidler, “Maxmin expected utility with non-unique prior,” Journal of
Mathematical Economics 18 (1989) pp. 141-153.

176. C.R. Glassey, “Nested decomposition and multistage linear programs,” Management Science
20 (1973) pp. 282–292.

177. J. Gondzio and A. Grothey, “Exploiting structure in parallel implementation of interior point
methods for optimization,” Computational Management Science 6 (2009) pp. 135-160.

178. R.C. Grinold, “A new approach to multistage stochastic linear programs,” Mathematical Pro-
gramming Study 6 (1976) pp. 19–29.

179. R.C. Grinold, “Model building techniques for the correction of end effects in multistage
convex programs,” Operations Research 31 (1983) pp. 407–431.

180. R.C. Grinold, “Infinite horizon stochastic programs,” SIAM Journal on Control and Opti-
mization 24 (1986) pp. 1246–1260.

181. A. Gupta, M. Pál, R. Ravi, and A. Sinha, “Boosted sampling: Approximation algorithms for
stochastic optimization problems,” in: L. Babai, Ed., Proc. 36th Annual ACM Sympos. Theory
Comput., Chicago, IL,USA, June 13-16, 2004 (ACM Press, New York, 2004) pp. 417-425.

182. A. Gupta, M. Pál, R. Ravi, and A. Sinha, “What about Wednesday? Approximation algo-
rithms for multistage stochastic optimization, ” in C. Chekuri, K. Jansen, J.D.P. Rolim, and L.
Trevisan, Eds., Approximation, Randomization and Combinatorial Optimization, Algorithms
and Techniques, 8th International Workshop on Approximation Algorithms for Combinato-
rial Optimization Problems, APPROX 2005, and 9th International Workshop on Randomiza-
tion and Computation, RANDOM 2005, Berkeley, CA, USA, August 22-24, 2005, Proceed-
ings, Lecture Notes in Computer Science 3624 (Springer, Berlin, 2005) pp. 86-98.

183. A. Gupta, R. Ravi, and A. Sinha, “LP rounding approximation algorithms for stochastic
network design,” Mathematics of Operations Research 32 (2007) pp. 345–364.

184. L.P. Hansen and T. Sargent, “Discounted linear exponential quadratic gaussian control,”
IEEE Transactions on Automatic Control 40 (1995) pp. 968-971.

185. J.M. Harrison, Brownian Motion and Stochastic Flow Systems (John Wiley, Inc., New York,
NY, 1985).

References 459

186. J.M. Harrison and D.M. Kreps, “Martingales and arbitrage in multiperiod securities markets,”
Journal of Economic Theory 20 (1979) pp. 381–408.

187. J.M. Harrison and L.M. Wein, “Scheduling networks of queues:Heavy traffic analysis of a
two-station closed network,” Operations Research 38 (1990) pp. 1052–1064.

188. D. Haugland and S.W. Wallace, “Solving many linear programs that differ only in the right-
hand side,” European Journal of Operational Research 37 (1988) pp. 318–324.

189. E. Hazan, A. Kalai, S. Kale, and A. Agarwal, “Logarithmic regret algorithms for online
convex optimization,” in: G. Lugosi and H-U. Simon, Eds., Learning Theory, 19th Annual
Conference on Learning Theory, COLT 2006, Pittsburgh, PA, USA, June 22-25, 2006, Pro-
ceedings. Lecture Notes in Computer Science 4005 (Springer, Berlin, 2006) pp. 499–513.

190. R. Hemmecke and R. Schultz, “Decomposition of test sets in stochastic integer program-
ming,” Mathematical Programming 94 (2003) pp. 323–341.

191. D.P. Heyman and M.J. Sobel, Stochastic Models in Operations Research, Volume II, Stochas-
tic Optimization (McGraw-Hill, New York, NY, 1984).

192. J. Higle and S. Sen, “Statistical verification of optimality conditions for stochastic programs
with recourse,” Annals of Operations Research 30 (1991a) pp. 215–240.

193. J. Higle and S. Sen, “Stochastic decomposition: an algorithm for two stage linear programs
with recourse,” Mathematics of Operations Research 16 (1991b) pp. 650–669.

194. J.L. Higle and S. Sen, Stochastic Decomposition: A Statistical Method for Large Scale
Stochastic Linear Programming (Kluwer Academic Publisher, Dordrecht, 1996).

195. J.-B. Hiriart-Urruty, “Conditions nécessaires d’optimalité pour un programme stochastique
avec recours,” SIAM Journal on Control and Optimization 16 (1978) pp. 317–329.

196. C. Hjörring and J. Holt, “New optimality cuts for a single vehicle stochastic routing problem,”
Annals of Operations Research 86 (1999), pp. 569–584.

197. J.K. Ho and A.S. Manne, “Nested decomposition for dynamic models,” Mathematical Pro-
gramming 6 (1974) pp. 121–140.

198. W. Hoeffding, “Probability inequalities for sums of bounded random variables,” Journal of
the American Statistical Association 58 (1963) pp. 13–30.

199. A. Hogan, J. Morris, and H. Thompson, “Decision problems under risk and chance con-
strained programming: dilemmas in the transition,” Management Science 27 (1981) pp. 698–
716.

200. A. Hogan, J. Morris, and H. Thompson, “Reply to Professors Charnes and Cooper concern-
ing their response to ‘Decision problems under risk and chance constrained programming:
dilemmas in the transition’,” Management Science 30 (1984) pp. 258–259.

201. R.A. Howard, Dynamic Programming and Markov Processes (MIT Press, Cambridge, MA,
1960).

202. K. Høyland and S.W. Wallace, “Generating Scenario Trees for Multistage Decision Prob-
lems,” Management Science 47 (2001) pp. 295-307.

203. C.C. Huang, W.T. Ziemba, and A. Ben-Tal, “Bounds on the expectation of a convex function
of a random variable: with applications to stochastic programming,” Operations Research 25
(1977) pp. 315–325.

204. P.J. Huber, “The behavior of maximum likelihood estimates under nonstandard conditions,”
Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability,
(University of California, Berkeley, CA, 1967).

205. P.J. Huber, Robust Statistics, John Wiley, 1981.
206. J.C. Hull, Options, Futures and Other Derivatives, third edition, (Prentice-Hall, Upper Sad-

dle River, NJ, 1997).
207. G. Infanger, “Monte Carlo (importance) sampling within a Benders decomposition algorithm

for stochastic linear programs; Extended version: including results of large-scale problems,”
Technical Report SOL 91-6, Systems Optimization Laboratory, Stanford University (Stan-
ford, CA, 1991).

208. G. Infanger, Planning under Uncertainty: Solving Large-Scale Stochastic Linear Programs
(Boyd and Fraser, Danvers, MA, 1994).

209. R. Jagganathan, “A minimax procedure for a class of linear programs under uncertainty,”
Operations Research 25 (1977) pp. 173–177.

460 References

210. R. Jagganathan, “Use of sample information in stochastic recourse and chance-constrained
programming models,” Management Science 31 (1985) pp. 96–108.

211. R. Jagganathan, “Linear programming with stochastic processes as parameters as applied to
production planning,” Annals of Operations Research 30 (1991) pp. 107–114.

212. P. Jaillet, “A priori solution of a traveling salesman problem in which a random subset of the
customers are visited,” Operations Research 36 (1988) pp. 929–936.

213. R.A. Jarrow and A. Rudd, Option Pricing (Irwin, Homewood, IL, 1983).
214. S. Jasin and S. Kumar, “A re-solving heuristic with bounded revenue loss for network rev-

enue management with customer choice,” Working Paper, Stanford University (Stanford,
CA, 2010).

215. J.L. Jensen, “Sur les fonctions convexes et les inégalités entre les valeurs moyennes,” Acta.
Math. 30 (1906) pp. 175–193.

216. P. Kall, Stochastic Linear Programming (Springer-Verlag, Berlin, 1976).
217. P. Kall, “Computational methods for solving two-stage stochastic linear programming prob-

lems,” Journal of Applied Mathematics and Physics 30 (1979) pp. 261–271.
218. P. Kall, “Stochastic programs with recourse: an upper bound and the related moment prob-

lem,” Zeitschrift für Operations Research 31 (1987) pp. A119–A141.
219. P. Kall, “An upper bound for stochastic linear programming using first and total second mo-

ments,” Annals of Operations Research 30 (1991) pp. 267–276.
220. P. Kall and J. Mayer, “SLP-IOR: an interactive model management system for stochastic

linear programs,” Mathematical Programming 75 (1996) pp. 221–240.
221. P. Kall and D. Stoyan, “Solving stochastic programming problems with recourse including

error bounds,” Math. Operationsforsch. Statist. Ser. Optim. 13 (1982) pp. 431–447.
222. P. Kall and S.W. Wallace, Stochastic Programming (John Wiley and Sons, Chichester, UK,

1994).
223. J.G. Kallberg, R.W. White, and W.T. Ziemba, “Short term financial planning under uncer-

tainty,” Management Science 28 (1982) pp. 670–682.
224. J.G. Kallberg and W.T. Ziemba, “Comparison of alternative utility functions in portfolio

selection problems,” Management Science 29 (1983) pp. 1257–1276.
225. M. Kallio and E. Porteus, “Decomposition of arborescent linear programs,” Mathematical

Programming 13 (1977) pp. 348–356.
226. R.E. Kalman, Topics in Mathematical System Theory (McGraw-Hill, New York, NY, 1969).
227. E. Kao and M. Queyranne, “Budgeting costs of nursing in a hospital,” Management Science

31 (1985) pp. 608–621.
228. N. Karmarkar, “A new polynomial-time algorithm for linear programming,” Combinatorica

4 (1984) pp. 373–395.
229. A. Karr, “Extreme points of certain sets of probability measure, with applications,” Mathe-

matics of Operations Research 8 (1983) pp. 74–85.
230. J. Kemperman, “The general moment problem, a geometric approach,” Annals of Mathemat-

ical Statistics 39 (1968) pp. 93–122.
231. A.I. Kibzun and Y.S. Kan, Stochastic Programming Problems with Probability and Quantile

Functions (John Wiley Inc., Chichester, UK, 1996).
232. A.I. Kibzun and V.Yu. Kurbakovskiy, “Guaranteeing approach to solving quantile optimiza-

tion problems,” Annals of Operations Research 30 (1991) pp. 81–93.
233. A. King, “Finite generation method” in: Y. Ermoliev and R. Wets, Eds., Numerical Tech-

niques for Stochastic Optimization (Springer-Verlag, Berlin, 1988a) pp. 295–312.
234. A. King, “Stochastic programming problems:Examples from the literature” in: Y. Ermoliev

and R. Wets, Eds., Numerical Techniques for Stochastic Optimization (Springer-Verlag,
Berlin, 1988b) pp. 543–567.

235. A. King and R.T. Rockafellar, “Asymptotic theory for solutions in generalized M-estimation
and stochastic programming,” Mathematics of Operations Research 18 (1993) pp. 148–162.

236. A.J. King and R.J-B Wets, “Epiconsistency of convex stochastic programs,” Stochastics and
Stochastics Reports 34 (1991) pp. 83–92.

237. K.C. Kiwiel, “An aggregate subgradient method for nonsmooth convex minimization,” Math-
ematical Programming 27 (1983) pp. 320–341.

References 461

238. P. Klaassen, “Financial asset-pricing theory and stochastic programming models for as-
set/liability managment: a synthesis,” Management Science 44 (1998) pp. 31–48.

239. W.K. Klein Haneveld, Duality in Stochastic Linear and Dynamic Programming (Lecture
Notes in Economics and Mathematical Systems 274, Springer-Verlag, Berlin, 1985).

240. W.K. Klein Haneveld, “Robustness against dependence in PERT: an application of duality
and distributions with known marginals,” Mathematical Programming Study 27 (1986) pp.
153–182.

241. N. Kong, A.J. Schaefer, and B.K. Hunsaker, “Two-stage integer programs with stochastic
right-hand sides - A superadditive dual approach,” Mathematical Programming 108 (2006)
pp. 275–296.

242. R. Kouwenberg, “Scenario generation and stochastic programming models for asset-liability
management,” European Journal of Operations Research 134 (2001) pp. 279–292.

243. M.G. Krein and A.A. Nudel’man, The Markov Moment Problem and Extremal Problems
(Translations of Mathematical Monographs 50, 1977).

244. D.M. Kreps and E.L. Porteus, “Temporal von Neumann-Morgenstern and Induced Prefer-
ences,” Journal Of Economic Theory 20(1979) pp. 81–10.

245. Daniel Kuhn,“ Aggregation and Discretization in Multistage Stochastic Program-
ming,”Mathematical Programming A 113 (2008) pp. 61–94.

246. H. Kushner, Introduction to Stochastic Control (Holt, New York, NY, 1971).
247. M. Kusy and W.T. Ziemba, “A bank asset and liability management model,” Operations

Research 34 (1986) pp. 356–376.
248. B.J. Lageweg, J.K. Lenstra, A.H.G. Rinnooy Kan, and L. Stougie, “Stochastic integer pro-

gramming by dynamic programming” in: Y. Ermoliev and R. Wets, Eds., Numerical Tech-
niques for Stochastic Optimization (Springer-Verlag, Berlin, 1988) pp. 403–412.

249. G. Laporte and F.V. Louveaux, “The integer L -shaped method for stochastic integer pro-
grams with complete recourse,” Operations Research Letters 13 (1993) pp. 133–142.

250. G. Laporte, F.V. Louveaux, and H. Mercure, “Models and exact solutions for a class of
stochastic location-routing problems,” European Journal of Operational Research 39 (1989)
pp. 71–78.

251. G. Laporte, F.V. Louveaux, and H. Mercure, “An exact solution for the a priori optimization
of the probabilistic traveling salesman problem,” Operations Research 42 (1994) pp. 543–
549.

252. G. Laporte, F.V. Louveaux, and L. Van Hamme, “Exact solution to a location problem with
stochastic demands,” Transportation Science 28 (1994) pp. 95–103.

253. G.Laporte, F.V. Louveaux and L. Van hamme, “An integer L-shaped algorithm for the capac-
itated vehicle routing problem with stochastic demands,” Operations Research 50 (2002) pp.
415–423.

254. L. Lasdon, Optimization Theory for Large Systems (Macmillan, New York, NY, 1970).
255. C. Lemaréchal, “Bundle methods in nonsmooth optimization” in: Nonsmooth optimization

(Proc. IIASA Workshop) (Pergamon, Oxford-Elmsford, New York, NY, 1978) pp. 79–102.
256. J. Linderoth and S. Wright, “Decomposition algorithms for stochastic programming on a

computational grid,” Computational Optimization and its Applications 24 (2003) pp. 207–
250.

257. A.W. Lo, “Semi-parametric upper bounds for option prices and expected payoffs,” Journal
of Financial Economics 19 (1987) pp. 373–387.

258. F.V. Louveaux, “Piecewise convex programs,” Mathematical Programming 15 (1978) pp.
53–62.

259. F.V. Louveaux, “A solution method for multistage stochastic programs with recourse with
application to an energy investment problem,” Operations Research 28 (1980) pp. 889–902.

260. F.V. Louveaux, “Multistage stochastic programs with block-separable recourse,” Mathemat-
ical Programming Study 28 (1986) pp. 48–62.

261. F.V. Louveaux and D. Peeters, “A dual-based procedure for stochastic facility location,” Op-
erations Research 40 (1992) pp. 564–573.

462 References

262. F. Louveaux and R. Schultz, “Stochastic integer programming,” in: A. Ruszczyński and A.
Shapiro, Eds., Handbooks in Operations Research and Management Science 10, (Elsevier,
Amsterdam, 2003) pp. 213–266.

263. F.V. Louveaux and Y. Smeers, “Optimal investments for electricity generation: a stochastic
model and a test-problem” in: Numerical Techniques for Stochastic Optimization (Springer-
Verlag, Berlin, 1988) pp. 33–64.

264. F.V. Louveaux and Y. Smeers, “Stochastic optimization for the introduction of a new energy
technology,” Stochastics (to appear) (2011).

265. F.V. Louveaux and M. van der Vlerk, “Stochastic programming with simple integer re-
course,” Mathematical Programming 61 (1993) pp. 301–325.

266. J. Luedtke and S. Ahmed, “A sample approximation approach for optimization with proba-
bilistic constraints,” SIAM Journal on Optimization 19 (2008) pp. 674–699.

267. A. Madansky, “Bounds on the expectation of a convex function of a multivariate random
variable,” Annals of Mathematical Statistics 30 (1959) pp. 743–746.

268. A. Madansky, “Inequalities for stochastic linear programming problems,” Management Sci-
ence 6 (1960) pp. 197–204.

269. M. Maddox and J.R. Birge, “Bounds on the distribution of tardiness in a PERT net-
work,” Technical Report, Department of Industrial and Operations Engineering, University
of Michigan (Ann Arbor, MI, 1991).

270. W. Mak, D.P. Morton, and R.K.Wood, “Monte Carlo bounding techniques for determining
solution quality in stochastic programs,” Operations Research Letters 24 (1999) pp. 47–56.

271. O. Mangasarian and J.B. Rosen, “Inequalities for stochastic nonlinear programming prob-
lems,” Operations Research 12 (1964) pp. 143–154.

272. A.S. Manne, “Waiting for the breeder” in: Review of Economic Studies Symposium (1974)
pp. 47–65.

273. A.S. Manne and R. Richels, Buying Greenhouse Insurance—The Economic Costs of Carbon
Dioxide Emission Limits (MIT Press, Cambridge, MA, 1992).

274. H.M. Markowitz, Portfolio Selection; Efficient Diversification of Investments (John Wiley,
Inc., New York, NY, 1959).

275. K. Marti, “Approximationen von Entscheidungsproblemen mit linearer Ergebnisfunktion und
positiv homogener, subadditiver Verlusfunktion,” Zeitschrift für Wahrscheinlichkeitstheorie
und Verwandte Gebiete 31 (1975) pp. 203–233.

276. K. Marti, Descent Directions and Efficient Solutions in Discretely Distributed Stochastic
Programs, (Lecture Notes in Economics and Mathematical Systems 299, Springer-Verlag,
Berlin, 1988).

277. R.K. Martin, Large Scale Linear and Integer Optimization: A Unified Approach (Kluwer
Academic, Boston, 1999).

278. L. McKenzie, “Turnpike theory,” Econometrica 44 (1976) pp. 841–864.
279. R.C. Merton, “On the pricing of corporate debt: the risk structure of interest rates,” The

Journal of Finance 29 (1974) pp. 449-470 (Papers and Proceedings of the Thirty-Second
Annual Meeting of the American Finance Association, New York, New York, December
28-30, 1973).

280. P. Michel and J.-P. Penot, “Calcul sous-différentiel pour des fonctions lipschitziennes et non
lipschitziennes,” Comptes Rendus des Seances de l’Académie des Sciences Paris. Serie 1.
Mathématique 298 (1984) pp. 269–272.

281. J. Miller and H. Wagner, “Chance-constrained programming with joint chance constraints,”
Operations Research 12 (1965) pp. 930–945.

282. G.J. Minty, “On the maximal domain of a ‘monotone’ function,” Michigan Mathematics
Journal 8 (1961) pp. 135–137.

283. F. Mirzoachmedov and S. Uriasiev, “Adaptive step-size control for stochastic optimization
algorithm,” Zhurnal vicisl. mat. i mat. fiz. 6 (1983) pp. 1314–1325 (in Russian).

284. B. Mordukhovich, “Approximation methods and extremum conditions in nonsmooth control
systems,” Soviet Mathematics Doklady 36 (1988) pp. 164–168.

285. D.P. Morton, “An enhanced decomposition algorithm for multistage stochastic hydroelectric
scheduling,” Annals of Operations Research64 (1996) pp. 211–235.

References 463

286. D.P. Morton, “Stopping rules for a class of sampling-based stochastic programming algo-
rithms,” Operations Research 46 (1998) pp. 710–718.

287. J.M. Mulvey and A. Ruszczyński, “A new scenario decomposition method for large scale
stochastic optimization,” Operations Research 43 (1995) pp. 477–490.

288. J.M. Mulvey and H. Vladimirou, “Stochastic network optimization models for investment
planning,” Annals of Operations Research 20 (1989) pp. 187–217.

289. J.M. Mulvey and H. Vladimirou, “Applying the progressive hedging algorithm to stochastic
generalized networks,” Annals of Operations Research 31 (1991a) pp. 399–424.

290. J.M. Mulvey and H. Vladimirou, “Solving multistage stochastic networks: an application of
scenario aggregation,” Networks 21 (1991b) pp. 619–643.

291. J.M. Mulvey and H. Vladimirou, “Stochastic network programming for financial planning
problems,” Management Science 38 (1992) pp. 1642–1664.

292. K.G. Murty, “Linear programming under uncertainty: a basic property of the optimal solu-
tion,” Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 10 (1968) pp. 284–288.

293. K.G. Murty, Linear Programming (John Wiley, Inc., New York, NY, 1983).
294. J.L. Nazareth and R.J-B Wets, “Algorithms for stochastic programs: the case of nonstochastic

tenders,” Mathematical Programming Study 28 (1986) pp. 1–28.
295. G.L. Nemhauser and L.A. Wolsey, Integer and Combinatorial Optimization (Wiley-

Interscience, New York, NY, 1988).
296. A. Nemirovksi and A. Shapiro, “Convex approximations of chance constrained programs,”

SIAM Journal on Optimization 17 (2006) 969-996.
297. Yu. Nesterov and J.-Ph. Vial, “Confidence level solutions for stochastic programming,” Au-

tomatica 44 (2008), 1559–1568.
298. H. Niederreiter, “Quasi–Monte Carlo methods and pseudorandom numbers,” Bulletin of the

American Mathematical Society 84 (1978) pp. 957–1041.
299. S.S. Nielsen and S.A. Zenios, “A massively parallel algorithm for nonlinear stochastic net-

work problems,” Operations Research 41 (1993a) pp. 319–337.
300. S.S. Nielsen and S.A. Zenios, “Proximal minimizations with D -functions and the massively

parallel solution of linear stochastic network programs,” International Journal of Supercom-
puting and Applications 7 (1993b) pp. 349–364.

301. M.-C. Noël and Y. Smeers, “Nested decomposition of multistage nonlinear programs with
recourse,” Mathematical Programming 37 (1987) pp. 131–152.

302. V.I. Norkin, Y.M. Ermoliev, and A. Ruszczyński, “On optimal allocation of indivisibles under
uncertainty,” Operations Research 46 (1998) pp. 381–395.

303. V.I. Norkin, G.Ch. Pflug, and A. Ruszczyński, “A branch and bound method for stochastic
global optimization,” Mathematical Programming 83 (1998) pp. 425–450.

304. L. Ntaimo and S. Sen,“ A Branch-and-Cut algorithm for two-stage stochastic mixed-binary
programs with continuous first-stage variables ,” International Journal of Computational
Science and Engineering 3 (2008a) pp. 231–241.

305. L. Ntaimo and S. Sen, “A comparative study of decomposition algorithms for stochastic
combinatorial optimization,” Computational Optimization and Applications 40 (2008b) pp.
299–319.

306. S. Parikh, Lecture Notes on Stochastic Programming (University of California, Berkeley, CA,
1968).

307. M.V.F. Pereira and L.M.V.G. Pinto, “Stochastic optimization of a multireservoir hydroelec-
tric system—A decomposition approach,” Water Resources Research 21 (1985) pp. 779–792.

308. M.V.F. Pereira and L.M.V.G. Pinto, “Multistage Stochastic Optimization Applied to Energy
Planning,” Mathematical Programming 52 (1991) pp. 359-375.

309. G.Ch. Pflug, “Stepsize rules, stopping times and their implementation in stochastic quasigra-
dient algorithms” in: Y. Ermoliev and R. Wets, Eds., Numerical Techniques for Stochastic
Optimization (Springer-Verlag, Berlin, 1988) pp. 353–372.

310. G.Ch. Pflug, “Scenario tree generation for multiperiod financial optimization by optimal dis-
cretization,” Mathematical Programming, Ser. B 89 (2001) pp. 251271.

311. G.Ch. Pflug and L. Halada, “A note on the recursive and parallel structure of the Birge and
Qi factorization,” Computational Optimization and Applications 24 (2003) pp. 251–265.

464 References

312. J. Pintér, “Deterministic approximations of probability inequalities,” ZOR—Methods and
Models of Operations Research, Series Theory 33 (1989) pp. 219–239.

313. A.B. Philpott and Z. Guan, “On the convergence of stochastic dual dynamic programming
and related methods,” Operations Research Letters 36 (2008) pp. 450-455.

314. E.L. Plambeck, B-R. Fu, S.M. Robinson, and R. Suri, “Sample-path optimization of convex
stochastic performance functions,” Mathematical Programming 75 (1996) pp. 137–176.

315. W.B. Powell, “A comparative review of alternative algorithms for the dynamic vehicle allo-
cation program” in: B. Golden and A. Assad, Eds., Vehicle Routing: Methods and Studies
(North-Holland, Amsterdam, 1988).

316. W.B. Powell, Approximate Dynamic Programming: Solving the Curses of Dimensionality
(Wiley, New York, 2007).

317. A. Prékopa, “Logarithmic concave measures with application to stochastic programming,”
Acta. Sci. Math. (Szeged) 32 (1971) pp. 301–316.

318. A. Prékopa, “Contributions to the theory of stochastic programs,” Mathematical Program-
ming 4 (1973) pp. 202–221.

319. A. Prékopa, “Programming under probabilistic constraints with a random technology ma-
trix,” Mathematische Operationsforschung und Statistik 5 (1974) pp. 109–116.

320. A. Prékopa, “Logarithmically concave measures and related topics” in: M.A.H. Dempster,
Ed., Stochastic Programming (Academic Press, New York, NY, 1980).

321. A. Prékopa, “Boole-Bonferroni inequalities and linear programming,” Operations Research
36 (1988) pp. 145–162.

322. A. Prékopa, Stochastic Programming (Kluwer Academic Publishers, Dordrecht, Nether-
lands, 1995).

323. A. Prékopa and T. Szántai, “On optimal regulation of a storage level with application to the
water level regulation of a lake,” Survey of Mathematical Programming (Proc. Ninth Internat.
Math. Programming Sympos., Budapest, 1976), Vol. 2 (North-Holland, Amsterdam, 1976).

324. H.N. Psaraftis, “On the practical importance of asymptotic optimality in certain heuristic
algorithms,” Networks (1984) pp. 587–596.

325. L. Qi, “Forest iteration method for stochastic transportation problem,” Mathematical Pro-
gramming Study (1985) pp. 142–163.

326. L. Qi, “An alternating method for stochastic linear programming with simple recourse,”
Stochastic Processes and Their Applications 841 (1986) pp. 183–190.

327. H. Raiffa, Decision Analysis (Addison-Wesley, Reading, MA, 1968).
328. H. Raiffa and R. Schlaifer, Applied Statistical Decision Theory (Harvard University, Boston,

MA, 1961).
329. R. Ravi and A. Sinha, “Hedging uncertainty: Approximation algorithms for stochastic opti-

mization problems,” Mathematical Programming Ser. A 108 (2006) pp. 97-114.
330. W. Rei, J.-F. Cordeau, M. Gendreau and P. Soriano, “Accelerating Benders’ decomposition

by local branching,” INFORMS Journal on Computing 21 (2009) pp. 333-345.
331. H. Robbins and S. Monro, “A stochastic approximation method,” Annals of Mathematical

Statistics 22 (1951) pp. 400–407.
332. S.M. Robinson and R.J-B Wets, “Stability in two-stage stochastic programming,” SIAM Jour-

nal on Control and Optimization 25 (1987) pp. 1409–1416.
333. R.T. Rockafellar, Convex Analysis (Princeton University Press, Princeton, NJ, 1969).
334. R.T. Rockafellar, Conjugate Duality and Optimization (Society for Industrial and Applied

Mathematics, Philadelphia, PA, 1974).
335. R.T. Rockafellar, “Monotone operators and the proximal point algorithm,” SIAM Journal on

Control and Optimization 14 (1976a) pp. 877–898.
336. R.T. Rockafellar, Integral Functionals, Normal Integrands and Measurable Selections (Lec-

ture Notes in Mathematics 543, 1976b).
337. R.T. Rockafellar and S. Uryasev, “Optimization of Conditional Value-At-Risk,” The Journal

of Risk 2:3 (2000) pp. 21–41.
338. R.T. Rockafellar and S. Uryasev, “Conditional Value-at-Risk for general loss distributions,”

Journal of Banking and Finance 26 (2002) pp. 1443–1471.

References 465

339. R.T. Rockafellar and R.J-B Wets, “Stochastic convex programming: basic duality,” Pacific
Journal of Mathematics 6 (1976a) pp. 173–195.

340. R.T. Rockafellar and R.J-B Wets, “Stochastic convex programming, relatively complete re-
course and induced feasibility,” SIAM Journal on Control and Optimization 14 (1976b) pp.
574–589.

341. R.T. Rockafellar and R.J-B Wets, “A Lagrangian finite generation technique for solving
linear-quadratic problems in stochastic programming,” Mathematical Programming Study
28 (1986) pp. 63–93.

342. R.T. Rockafellar and R.J-B Wets, “Scenarios and policy aggregation in optimization under
uncertainty,” Mathematics of Operations Research 16 (1991) pp. 119–147.

343. W. Römisch, “Stability of stochastic programming problems,” in A. Ruszczyński and A.
Shapiro (eds.), Handbooks in Operations Research and Management Science, Volume 10:
Stochastic Programming (Elsevier, Amsterdam, 2003) pp. 483–554.

344. W. Römisch and R. Schultz, “Distribution sensitivity in stochastic programming,” Mathe-
matical Programming 50 (1991a) pp. 197–226.

345. W. Römisch and R. Schultz, “Stability analysis for stochastic programs,” Annals of Opera-
tions Research 31 (1991b) pp. 241–266.

346. C. Roos, T. Terlaky, and J-P. Vial, Interior Point Methods for Linear Optimization, Second
Edition (Springer, New York, 2005).

347. S.M. Ross, Introduction to Stochastic Dynamic Programming (Academic Press, New York,
London, 1983).

348. H.L. Royden, Real Analysis (Macmillan, London, NY, 1968).
349. R.Y. Rubinstein, Simulation and the Monte Carlo Method (John Wiley Inc., New York, NY,

1981).
350. A. Ruszczyński, “A regularized decomposition for minimizing a sum of polyhedral func-

tions,” Mathematical Programming 35 (1986) pp. 309–333.
351. A. Ruszczyński, “Parallel decomposition of multistage stochastic programming problems,”

Mathematical Programming 58 (1993a) pp. 201–228.
352. A. Ruszczyński, “Regularized decomposition of stochastic programs: algorithmic techniques

and numerical results,” Working Paper WP-93-21, International Institute for Applied Sys-
tems Analysis, Laxenburg, Austria (1993b).

353. A. Ruszczyński, “Probabilistic programming with discrete distributions and precedence con-
strained knapsack polyhedra,” Mathematical Programming 93 (2002) pp.195–215.

354. G. Salinetti, “Approximations for chance constrained programming problems,” Stochastics
10 (1983) pp. 157–169.

355. B. Sandikçi, N. Kong, and A.J. Schaefer, “A hierarchy of bounds for stochastic mixed-integer
programs,” Chicago Booth Research Paper No. 09-21 (Chicago, IL, June 3, 2009); available
at SSRN: http://ssrn.com/abstract=1413774.

356. Y.S. Sathe, M. Pradhan, and S.P. Shah, “Inequalities for the probability of the occurrence of
at least m out of n events,” Journal of Applied Probability 17 (1980) pp. 1127–1132.

357. H. Scarf, “A minimax solution of an inventory problem” in: K.J. Arrow, S. Karlin, and H.
Scarf, Eds., Studies in the Mathematical Theory of Inventory and Production (Stanford Uni-
versity Press, Stanford, CA, 1958).

358. R. Schultz, “Continuity properties of expectation functionals in stochastic integer program-
ming,” Mathematics of Operations Research 18 (1993) pp. 578–589.

359. R. Schultz, L. Stougie and M.H. van der Vlerk, “Solving stochastic programs with integer
recourse by enumeration: A framework using Gröbner basis reductions,” Mathematical Pro-
gramming 83 (1998) pp. 229–252.

360. N. Secomandi and F. Margot, “Reoptimization approaches for the vehicle-routing problem
with stochastic demands,” Operations Research 57 (2009) pp. 214–230.

361. S. Sen, “Algorithms for stochastic mixed-integer programming”, in: K. Aardal, G.L.
Nemhauser, R. Weismantel, Eds., Handbooks in Operations Research and Management Sci-
ence (Elsevier, Amsterdam, 2005) pp. 515–558.

362. S. Sen and J.L. Higle, “The C3 theorem and a D2 algorithm for large scale stochastic
mixed-integer programming,” Mathematical Programming 104 (2005) pp. 1–20.

http://ssrn.com/abstract=1413774

466 References

363. S. Sen and H.D. Sherali, “Decomposition with branch-and-cut approaches for two-stage
stochastic mixed-integer programming,” Mathematical Programming 106 (2006) pp. 203–
223

364. D.B. Shmoys and C. Swamy, “An approximation scheme for stochastic linear programming
and its application to stochastic integer programs,” Journal of the ACM 53 (2006) pp. 978–
1012.

365. A. Shapiro, “Asymptotic analysis of stochastic programs,” Annals of Operations Research
30 (1991) pp. 169–186.

366. A. Shapiro, “Inference of statistical bounds for multistage stochastic programming prob-
lems,” Mathematical Methods of Operations Research 58 (2003) pp. 57–68.

367. A. Shapiro and T. Homem-de-Mello, “On the rate of convergence of optimal solutions of
Monte Carlo approximations of stochastic programs,” SIAM Journal on Optimization 11
(2000) pp. 70–86.

368. W.F. Sharpe, “Capital asset prices: a theory of market equilibrium under conditions of risk,”
Journal of Finance 19 (1964) pp. 425–442.

369. D.B. Shmoys and C. Swamy,“ An approximation scheme for stochastic linear programming
and its application to stochastic integer programs,” Journal of the ACM 53 (2006) pp. 978–
1012.

370. S.A. Smolyak, “ Interpolation and quadrature formula for the class W a
s and Ea

s ,” Dokl.
Akad. Nauk SSSR 131 (1960) pp. 1028-1031.

371. L. Somlyódi and R.J-B Wets, “Stochastic optimization models for lake eutrophication man-
agement,” Operations Research 36 (1988) pp. 660–681.

372. G.J. Stigler, “The cost of subsistence,” Journal of Farm Economics 27 (1945), 303–314.
373. L. Stougie, Design and Analysis of Algorithms for Stochastic Integer Programming (Centrum

voor Wiskunde en Informatica, Amsterdam, 1987).
374. B. Strazicky, “Some results concerning an algorithm for the discrete recourse problem,” in:

M.A.H. Dempster, Ed., Stochastic Programming (Academic Press, New York, NY, 1980).
375. A.H. Stroud, Approximate Calculation of Multiple Integrals (Prentice-Hall, Inc., Englewood

Cliffs, NJ, 1971).
376. J. Sun, L. Qi, and K-H. Tsai, “A simplex method for network programs with convex separable

piecewise linear costs and its application to stochastic transshipment problems,” in: D.Z.
Du and P.M. Pardalos, Eds., Network Optimization Problems: Algorithms, Applications and
Complexity (World Scientific Publishing Co., London, 1993) pp. 281–300.

377. C. Swamy and D.B. Shmoys, “Sampling-based approximation algorithms for multistage
stochastic optimization, in: Proceedings of FOCS 2005 (IEEE Computer Society, Los Alami-
tos, CA, 2005) pp. 357–366.

378. C. Swamy and D.B. Shmoys, “Approximation Algorithms for 2-Stage Stochastic Optimiza-
tion Problems,” ACM SIGACT News 37:March (2006) pp. 33–46.

379. G.H. Symonds, “Chance-constrained equivalents of stochastic programming problems,” Op-
erations Research 16 (1968) pp. 1152–1159.

380. T. Szántai, “Evaluation of a special multivariate gamma distribution function,” Mathematical
Programming Study 27 (1986) pp. 1–16.

381. G. Taguchi, Introduction to Quality Engineering (Asian Productivity Center, Tokyo, Japan,
1986).

382. G. Taguchi, E.A. Alsayed, and T. Hsiang, Quality Engineering in Production Systems
(McGraw-Hill Inc., New York, NY, 1989).

383. H.A. Taha, Operations Research: An Introduction, Fifth edition (Macmillan, New York, NY,
1992).

384. S. Takriti, “On-line Solution of Linear Programs with Varying Right-Hand Sides,” Ph.D.
Dissertation, Department of Industrial and Operations Engineering, University of Michigan
(Ann Arbor, MI, 1994).

385. S. Takriti and J.R. Birge, “Using integer programming to refine Lagrangian-based unit com-
mitment solutions,” IEEE Transactions on Power Systems 15 (2000a), pp. 151-156.

386. S. Takriti and J.R. Birge, “Lagrangian solution techniques and bounds for loosely-coupled
mixed-integer stochastic programs,” Operations Research 48 (2000b) pp. 91–98.

References 467

387. K.T. Talluri and G.J. van Ryzin, Theory and Practice of Revenue Management (Springer,
New York, 2005).

388. M.J. Todd and B.P. Burrell, “An extension of Karmarkar’s algorithm for linear programming
using dual variables,” Algorithmica 1 (1986) pp. 409–424.

389. D.M. Topkis and A.F. Veinott, Jr., “On the convergence of some feasible Eddirection algo-
rithms for nonlinear programming,” SIAM Journal on Control 5 (1967) pp. 268–279.

390. C. Toregas, R. Swain, C. Revelle, and L. Bergmann, “The location of emergency service
facilities,” Operations Research 19 (1971) pp. 1363–1373.

391. S. Uriasiev, “Adaptive stochastic quasigradient methods” in: Y. Ermoliev and R. Wets, Eds.,
Numerical Techniques for Stochastic Optimization (Springer-Verlag, Berlin, 1988) pp. 373–
384.

392. F.A. Valentine, Convex Sets (McGraw-Hill Inc., New York, NY, 1964).
393. M. H. van der Vlerk, “Convex approximations for complete integer recourse models,” Math-

ematical Programming 99 (2004) pp. 297–310.
394. M. H. van der Vlerk, Stochastic Programming Bibliography on the World Wide Web, http://

mally.eco.rug.nl/spbib.html, 1996-2007.
395. R. Van Slyke and R.J-B Wets, “L-shaped linear programs with application to optimal control

and stochastic programming,” SIAM Journal on Applied Mathematics 17 (1969) pp. 638–
663.

396. L. Vandenberghe and S. Boyd,“ Semidefinite Programming,” SIAM Review 38 (1996) pp.
49–95.

397. P. Varaiya and R.J-B Wets, “Stochastic dynamic optimization approaches and computation”
in: M. Iri and K. Tanabe, Eds., Mathematical Programming: Recent Developments and Ap-
plications (Kluwer, Dordrecht, Netherlands, 1989) pp. 309–332.

398. O. Vasiček, “Probability of loss on loan portfolio,” KMV Corporation, Technical Report (San
Francisco, CA, 1987); available at:
www.moodyskmv.com/research/files/wp/Probability of Loss on Loan Portfolio.pdf.

399. O. Vasiček, “Limiting loan loss portfolio distribution,” KMV Corporation, Technical Report
(San Francisco, CA, 1991); available at:
www.moodyskmv.com/research/files/wp/Probability of Loss on Loan Portfolio.pdf.

400. O. Vasiček, “Loan portfolio value,” Risk 15:12 (2002) pp. 160-162.
401. J.A. Ventura and D.W. Hearn, “Restricted simplicial decomposition for convex constrained

problems,” Mathematical Programming 59 (1993) pp. 71–85.
402. B. Verweij, S. Ahmed, A.J. Kleywegt, G. Nemhauser, and A. Shapiro, “The sample aver-

age approximation method applied to stochastic routing problems: a computational study,”
Computational Optimization and Applications 24 (2003) pp. 289–333.

403. J. von Neumann and O. Morgenstern, Theory of Games and Economic Behavior (Princeton
University Press, Princeton, NJ, 1944).

404. A. Wald, Statistical Decision Functions (John Wiley, Inc. New York, NY, 1950).
405. D. Walkup and R.J-B Wets, “Stochastic programs with recourse,” SIAM Journal on Applied

Mathematics 15 (1967) pp. 1299–1314.
406. D. Walkup and R.J-B Wets, “Stochastic programs with recourse II: on the continuity of the

objective,” SIAM Journal on Applied Mathematics 17 (1969) pp. 98–103.
407. S.W. Wallace, “Decomposing the requirement space of a transportation problem into poly-

hedral cones,” Mathematical Programming Study 28 (1986a) pp. 29–47.
408. S.W. Wallace, “Solving stochastic programs with network recourse,” Networks 16 (1986b)

pp. 295–317.
409. S.W. Wallace, “A piecewise linear upper bound on the network recourse function,” Networks

17 (1987) pp. 87–103.
410. S.W. Wallace, “Decision making under uncertainty: is sensitivity analysis of any use?” Op-

erations Research 48 (2000) pp. 20–25.
411. S.W. Wallace and R.J-B Wets, “Preprocessing in stochastic programming: the case of linear

programs,” ORSA Journal on Computing 4 (1992) pp. 45–59.
412. S.W. Wallace and T.C. Yan, “Bounding multi-stage stochastic programs from above,” Math-

ematical Programming 61 (1993) pp. 111–129.

http://mally.eco.rug.nl/spbib.html
http://mally.eco.rug.nl/spbib.html
www.moodyskmv.com/research/files/wp/Probability_of_Loss_on_Loan_Portfolio.pdf
www.moodyskmv.com/research/files/wp/Probability_of_Loss_on_Loan_Portfolio.pdf

468 References

413. S.W. Wallace and W.T. Ziemba, Eds., Applications of Stochastic Programming: MPS-SIAM
Book Series on Optimization 5 (SIAM/MPS, Philadelphia, PA, 2005).

414. R.J-B Wets, “Programming under uncertainty: the equivalent convex program,” SIAM Jour-
nal on Applied Mathematics 14 (1966) pp. 89–105.

415. R.J-B Wets, “Characterization theorems for stochastic programs,” Mathematical Program-
ming 2 (1972) pp. 166–175.

416. R.J-B Wets, “Stochastic programs with fixed recourse: the equivalent deterministic problem,”
SIAM Review 16 (1974) pp. 309–339.

417. R.J-B Wets, “Convergence of convex functions, variational inequalities and convex optimiza-
tion problems” in: R.W. Cottle, F. Giannessi and J.-L. Lions, Eds., Variational Inequalities
and Complementarity Problems (John Wiley, Inc., New York, NY, 1980a) pp. 375–404.

418. R.J-B Wets, “Stochastic multipliers, induced feasibility and nonanticipativity in stochastic
programming” in: M.A.H. Dempster, Ed., Stochastic Programming (Academic Press, New
York, NY, 1980b).

419. R.J-B Wets, “Solving stochastic programs with simple recourse,” Stochastics 10 (1983a) pp.
219–242.

420. R.J-B Wets, “Stochastic programming: solution techniques and approximation schemes” in:
A. Bachem, M. Grötschel, and B. Korte, Eds., Mathematical Programming: State-of-the-Art
1982 (Springer-Verlag, Berlin, 1983b) pp. 560–603.

421. R.J-B Wets, “Large-scale linear programming techniques in stochastic programming” in: Y.
Ermoliev and R. Wets, Eds., Numerical Techniques for Stochastic Optimization (Springer-
Verlag, Berlin, 1988).

422. R.J-B Wets, “Stochastic programming” in: G.L. Nemhauser, A.H.G. Rinnooy Kan, and M.J.
Todd, Eds., Optimization (Handbooks in Operations Research and Management Science; Vol.
1, North–Holland, Amsterdam, Netherlands, 1990).

423. R.J-B Wets and C. Witzgall, “Algorithms for frames and lineality spaces of cones,” Journal
of Research of the National Bureau of Standards Section B 71B (1967) pp. 1–7.

424. P. Whittle, Risk-sensitive Optimal Control (John Wiley & Sons, Chichester, UK, 1990).
425. A.C. Williams, “A stochastic transportation problem,” Operations Research 11 (1963) pp.

759–770.
426. A.C. Williams, “Approximation formulas for stochastic linear programming,” SIAM Journal

on Applied Mathematics 14 (1966) pp. 668–677.
427. E.L. Williamson,“Airline Network Seat Control,” Ph.D. Dissertation, MIT (Cambridge, MA,

1992).
428. R.J. Wittrock, “Advances in a nested decomposition algorithm for solving staircase linear

programs,” Technical Report SOL 83-2, Systems Optimization Laboratory, Stanford Univer-
sity (Stanford, CA, 1983).

429. R. Wollmer, “Two stage linear programming under uncertainty with 0-1 integer first stage
variables,” Mathematical Programming 19 (1980) pp. 279–288.

430. L. Wolsey, Integer Programming (John Wiley and Sons, New York, 1998).
431. H. Woźniakowski, “Average-case complexity of multivariate integration,” Bulletin of the

American Mathematical Society (new series) 24 (1991) pp. 185–194.
432. S.E. Wright, “Primal-dual aggregation and disaggregation for stochastic linear programs,”

Mathematics of Operations Research 19 (1994) pp. 893–908.
433. D. Yang and S.A. Zenios, “A scalable parallel interior point algorithm for stochastic linear

programming and robust optimization,” in: A. Murli and G. Toraldo, Eds., Computational
Issues in High Performance Software for Nonlinear Optimization (Springer, New York, 1997)
pp. 143–158.

434. Y. Ye, Interior Point Algorithms: Theory and Analysis (John Wiley and Sons, New York,
1997).

435. J.W. Yen and J.R. Birge, “A stochastic programming approach to the airline crew scheduling
Problem,” Transportation Science 40 (2006) pp. 3–14.

436. J. Žáčková, “On minimax solutions of stochastic linear programming problems,” Časopis pro
Pěstovánı́ Matematiky 91 (1966) pp. 423–430.

References 469

437. S.A. Zenios, Financial Optimization (Cambridge University Press, Cambridge, UK, 1993).
438. W.T. Ziemba, “Computational algorithms for convex stochastic programs with simple re-

course,” Operations Research 18 (1970) pp. 414–431.
439. W.T. Ziemba and R.G. Vickson, Stochastic Optimization Models in Finance (Academic

Press, New York, NY, 1975).
440. M. Zinkevich, “Online convex programming and generalized infinitesimal gradient ascent,”

in: T. Fawcett and N. Mishra, Eds., Proceedings of the Twentieth International Conference
on Machine Learning (The AAAI Press, Menlo Park, CA, 2003) pp. 928–936.

441. P. Zipkin, “Bounds for row-aggregation in linear programming,” Operations Research 28
(1980a) pp. 903–916.

442. P. Zipkin, “Bounds on the effect of aggregating variables in linear programs,” Operations
Research 28 (1980b) pp. 403–418.

Author Index

Abrahamson, 275
Adelman, 439
Agarwal, 91
Ahmed, 263, 311, 405
Anstreicher, 226
Ariyawansa, 222
Artzner, 85
Ashford, 445
Asmussen, 389
Attouch, 382
Avriel, 171

Bahn, 236
Bayraksan, 412–414
Bazaraa, 116, 121, 246, 254
Beale, 59, 247, 251, 445, 446
Bellman, 89
Ben-Tal, 67, 86, 346
Benders, 182
Bereanu, 108
Berger, 87
Berman, 69
Bertsekas, 436
Bertsimas, 86, 362
Bienstock, 332
Billingsley, 381
Birge, 120, 160, 168, 170, 171, 199, 200,

226, 229, 235, 242, 251, 252,
266, 268, 275, 286, 301, 347,
349, 352, 357, 362, 366, 367,

370, 371, 374, 376–379, 381,
382, 384, 412, 414, 423, 425,
431, 433, 435, 436, 441, 443,
444, 446

Bitran, 426, 440, 445, 446
Blackwell, 90
Blair, 136
Borell, 126
Boyd, 86, 360
Brumelle, 50
Burrell, 226

Califiore, 404
Campi, 404
Cariño, 429
Carpenter, 234
Carøe, 301, 333
Ceder, 67
Chao, 170
Charnes, 25, 49, 124, 128
Chen, 412, 414
Chiu, 69
Chung, 56
Chvátal, 57, 73, 97
Cipra, 374, 407
Clarke, 382
Conn, 209
Cooper, 25, 49, 124, 128

Dai, 412

471

472 Author Index

Dantzig, 49, 57, 59, 73, 182, 237, 238,
245, 372, 373, 390, 392, 446

Dawson, 361
de Farias, 404
Deák, 362, 389, 405
DeGroot, 87
Delbaen, 85
Dempster, 91, 108, 115, 160, 256, 429
Demyanov, 263
Dentcheva, 379
Donohue, 433–435
du Merle, 236
Dulá, 368, 374, 376, 377
Dupač, 399
Dupačová, 373, 411, 429
Dye, 263
Dyer, 265, 403

Eber, 85
Edirisinghe, 364, 374
Edmundson, 346, 350
Eisner, 122
Eppen, 67
Epstein, 92
Ermoliev, 49, 263, 301, 374, 399, 402
Escudero, 49

Feller, 358, 360
Ferguson, 49, 245
Flåm, 160
Flaxman, 91, 263
Fleming, 91
Forrest, 445
Fourer, 26, 245
Fox, 414
Frantzeskakis, 440, 441
Frauendorfer, 346, 347, 350, 363–365,

373
Freund, 235
Frieze, 263

Gaivoronski, 374, 400
Gartska, 92, 129, 222
Gassmann, 49, 200, 218, 221, 268, 275,

349, 362, 405
Gay, 26, 228

Gendreau, 148, 301
Geoffrion, 237, 356
Gilboa, 92
Glassey, 266
Glynn, 389, 390, 392
Goffin, 236
Gondzio, 236
Gould, 209
Gröwe, 429
Grinold, 155, 423
Grothey, 236
Guan, 434
Gupta, 263

Halada, 236
Hansen, 92
Harrison, 92, 431
Haugland, 222
Hazan, 91
Hearn, 255
Heath, 85
Hemmecke, 311
Heyman, 89
Higle, 318, 389, 390, 395–397
Hiriart-Urruty, 120
Hjörring, 301
Ho, 266
Hoeffding, 358, 405
Hogan, 128
Holmes, 229
Holt, 301
Homem-de-Mello, 411
Howard, 90
Huang, 346
Huber, 86, 409
Hudson, 222
Hunsaker, 311
Høyland, 429

Iancu, 86
Infanger, 275, 392

Jagganathan, 378, 407
Jaillet, 70
Jarvis, 246
Jasin, 439, 447

Author Index 473

Jensen, 166, 346
Jeroslow, 136

Kalai, 91
Kale, 91
Kall, 89, 112, 115, 208, 222, 346, 347,

374, 382
Kallberg, 21, 126, 244, 284
Kallio, 152
Kalman, 92
Kan, 125
Kannan, 403
Kao, 49
Karmarkar, 226
Karr, 372
Kemperman, 373
Kernighan, 26
Kibzun, 125
King, 49, 255, 381, 385, 386, 409
Kiwiel, 263
Klaassen, 431
Klein Haneveld, 122, 446
Kong, 177, 311
Kouwenberg, 429
Krein, 372
Kreps, 92, 431
Krivelevich, 263
Kuhn, 423
Kumar, 439, 447
Kurbakovskiy, 125
Kushner, 91, 399
Kusy, 284

Laporte, 148, 293, 301
Larson, 69
Lasdon, 199
Lemaréchal, 263
Linderoth, 209, 222
Lo, 380
Louveaux, 33, 65, 136, 141, 146, 148,

153, 170, 199, 200, 212, 214,
266, 277, 278, 282, 284, 293,
301, 321, 325, 332

Luedtke, 405
Lustig, 234

Madansky, 164, 166, 237, 346, 349, 350
Maddox, 362, 446
Mak, 412
Mangasarian, 166
Manne, 49, 170, 266
Margot, 301
Markowitz, 67
Marti, 379
Martin, 67, 107
Mayer, 208
McGill, 50
McMahon, 91
Mehrotra, 414
Mercure, 148
Merton, 404
Michel, 382
Miller, 127
Minty, 257
Mirzoachmedov, 403
Monro, 401
Mordukhovich, 382
Morgenstern, 67
Morris, 128
Morton, 268, 412–414
Mulvey, 20, 234, 256, 286
Murty, 57, 253

Natarajan, 362
Nazareth, 242, 247, 251
Nedeva, 374
Nemhauser, 136
Nemirovski, 86, 360
Nesterov, 403
Niederreiter, 414
Nielsen, 256
Noël, 262, 266, 275
Norkin, 301
Ntaimo, 318
Nudel’man, 372

Olsen, 122

Papagaki-Papoulias, 108
Parikh, 127, 128
Parrilo, 86
Peeters, 65

474 Author Index

Penot, 382
Pereira, 266, 433
Pflug, 236, 301, 403, 429
Philpott, 434
Pintér, 358, 360
Pinto, 266, 433
Plambeck, 263
Popescu, 362
Porteus, 92, 152
Powell, 436, 440, 441
Prékopa, 25, 49, 126, 127, 358, 360, 361,

386
Pradhan, 361
Psaraftis, 67

Qi, 120, 229, 246, 251, 252, 362, 381,
382, 384

Queyranne, 49

Römisch, 118, 411, 414, 429
Raiffa, 88, 163
Ravi, 263
Rei, 301
Richels, 49
Rishel, 91
Robbins, 401
Robinson, 118
Rockafellar, 85, 108, 120, 122, 157–160,

255–257, 356, 357, 376, 383,
409, 444

Roos, 227
Rosa, 275
Rosen, 166
Ross, 89
Royden, 118, 372
Rubinstein, 362
Ruszczyński, 202, 205, 208, 268, 286,

301, 379
Rutenberg, 222

Séguin, 148, 301
Sahinidis, 311
Salinetti, 362
Sandikçi, 177
Sankoff, 361
Sargent, 92

Sarkar, 445
Sathe, 361
Scarf, 378
Schaefer, 177, 311
Schlaifer, 163
Schmeidler, 92
Schrage, 67
Schultz, 118, 136, 146, 311, 333, 411
Secomandi, 301
Sen, 318, 389, 390, 395–397
Shah, 361
Shapiro, 332, 360, 411, 431
Sherali, 246, 318
Shetty, 116, 121, 254
Shmoys, 263, 265, 403, 431
Sim, 86
Sinha, 263
Smeers, 33, 170, 262, 266, 275, 282
Smolyak, 414
Sobel, 89
Somlyódy, 49, 255
Stigler, 73
Stougie, 137, 146, 263, 265, 311, 403
Stoyan, 346
Strazicky, 222
Stroud, 342
Sun, 246, 252
Swamy, 263, 265, 403, 431
Symonds, 49, 129
Szántai, 49, 360, 362, 405

Taguchi, 36
Taha, 446
Takriti, 286
Talluri, 67, 438
Tawarmalani, 311
Taylor, 445
Teboulle, 67, 379
Teo, 362
Terlaky, 227
Tharakan, 67
Thompson, 128
Tind, 301
Todd, 226
Toint, 209

Author Index 475

Tomasgard, 263
Topkis, 255
Toregas, 72
Tsai, 246, 252
Tsitsiklis, 436

Uriasiev, 403
Uryasev, 85

Valentine, 377
van der Vlerk, 141, 146, 311, 321, 325
Van Roy, 404
van Ryzin, 67, 438
Van Slyke, 182, 267
Vandenberghe, 360
Vanderbei, 236
Vanhamme, 301
Varaiya, 27
Vasiček, 405
Vasiliev, 263
Veinott, 255
Ventura, 255
Verweij, 414
Vial, 227, 236, 403
Vickson, 20
Vladimirou, 20, 256, 286
von Neumann, 67

Wagner, 127
Wald, 87, 372
Walkup, 111, 212
Wallace, 49, 89, 219, 222, 246, 347, 366,

367, 371, 429, 444
Watson, 446
Wein, 92

Wets, 27, 49, 92, 108, 111–113, 115,
117, 118, 120, 122, 124, 126,
129, 160, 182, 212, 218, 219,
221, 222, 242, 243, 247, 251,
255, 256, 267, 347, 349, 352,
357, 367, 370, 371, 374, 378,
379, 381, 382, 384–386, 411,
443, 444

White, 244, 284
Whittle, 92
Williams, 63, 171, 247
Williamson, 438
Wittrock, 268
Witzgall, 113
Woźniakowski, 414
Wolfe, 182
Wolsey, 136, 300
Wood, 412
Wright, 209, 222, 423

Yan, 444
Yanasse, 426, 440, 445
Yang, 236
Ye, 227
Yen, 301

Žáčková, 373
Zenios, 20, 236, 256
Zhao, 436
Ziemba, 20, 21, 49, 126, 244, 247, 251,

284, 346, 349
Zinkerich, 91
Zinn, 92
Zipkin, 423

Subject Index

L -shaped, 182, 196, 198–202, 204,
208–210, 213, 217, 218, 222,
226, 237, 238, 241, 245–247,
253, 263, 294, 352

integer, 293, 301
∞ -norm, 209
ρ -approximation, 320

a priori optimization, 70
a.s., see almost surely
abridged nested decomposition, 433
absolutely continuous, 112, 116, 137,

141, 247
abstract linear program, 372
active set, 208, 247, 251, 276
adjusted random sample, 429
ADP, see approximate dynamic

programming
affine, 98

hull, 98, 350
space, 98

affine scaling, see scaling
aggregation, 31, 266, 422
airline crew, see crew scheduling
almost surely, 60, 124
ancestor, 152, 267, 277
annuity, 31
approximate dynamic programming,

367, 436
approximation, 39, 144, 341

midpoint, 342
polynomial, 342
quadratic, 251
trapezoidal, 342, 350

arbitrage, 429
arborescent, 152
artificial variable, 94, 95
assembly, 74
athletics, 53
atom, 346
augmented Lagrangian, see Lagrangian

ball, 98
barycentric, 368

coordinates, 350
basis, 94, 107

factorization, 222
forest structure, 252
function, 436
working, 224

Bayesian, 93, 407, 427
Bellman-Hamilton-Jacobi equation, 92
Benders decomposition, see

decomposition
bias, 393
bid-ask spread, 430
bid-price, 438
block angular, 182
block separable, see separable
block separable recourse, see recourse

477

478 Subject Index

booking limit, 439
Boole-Bonferroni inequalities, see

inequality
Borel field, 348, 420
bounded, 98
bounding, see bounds
bounds, 171, 381, 441, 444
branch-and-bound, 242, 299, 318, 335
branch-and-cut, 312
branching

on tenders, 304, 307, 312
solutions, 434

bunching, 140, 218, 219, 275
bundle method, 255, 263
buy-and-hold, 27

call option, 380, 429
capacity expansion, 151–153, 222
Carathéodory’s theorem, 349, 377
cell, 211, 277, 347
central limit theorem, 391, 411
chance constraint, see probabilistic

constraint
Chebyshev inequality, see inequality
Cholesky factor, 230, 233, 428
closed, 98
coherent risk measure, 85, 86
column splitting, 233
common cut coefficient, 314
compact, 98
complement, 361
complementarity, 129
complementary, 240, 267

slackness, 96
system, 124

complete recourse, see recourse
complexity, 228, 230, 263, 414, 438
concave, 20, 22, 84, 98, 107
conditional expectation, see expectation
conditional value-at-risk, 85
cone, 98, 106, 113, 117, 205, 207

positive, 113, 218
confidence

interval, 125, 392, 415, 433, 435
region, 403

conjugate, 100, 356
connected, 125, 377
constraint

relaxation, 265
subtour elimination, 148, 300

contingent payoff, 429
continuous, 13

relaxation, 286, 290, 326
time, 92

control, 20, 27
limit, 92

convergence, 100, 181, 196, 197, 204,
238, 241, 247, 251, 256–259,
261, 268, 275, 278, 286, 287,
342, 347, 356, 381–383, 390,
392, 395–397, 400–403, 409,
411–413, 415, 431, 432, 434

bounded, 120
geometric, 259, 261
in distribution, 381, 383
pointwise, 100
superlinear, 256
uniform, 99

convex, 13, 32, 157
combination, 97
complex, 211
function, 98

proper, 98
hull, 97, 238, 254, 356, 370, 377
set, 97
simplex method, 251

cover, 133, 134
covering, 146
crew scheduling, 301
cumulative probability distribution, 16
cut, 202

disjunctive, 289, 317–319, 331,
336–338

feasibility, 184, 191, 192, 196, 203,
276, 289, 293, 306, 326–329,
353, 391

optimality, 184, 185, 188–190,
196, 197, 203, 215, 276, 290,
291, 293, 294, 296, 299, 301,
322–326, 329, 434

Subject Index 479

Dantzig-Wolfe, see decomposition
decision, 57

analysis, 87, 88, 163
rule, 92
theory, 88
tree, 25, 88, 427

decomposition, 151, 181, 212, 213, 218,
219, 222, 224, 226, 245, 277,
289, 311, 389, 401, 417, 432,
444

Benders, 182, 196, 266, 301
Dantzig-Wolfe, 182, 196, 198, 199,

237, 275
Datnzig-Wolfe, 238
dual, 322
nested, 266, 273, 275, 277, 433,

434, 438
nested quadratic, 276
regularized, 202, 204, 208, 209, 279
scenario, 333
simplicial, 255
stochastic, see stochastic

deflection, 37
degeneracy, 275
density, 12, 20, 56, 122, 126, 142, 145,

146, 392, 393, 395, 410
DEP, see deterministic-equivalent
derivative, 16, 206, 263, 377

directional, 98, 99
financial, 380
Hadamard, 99
security, 429

descendant, 152, 267
design, 84
deterministic, 28

equivalent, 34, 60, 72, 104, 125,
127, 135, 146, 150, 151, 182,
263, 265, 289

model, 20, 25, 26, 31
diagonal quadratic approximation, 286
dictionary, 94–96, 195, 221, 328, 330
differentiable, 16, 98, 112, 146

continuously, 409
G- or Gâteaux, 99

dimension, 98

directional derivative, see derivative
discount, 52, 90, 407, 423, 436
discounting, 18, 89
discrete variables, see integer variables
disjunction, 337
disjunctive cut, see cut
distribution

Bernoulli, 363, 404
binomial, 449
Dirichlet, 408
empirical, 132
exponential, 130, 143, 450
function, 16
gamma, 408, 450
lognormal, 427, 432
multivariate gamma, 360
normal, 73, 83, 127, 145, 149, 299,

362, 363, 391, 410, 442, 446,
450

Poisson, 83, 122, 147, 149,
297–299, 322, 449

problem, 108, 164
triangular, 36, 110
uniform, 122, 142, 143, 149, 168,

449, 450
dom, see effective domain
dominance, 134, 135

set, 133, 134
downside risk, see risk-downside
dual, 96, 118, 122, 233, 370

ascent, 254
block angular, 182
Lagrangian, 99
program, 356
simplex, 97

duality, 57, 158
gap, 122
strong, 100
weak, 100

dualization, 265, 371
dynamic, 28

program, 87, 89, 92, 150
dynamic programming operator, 436

E-model, 124

480 Subject Index

Edmundson-Madansky bound, see
inequality

EF, see stochastic-program-extensiveform
effective domain, 98, 158
electric power, see power
emergency, 52, 69, 72, 155
empirical, 132, 389, 407, 408

measure, 385
end effects, 31, 270, 423
energy, 30, 49, 51, 170, 275
entering variable, 94
environment, 275
EPEV, see expectation-of pairs expected

value
epi-convergence, 382
epigraph, 98, 240, 322, 382
equivalent martingale measure, 380, 430
essentially bounded, 119
event, 10, 33, 56, 58–60, 64, 66, 69, 70,

104, 105, 300, 361, 418, 426,
432

EVPI, see expected-value of perfect
information

exhaustible resources, 170
expectation, 10, 57

conditional, 343, 367, 419, 424
of pairs expected value, 174

expected
shortage, 141, 146
surplus, 141, 146
value of perfect information, 9,

163, 429
value of sample information, 407
value problem, 165
value solution, 9, 24, 165

extensive form, see stochastic program
extremal measure, 373
extreme

direction, 378, 379
point, 94, 182, 222, 226, 237, 238,

240, 241, 337, 347–351, 353,
354, 364–366, 372, 373, 377,
379, 418, 420–422

ray, 237, 238, 241, 242
solution, 240

face value, 380
factorization, 208, 229

basis, see basis
QR, 208

failure rate, 127
Farkas lemma, 97
feasibility

set, 105, 109, 111, 138, 139, 152,
158, 196, 291, 308, 326, 331,
390, 430

second-stage, 138, 210
feasibility cut, see cut
feasible region, 91, 97–99, 103, 115,

156, 157, 241, 269, 414, 415
Fenchel duality, 158
filtration, 160
finance, 20, 84, 91, 244, 284, 358, 380,

429
financial crisis of 2007-2010, 358
financial planning, 20, 21, 150, 151,

155, 429, 430, 432, 435
finite generation, 255
first-order stochastic dominance, 85
first-stage, 8, 10, 104

binary, 18
decision, 58

fleet assignment, 49, 245
forestry, 49, 51
Frank-Wolfe method, 247, 253, 263
free variable, 96
full decomposability, 218

G-differentiable, see differentiable
GATT, 219
generalized

network, 27, 245
programming, 238, 245, 247, 248,

356, 373
upper bound, 335

generalized moment, see moment
Gomory function, 136, 149, 327
Gröbner basis, 311
gradient, 98
GUB, see generalized-upper bound

Hamiltonian tour, 299

Subject Index 481

hedging, 9
here-and-now, 164
Hessian, 99, 256
heuristic, 6, 163, 335
history process, 160, 427
Hoeffding inequality, see inequality
homogeneous self-dual, 227
horizon, 21, 25, 31, 150, 270
hospital, 52
hull

convex, 321
hypercube, 304, 306–309, 311
hyperplane, 98, 402

separating, 106, 111, 198
supporting, 99, 189, 190, 196, 352,

356

implicit representation, see stochastic
program

importance sampling, 390
improving direction, 97
independence

linear, 373
indicator function, 97, 166
induced constraint, 68, 193, 326, 328
inequality

Bonferroni, 405
Boole-Bonferroni, 360
Chebyshev, 358
cover, 335, 338
Edmundson-Madansky, 346, 350,

418
Hoeffding, 405
Jensen, 166, 346, 360, 418
triangle, 42
valid, 133, 312, 335, 336

infeasible, 95
infinite dimensional, 372
infinite horizon, 89, 417, 422, 423, 435,

436
inner linearization, 181, 182, 199, 237,

255, 265, 266
int, see interior
integer variables, 35
integrable, 118, 158
integration, 158, 345, 346, 414

multiple, 342
numerical, 113, 341–343, 350

interior, 98
interior point method, 222, 276

Jensen’s inequality, see inequality
just-in-time, 282

K-K-T, see Karush-Kuhn-Tucker
Kalman filtering, 92
Karush-Kuhn-Tucker, 14, 82, 99, 116,

211, 214, 276, 283, 375
knapsack, 133
kurtosis, 429

Lagrangian, 99, 253, 265, 286, 333
augmented, 256

large-deviation bounds, 389, 412
large-scale optimization, 152, 182
large-scale programming, see

large-scale optimization
leaving variable, 94
Lebesgue measure, 384
level set, 374
linear

program, 5, 57
solver, 185

quadratic, 255
quadratic Gaussian, 91

linearization, 246, 275
inner, see inner
outer, see outer

Lipschitz, 99, 112, 409
locally, 99, 382

local, 99
location, 61, 69, 72, 332

uncapacitated facility, 61
logarithmic barrier, 227
logarithmically concave, 126, 127
lower semicontinuous, 136, 157, 383
LP, see linear-program
LP-relaxation, see continuous-relaxation
LQG, see linear-quadratic Gaussian

machine learning, 90
major iteration, 200

482 Subject Index

manufacturing, 92
mapping

multifunction, 385
marginal, 367

value, 96
Markov decision process, 87, 89, 155
mathematical expectation, see

expectation
max-min utility, 92
maximal monotone operator, 257
mean value problem, see expected-value

problem
mean-variance model, 67
measurable, 118, 156, 385
measure, 55, 118
min-max, 93
mixed integer, 131, 330, 331
modeling language, 26
moment, 57

generalized, 362, 372
generating function, 360
second, 110–112, 114, 115, 124,

152, 342, 345, 358, 372–374,
376, 377, 381, 429, 441

Monte Carlo
method, 266, 389

MQSP, see decomposition-nested
quadratic

multicut, 199, 202, 275, 322, 329
multifunction, 385
multiple integration, see integration
multiplier, 96, 191, 267

dual, 374
multistage, 18, 25, 28, 65, 149, 265, 332

natural probability, 431
nested decomposition, see

decomposition
network, 242, 245, 286, 362

generalized, see generalized
network

network revenue management, 438
neuro-dynamic programming, 436
news vendor, 3, 14, 15, 251
newsboy, see news vendor

Newton step, 256
Neyman-Pearson lemma, 372
no-arbitrage condition, 430
node

terminal, 327
nonanticipative, 21, 25, 26, 91, 118,

150, 159, 234, 256, 257, 333,
418, 420, 421

nonanticipativity, see nonanticipative
nonconvex, 382
nondifferentiable, 116, 255, 342
nonlinear, 21, 27, 40, 156, 441

programming, 97, 343
normal cone, 117, 159, 207
normal distribution, see distribution
NP-hard, 263
numerical integration, see integration
numerical stability, 208

oil spills, 67
online optimization, 90
optimality condition, 115, 116
optimality cut, see cut
order of merit rule, 35
outer linearization, 182, 266

P-model, 124
pairs problem, 172
parallel processing, 222, 226, 236, 256,

268, 276
parallel subspace, 98
parametric optimization, 376
path-dependent, 427
path-following, 227
Peano’s rule, 342
penalty, 91
period, 65
PERT network, 362, 446
PHA, see progressive hedging
phase one, 94, 326, 373
phase two, 95
piecewise

constant, 143, 149
convex, 212
linear, 22, 99, 143, 149, 342
quadratic, see quadratic

pivot, 94

Subject Index 483

polar matrix, 112
polynomial approximation, see

approximation
Pontryagin’s maximum principle, 92
pos, see cone-positive, see cone-positive
positive

cone, see cone
definite, 93, 210
hull, 198
semi-definite, 210, 277

positive linear basis, 368
positively homogeneous, 108, 367
posterior distribution, 93
power generation, 28, 31, 193, 286
PQP, see quadratic-piecewise
premium, 380
preprocessing, 222, 335
price effect, 17
primal-dual, 121
probabilistic constraint, 34, 47, 124,

128, 146, 345, 357, 404
probabilistic programming, 3, 25, 71
probability, 56

space, 55, 56
production, 49, 74, 418, 425
progressive hedging, 161, 256–258,

284, 285, 444
projection, 98, 160, 232, 400
proper convex function, 115
proximal point method, 257
pseudo-random, 414
PSPACE-hard, 265

quadratic, 27, 40, 93, 99, 202, 276
piecewise, 210, 212, 214, 277

quadrature, 341, 342, 345
Gaussian, 345

quality, 37
quantile, 17, 57, 73, 125, 404
quasi-concave, 125, 127
quasi-random, 414

racing, 52
random

continuous, 16
variable, 55, 58, 66

continuous, 11, 32, 56, 104
discrete, 10, 32, 56, 104, 144
normal, 391

vector, 10, 11, 110
rc, see recession cone
recession

cone, 115, 117
direction, 115, 237, 239

recourse, 164
block separable, 32, 154
complete, 113, 118, 193
fixed, 10, 103, 150, 156, 168
function, 11, 104
integer

simple, 319
matrix, 104
network, 246
nonlinear, see nonlinear
problem, 24
program, 57
relatively complete, 113, 117, 119,

120, 122, 124, 155, 159, 160,
193, 277, 278, 293, 306, 317,
411, 414, 433, 438

simple, 40, 49, 64, 113, 116, 128,
239, 242, 246–248, 284, 343,
367, 440

simple integer, 140, 146, 289, 322
rectangular region, 350
recursion, 150
reduced gradient, 251
refinement, 347, 357
reformulation, 312
regret, 90
regularity, 99, 157

condition, 99, 100, 120, 160
regularized decomposition, see

decomposition
relative interior, 98, 158
reliability, 3, 34, 35, 40, 124, 127, 359,

360, 408, 426
revenue management, 50, 67, 418
ri, see relative interior
risk

attitude, 128

484 Subject Index

aversion, 18, 66, 67
downside, 67
preference, 379

risk-neutral measure, 430
risk-sensitive, 93
riskfree rate, 380
robust, 84, 86, 92, 358

optimization, 86
risk-measure, 86

route, 148

s-neighbors, 294
SAA, see sample average

approximation
salvage value, 31, 440
sample average approximation, 390,

392, 409, 414, 431
sample information, 407
sampling measure, 385
scaling

affine, 227
projective, 227, 230, 233, 235, 236

scenario, 21, 22, 56, 67, 130, 152, 163,
172

generation, 266, 426
reduction, 266, 427, 437, 438
reference, 172, 177

Schur complement, 233, 246
second moment, see moment
second-stage, 8, 10, 58, 104

integer, 18
value function, 60

self-dual, 235
semi-definite program, 360, 362
separability, see separable
separable, 99, 140, 239, 242, 247, 248,

251, 297, 343, 350, 356, 366,
367, 441

block, 20, 153, 154, 156, 332
function, 114
time, 92, 275

sequential sampling, 393, 411, 413, 414
serial independence, 427
shadow price, 96
sharp minimum, 411
Sherman-Morrison-Woodburyformula, 235

short-selling, 429, 430
shortage, 22, 141, 319
sifting, 222
simple integer recourse, see recourse
simple recourse, see recourse
simplex, 350, 368
simplex algorithm, 94
simplicial decomposition, see

decomposition
simplicial region, 349
SIP, see stochastic-program-integer
skewness, 429
slack variable, 94, 95
Slater condition, 99, 157
solution, 94

basic, 94
feasible, 94
optimal, 94

SOS, see special-ordered set
sparse grid, 414
special-ordered set, 335
SPEV, see sum of pairs expected values
sports, 49, 53
SQG, see stochastic-quasi-gradient
SQM, see stochastic-queue median
SSM, see sequential sampling
stability, 118
staffing, 49, 52
stage, 57, 65, 90, 150
state, 90, 91, 151

of the world, 56
prices, 430
variables, 27

static, 28
statistical decision theory, 87
Steiner tree, 263
stochastic

control, 87, 91
decomposition, 389, 395, 397, 398
dominance, 379
independence, 350
program

extensive form, 8, 11, 68, 139,
182, 265

implicit representation, 11, 68

Subject Index 485

integer, 135, 286, 289, 414
with recourse, 149, 156

quasi-gradient, 399, 401
queue median, 69
subgradient, see subgradient, 403

stochastic dual dynamic programming,
433

stopping criteria, 352
strategic, 56
stress, 37, 38, 40
subadditive, 85, 136
subdifferential, 99, 114, 117

generalized, 382
subgradient, 99, 116, 159, 167, 213,

362, 399
method, 254
stochastic, 400

sublinear, 374
suboptimization, 384
subtour elimination, see constraint
sum of pairs expected values, 172
superadditive, 311
support, 60, 104, 150, 182, 219
supporting hyperplane

seehyperplane, 196
surplus, 22, 141, 319

tail risk, 429
technology matrix, 104
tender, 105, 140, 242, 251
terminal conditions, 150
test sets, 311
time horizon, see horizon
time-additive, see separable-time
time-separable, see separable
total second moment, 374
totally unimodular, 139
transaction cost, 20, 27, 91, 430
translation, 98
transportation, 252
transportation model, 63
trapezoidal approximation, see

approximation
traveling salesperson problem, 42–45,

47, 48, 58, 70, 299, 302

tree, 22
decision, 22

triangle inequality, see inequality
triangular distribution, see distribution
trust region, 222
trust-region method, 209
TSP, see traveling salesperson problem
two–point support, 377
two-stage, 65, 103

stochastic program with recourse,
10, 59, 156

UFLP, see location-uncapacitated
facility

unbiased estimates, 406
unbounded, 94
uncertainty set, 86
unit commitment, 286
utility, 21, 22, 25, 67, 89, 90

von Neumann-Morgenstern, 67, 84

V-model, 124
valid inequality, see inequality
value function, 11, 136
value of information, 160
value of the stochastic solution, 9, 17,

24, 165
value–at–risk, 84
variance, 57

reduction, 390, 405
vehicle, 42, 148, 299, 440

allocation, 418
location, 155
routing, 40, 299, 301

VRP, see vehicle-routing
VSS, see value of the stochastic solution

wait-and-see, 164, 302
water resource, 49, 50, 255
working basis, see basis
worst case, 18, 228

yield management, 50

zero-coupon bond, 380

	Introduction to Stochastic Programming
	Preface
	Preface to the First Edition
	Contents
	Notation
	Part I Models
	1 Introduction and Examples
	1.1 A Farming Example and the News Vendor Problem
	a. The farmer's problem
	b. A scenario representation
	c. General model formulation
	d. Continuous random variables
	e. The news vendor problem

	1.2 Financial Planning and Control
	1.3 Capacity Expansion
	1.4 Design for Manufacturing Quality
	1.5 A Routing Example
	a. Presentation
	b. Wait-and-see solutions
	c. Expected value solution
	d. Recourse solution
	e. Other random variables
	f. Chance-constraints

	1.6 Other Applications

	2 Uncertainty and Modeling Issues
	2.1 Probability Spaces and Random Variables
	2.2 Deterministic Linear Programs
	2.3 Decisions and Stages
	2.4 Two-Stage Program with Fixed Recourse
	a. Fixed distribution pattern, fixed demand,ri, vj, tij stochastic
	b. Fixed distribution pattern, uncertain demand
	c. Uncertain demand, variable distribution pattern
	d. Stages versus periods; Two-stage versus multistage

	2.5 Random Variables and Risk Aversion
	2.6 Implicit Representation of the Second Stage
	a. A closed form expression is available for Q(x)
	b. For a given x, Q(x) is computable

	2.7 Probabilistic Programming
	a. Deterministic linear equivalent: a direct case
	b. Deterministic linear equivalent: an indirect case
	c. Deterministic nonlinear equivalent: the case of random constraint coefficients

	2.8 Modeling Exercise
	a. Presentation
	b. Discussion of solutions

	2.9 Alternative Characterizations and Robust Formulations
	2.10 Relationship to Other Decision-Making Models
	a. Statistical decision theory and decision analysis
	b. Dynamic programming and Markov decision processes
	c. Machine learning and online optimization
	d. Optimal stochastic control
	e. Summary

	2.11 Short Reviews
	a. Linear programming
	b. Duality for linear programs
	c. Nonlinear programming and convex analysis

	Part II Basic Properties
	3 Basic Properties and Theory
	3.1 Two-Stage Stochastic Linear Programs with Fixed Recourse
	a. Formulation
	b. Discrete random variables
	c. General cases
	d. Special cases: relatively complete, complete,and simple recourse
	e. Optimality conditions and duality
	f. Stability and nonanticipativity

	3.2 Probabilistic or Chance Constraints
	a. General case
	b. Probabilistic constraints with discrete random variables

	3.3 Stochastic Integer Programs
	a. Recourse problems
	b. Simple integer recourse
	c. Probabilistic constraints

	3.4 Multistage Stochastic Programs with Recourse
	3.5 Stochastic Nonlinear Programs with Recourse

	4 The Value of Information and the Stochastic Solution
	4.1 The Expected Value of Perfect Information
	4.2 The Value of the Stochastic Solution
	4.3 Basic Inequalities
	4.4 The Relationship between EVPI and VSS
	a. EVPI = 0 and VSS =0
	b. VSS = 0 and EVPI=0

	4.5 Examples
	4.6 Bounds on EVPI and VSS

	Part III Solution Methods
	5 Two-Stage Recourse Problems
	5.1 The L-Shaped Method
	a. Optimality cuts
	b. Feasibility cuts
	c. Proof of convergence
	d. The multicut version

	5.2 Regularized Decomposition
	5.3 The Piecewise Quadratic Form of the L-shaped Methods
	5.4 Bunching and Other Efficiencies
	a. Full decomposability
	b. Bunching

	5.5 Basis Factorization and Interior Point Methods
	5.6 Inner Linearization Methods and Special Structures
	5.7 Simple and Network Recourse Problems
	5.8 Methods Based on the Stochastic Program Lagrangian
	5.9 Additional Methods and Complexity Results

	6 Multistage Stochastic Programs
	6.1 Nested Decomposition Procedures
	6.2 Quadratic Nested Decomposition
	6.3 Block Separability and Special Structure
	6.4 Lagrangian-Based Methods for Multiple Stages

	7 Stochastic Integer Programs
	7.1 Stochastic Integer Programs and LP-Relaxation
	7.2 First-stage Binary Variables
	a. Improved optimality cuts
	b. Example with continuous random variables

	7.3 Second-stage Integer Variables
	a. Looking in the space of tenders
	b. Discontinuity points
	c. Algorithm

	7.4 Reformulation
	a. Difficulties of reformulation in stochastic integer programs
	b. Disjunctive cuts
	c. First-stage dependence
	d. An algorithm

	7.5 Simple Integer Recourse
	a. restricted to be integer
	b. The case where S=1, not integral

	7.6 Cuts Based on Branching in the Second Stage
	a. Feasibility cuts
	b. Optimality cuts

	7.7 Extensive Forms and Decomposition
	7.8 Short Reviews
	a. Branch-and-bound
	b. A simple example of valid inequalities
	c. Disjunctive cuts

	Part IV Approximation and Sampling Methods
	8 Evaluating and Approximating Expectations
	8.1 Direct Solutions with Multiple Integration
	8.2 Discrete Bounding Approximations
	8.3 Using Bounds in Algorithms
	8.4 Bounds in Chance-Constrained Problems
	8.5 Generalized Bounds
	a. Extensions of basic bounds
	b. Bounds based on separable functions
	c. General-moment bounds

	8.6 General Convergence Properties

	9 Monte Carlo Methods
	9.1 Sample Average Approximation and Importance Samplingin the L-Shaped Method
	9.2 Stochastic Decomposition
	9.3 Stochastic Quasi-Gradient Methods
	9.4 Sampling Methods for Probabilistic Constraints and Quantiles
	9.5 General Results for Sample Average Approximation and Sequential Sampling

	10 Multistage Approximations
	10.1 Extensions of the Jensen and Edmundson-Madansky Inequalities
	10.2 Bounds Based on Aggregation
	10.3 Scenario Generation and Distribution Fitting
	10.4 Multistage Sampling and Decomposition Methods
	10.5 Approximate Dynamic Programming and Special Cases
	a. Network revenue management
	b. Vehicle allocation problems
	c. Piecewise-linear separable bounds
	d. Nonlinear bounds and a production planning example
	e. Extensions

	Sample Distribution Functions
	A.1 Discrete Random Variables
	A.2 Continuous Random Variables

	References
	Author Index
	Subject Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

